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Abstract

One important characteristic of human society is that
individuals have intuitive beliefs about how various aspects of
their environment (physical, social, etc.) correlate to other
aspects. This paper tests the hypothesis that the mathematical
environment can give rise to multiple clusters of beliefs when
those beliefs concern the degree of co-relatedness between
variables. Simulations were conducted demonstrating that
when the sample size is extremely small (i.e., 3), the sampling
distribution of correlations is either U-shaped (for
distributions of the Pearson ) or W-shaped (for distributions
of signed +?). Behavioral data indicated distributions that
tended to approximate a W shape. There was also evidence
that when people guessed, because they felt they could not
extract any useful information from the sample, they were
biased to guess that the population correlation was zero. The
findings support the hypothesis that a natural, multi-clustering
of sample correlations leads to a multi-clustering of beliefs
about the population correlation.
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Introduction

One important characteristic of human society is that
individuals have intuitive beliefs about how various aspects
of their environment (physical, social, etc.) correlate to other
aspects. People often differ with respect to such beliefs, and
this sometimes leads to cooperation among like-minded
individuals and conflict among those with disparate beliefs.
This paper concerns a theory—one not described in any
previous report—about how the mathematical environment
can give rise to multiple clusters of beliefs when those
beliefs concern the degree of co-relatedness between
variables.

Building on the work of Kareev (e.g., 1995, 2005),
Anderson, Doherty, & Friedrich (2008) examined the effects
of sample size on correlation detection—i.e., the
discrimination of zero from non-zero population
correlations. Simulations results (Anderson et al., 2008), led
to the prediction that detection should be better for large
than for small samples, except under conditions of extreme
decision bias. In that same report, behavioral data indicated
that, indeed, detection accuracy was greater for large than
for small samples.

But the simulations also produced an unexpected finding
that was not directly related to the question of correlation
detection. Specifically, when the population correlation was

zero and the sample size was 3, the sampling distribution of
correlation coefficients () was U-shaped, with 0 being the
least frequent value of . In the present paper, this pattern is
interpreted to suggest that there may be a mathematical,
computational basis to posit that when people are forced to
rely on small, random samples in making correlation-based
judgments, their beliefs will not be smoothly distributed
over the range of possible beliefs. Rather, due to
mathematical factors that are distinct from the qualitative
content of the to-be-judged information, the observers'
beliefs may tend to cluster systematically around multiple
points—points that often correspond to inaccurate
inferences about the correlation between variables. For
example, suppose each of 100 people undergoes three
unrelated surgeries over a 10-year period. Each operation is
performed by a different surgeon, and the surgeons differ in
age. Suppose further that the post-operative healing times
have varied, from substantially shorter to substantially
longer than expected. Finally, let us assume that there is no
correlation (i.e., p = 0) between the surgeon's age and
healing time for surgeries he or she has performed.
Formally, this scenario represents a sampling distribution of
100 correlation coefficients, with each patient experiencing
one sample correlation (7) defined by three x, y data pairs (x
being age, and y being healing time). As demonstrated by
Anderson et al. (2008), the shape of such a distribution is
highly non-intuitive: If the sample size (n) were larger—e.g.
15 instead of 3—the distribution would be roughly normal
and symmetrical about zero. But in the case of n = 3, the
distribution of sample correlations is U-shaped, with
clustering near » = -1 and » = +1, and with 0 being the least
frequent value of » (Anderson et al., 2008). Under the
assumption that each patient treats the sample r as the best
estimate of the population correlation (p)—that is, the
correlation between age and post-operative healing time for
all surgeons—clustering of samples translates into a
clustering of beliefs about the value of p. Moreover, in this
particular case (with p = 0 and n = 3) the samples can be
characterized as consistent with polarized beliefs: One
cluster of patients perceives a strong positive relation
between the surgeon's age and post-operative healing time,
another perceives a strong negative relation, and relatively
few believe there is no relationship.

In the present paper presents new simulation studies,
along with the first behavior investigation of the hypothesis
that the shape of the distribution of beliefs (about a
population correlation) would reflect the shape of the

1918



distribution of sample correlations on which the beliefs are
based.

Sampling-Distribution Simulations

A series of simulations was conducted to model situations in
which each of a large number of individuals encounters a
random sample (with replacement) of x,y data pairs. In
comparison to the simulations in Anderson et al. (2008), the
present simulations were manipulated across four levels
rather than two, results assessed for two different (though
related) measures of correlation, and the distribution shapes

were interpreted in the context of a theory about the
distribution of beliefs across persons.

Variables x and y were continuous, and each was
normally distributed within the population from which the
data pairs were drawn. The number of data pairs per sample
and the population correlation were manipulated across
simulations. For some simulations, each sample correlation
was computed as the Pearson correlation coefficient (r),
whereas in others it was computed as signed # (r multiplied
by the absolute value of 7). Figure 1 shows the simulation
results.

Of particular interest are the simulation results for n = 3.
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In such cases the distribution of sample correlations has
multiple modes—two modes in the simulation that
computes the sample r, and three modes in the simulation
that computes signed 7°. Such multi-clustering is especially
evident when the population correlation (p) is 0, but is also
evident when p = .8 (for p = .8, the cluster at -1 is tiny yet
discernable). These findings suggest that when individual
perceivers are exposed to extremely small samples, their
beliefs of about the correlation in the stimulus population
may tend to cluster at the extreme ends of the scale, with a
possible third cluster at zero. Moreover, the two-cluster
outcome would suggest that people mentally represent
correlation in a way that approximates the Pearson r,
whereas a three-cluster outcome would be consistent with
an approximation to signed 7°.

A Behavioral Study

Participants read a description about immigrants from a
fictional country. The description included a random sample
of three immigrants, each of whom was characterized by
two variables: the distance of the immigrant’s home town
from the national border, and the amount of time the
immigrant had to wait before being granted permission to
emigrate. Participants then estimated a pair of conditional
frequencies for a set of 100 hypothetical immigrants. They
were asked: (1) “If you were to meet 100 more immigrants
from the Soreltinas Republic, and if all of their home towns
were FARTHER-than-average from the eastern border, then
about of the 100 would be expected to have a
longer-than-average waiting time to emigrate,” and (2) “you
were to meet 100 more immigrants from the Soreltinas
Republic, and if all of their home towns were CLOSER-
than-average to the eastern border, then about of the
100 would be expected to have a longer-than-average
waiting time emigrate. For each participant, a subjective
population correlation was computed from the two
frequency estimates. It was predicted that the distribution of
subjective correlations, across participants, would exhibit
the patterns of clustering observed in the » = 3 simulations.

Method

Participants and Design The experiment was conducted
via the World Wide Web. Participants were randomly
assigned to the p = 0 condition (128 participants) or the p =
.8 condition (133 participants). Participants were recruited
from psychology courses at Bowling Green State
University, and received partial course credit in exchange
for their participation. Participants were also solicited via
publicly accessible web pages. People were asked to
participate only if they were at least 18 years of age.

Procedure The experiment After reading an informed
consent form 1, the participant was asked to indicate his or
her sex, age, and academic status/affiliation [(a)
undergraduate  student, (b) graduate student, (c)
college/university faculty, administrator, or staff member,
(d) other]. Next, the participant read the following scenario,

but with a random set of numerical values presented to each
participant.

Imagine that you have met three immigrants from the
Soreltinas Republic, and that you have never met anyone
else from that country. Each of the three immigrants has a
different home town in the Soreltinas Republic. The towns
vary with regard to how far they are from the eastern border.
In addition, the immigrants had to wait different amounts of
time between applying for emigration and being granted
permission to emigrate. The table below contains the
information about the three immigrants.

Distance of Home

Town from Eastern Waiting Time

Border for migration
Immigrant #1 5.52 373
Immigrant #2 5.38 270
Immigrant #3 4.29 187

For the two stimulus variables, the population means
were 6 and 300, respectively, and the population standard
deviations were 1 and 60, respectively. There were 500
data pairs in each of the two populations (p = 0 and p =
.8).

Next, participants were asked to estimate the two
population frequencies described earlier in this report.
Finally, as part of a post-experimental questionnaire,
participants were asked whether they tried to give
accurate answers, whether they felt they had been able to
make use of the table of numbers in making the
frequency estimates (options were “yes”, or “no, I just
guessed”), how many statistics courses they had
completed, and whether they were currently taking a
statistics course.

Results and Discussion

Twenty participants in the p = 0 condition and 19 in the p =
.8) confessed that they did not attempt to perform the task
accurately. Their data were excluded from further analysis.

Demographics Table 1 summarizes the demographics for
the participants.

Table 1: Summary demographic statistics indicating the
number of males (M.) and females (F.), the percent of
undergraduates (Undrgrd.), the mean number of
statistics courses completed (#Stats.), and the percentage
currently taking a statistics course (Curr. Stats.)

#Stats. Curr.
Group M. F. Undrgrd. (mean)  Stats.
p=00 38 70 89% .6 13%
p=08 37 T7 96% 4 11%
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Stimulus Distributions Figure 2 shows sampling
distributions of the correlations for the random samples
shown to the participants. Though the number of data points
was small relative to that of the simulations, the
distributions of stimulus correlations are a rough match to
the distributions produced by the simulations.

Behavioral Findings Figure 3 presents scatter bars and
histograms showing the distribution of subjective
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Figure 2: Distributions of sample correlations in the stimulus data.
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the clusters at -1 and 1 are much smaller than predicted.
This pattern (for p = 0) can be interpreted to indicate that, as
predicted by the simulations, the output of the stimulus
sampling process produced a pair of minority groups whose
members inferred extreme but wrong beliefs about the
correlation between an immigrant’s home-town location and
his(her) waiting time to emigrate. In addition, because the
distribution of beliefs appears to depart from the simulation
results (regarding the sizes of the clusters at -1 and +1), it
appears that participants’ internal representation of
correlation may differ both from  and from signed .

For p = .8 (Figure 3, bottom graphs), the result is similar
to that of the signed /> simulation except that the cluster at
zero is quite large relative to cluster at +1. This result can be
interpreted to suggest that when the population correlation is
strongly positive but not perfectly positive, people’s beliefs
cluster at two incorrect values: 0 and +1.

Notably, for p = .8, there is little clustering at -1, and the
mean of participants’ subjective correlations is significantly
greater for p = .8 (M = .32) than for p =0 (M = .15) [#220)
= -2.7, p = .007]. Thus, participants’ inferences were
sensitive to the objective correlation in the stimulus
population. Another feature of the results is that participants
in the p = 0 condition exhibited a positive bias (as in
Kareev, 1995b, and Malmi, 1986) in that the mean
subjective correlation was significantly greater than 0,
#107) =3.46, p = .001.

A second set of analyses was conducted on a subset of the
data, based on participants’ reported metacognitive

Objective Population Correlation (p) = 0

awareness of being able to utilize the sample information to
form their beliefs about the population. Participants who
answered ‘“no” to the question whether they felt they were
able to make use of the table of numbers in making the
frequency estimates were excluded from this second set of
analyses. Consequently, there remained just 60 and 56
participants in the p = 0 and the p = .8 condition,
respectively. Figure 4 shows the results. As in the full data
set, the mean subjective correlation was greater for p = .8
(M = .38) than for p =0 (M = .11), (114) = -2.6, p = .01.
Another key finding is that the belief distribution in the p =
.8 condition (Figure 4, bottom graph) appears to be a better
match to the signed r* prediction (Figure 1, bottom right
graph) than does the corresponding distribution from the full
set of behavioral data (Figure 3, bottom right graph). The
distribution shape is perhaps less clear for the p = 0
condition in Figure 4 (top graph), though the clarity might
improve with a larger number of participants. It also appears
that the number of subjective correlations lying at or near
zero, relative to those lying at the extremes, is larger when
the data set includes participants who felt that they simply
guessed (Figure 3) than when such participants are excluded
from the data (Figure 4). This suggests a particular bias in
participants’ guessing strategy such that, when faced with
extreme uncertainty, they guess that the population
correlation is zero rather than guessing randomly. Such a
bias will of course impact the shape of the observed
distribution of beliefs, as is evident in the difference
between Figures 3 and 4. Thus it is important, theoretically,
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Figure 4: Distributions of subjective correlations for those
participants who felt they were able to use the sample data
to form a belief about the stimulus population.

to distinguish between decision makers whose
metacognition tells them that their expressed belief has a
basis in data, and those who feel that they were simply
guessing and that their belief consequently has no basis in
data.

In summary, the present findings indicate that when
decision makers use very small samples to infer
correlations, the resulting distribution of beliefs is not a
simple scattering of points about the true population
correlation. Rather, the belief distribution is multi-clustered
in a way that reflects the statistical characteristics of the
environment, and that suggests an internal mental
representation that matches signed #* more than .
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