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Abstract

There is strong evidence that human sentence processing is in-

cremental, i.e., that structures are built word by word. Recent
experiments show that the processor also predicts upcoming
linguistic material on the basis of previous input. We present a
computational model of human parsing that is based on a vari-
ant of tree-adjoining grammar and includes an explicit mecha-
nism for generating and verifying predictions, while respecting
incrementality and connectedness. An algorithm for deriving
a lexicon from a treebank, a fully implemented parser, and a
probability model for this formalism are also presented. We
devise a linking function that explains processing difficulty as
a combination of prefix probability (surprisal) and verification
cost. The resulting model captures locality effects such as the
subject/object relative clause asymmetry, as well as surprisal
effects such as prediction &ither ... or constructions.

Keywords: Sentence Processing; Incrementality; Prediction;
Surprisal; Locality Effects; Tree-adjoining Grammar.

Introduction

Evidence from psycholinguistic research suggests that lal

guage comprehension is largelycremental, i.e., that com-

prehenders build an interpretation of a sentence on a wor
by-word basis. Evidence for incrementality comes from
speech shadowing, self-paced reading, and eye-trackidg st
ies (Marslen-Wilson, 1973; Konieczny, 2000; Tanenhau
etal., 1995): as soon as readers or listeners perceive aimord
a sentence, they integrate it as fully as possible into aerepr

sentation of the sentence thus far. They experience diffiaie
processing difficulty during this integration process, eteg-

ing on the properties of the word and its relationship to the

preceding context.
There is also evidence for fudonnectivity in human lan-

guage processing (Sturt & Lombardo, 2005). Full connec

necessary to build phrases whose lexical anchors (the words
that they relate to) have not been encountered yet. Full con-
nectedness ensures that a fully interpretable structuaresi
able at any point during incremental sentence processing.

In this paper, we explore how these key psycholinguistic
concepts (incrementality, connectedness, and pred)atim
be realized within a new version of tree-adjoining grammar,
which we call Psycholinguistically Motivated TAG (PLTAG).
We propose a formalization of PLTAG and a linking theory
that derives predictions of processing difficulty from iteW
then present an implementation of this model and evaluate it
against key experimental data relating to incrementality a
prediction. The resulting model is shown to offer a unified
framework that captures both locality effects and surpega
fects in sentence processing.

Background
Among existing models of sentence processing, two stand out

as potential candidates for accounting for predictioncfe
CE)ne of them is Dependency Locality Theory (DLT), proposed

y Gibson (1998). A central notion in DLT istegration cost,
a distance-based measure of the amount of processing effort
required when the head of a phrase is integrated with its syn-

Yactic dependents. In other words, dependents in DLT prredic

the existence of a subsequent head, and the verification of
these predictions causes processing cost at the head,drased
its distance from the dependents.

A key experimental result captured by DLT is the fact that
subject relative clauses (SRCs) as in (1a) are easier tegsoc
than object relative clauses (ORCs) as in (1b). Shorteimgad
times are observed on the veatiacked for SRCs compared

to ORCs (King & Just, 1991).

tivity means that all words are connected by a single syn-

tactic structure; the parser builds no unconnected treg fra (1)  a.  The reporter that attacked the senator admitted

ments, even for the incomplete sentences (sentence piefixes the error.
that arise during incremental processing. _ b. The reporter that the senator attacked admitted
Furthermore, there is evidence that readers or listeners the error.

make predictions about upcoming material on the basis of

sentence prefixes. Listeners can predict an upcoming pos#t the relative clause verattacked, a dependency to the rel-

verbal element, based on the semantics of the preceding vedtive pronounthat is constructed; in the SRC, this involves

(Kamide et al., 2003). Prediction effects can also be olegerv a distance of one, while in the ORC, the subjtet senator

in reading. Staub & Clifton (2006) showed that following the intervenes, resulting in a distance of two, thus explairireg

word either readers predicor and the complement that fol- higher processing cost in DLT terms.

lows it; processing was facilitated compared to structtias DLT has been shown to also capture a range of other

includeor withouteither. In an ERP study, van Berkum et al. complexity results, including processing overload phenom

(1999) found that listeners use contextual informationrtsa p  ena such as center embedding and cross-serial dependencies

dict specific lexical items and experience processing diffjc ~ (Gibson, 1998). However, DLT is not a broad coverage the-

if the input is incompatible with the prediction. ory: it captures the integration costs at main verbs and s,oun
The concepts of incrementality, connectedness, and predibut makes no predictions for any other syntactic categories

tion are closely related: in order to guarantee that theagynt This limits its usefulness in accounting for corpus datanfbe

tic structure of a sentence prefix is fully connected, it may b berg & Keller, 2008a).
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Hale (2001) proposed surprisal as an alternative measure ofquire an incremental parser that is capable of builditig fu
processing difficulty, based on ideas from probabilisticspa connected structures and generating explicit predictitom
ing. When a new word is processed during incremental interwhich we can then derive a measure of processing difficulty.
pretation, the probability of the sentence up to the newwsord Existing parsers and grammar formalisms do not meet this
compared to the probability of the sentence up to the praviouspecification. While there is substantial previous work on in
word. The amount of change in the probability distribution cremental parsing, none of the existing models observés ful
that occurs (the relative entropy of the two distributioos)-  connectivity. One likely reason for this is that full contiee
responds to the processing difficulty experienced at the newty cannot be achieved using canonical linguistic struesur
word. This means that words that are highly predictable (lowas assumed in standard grammar formalisms such as CFG,
relative entropy) incur low processing difficulty, whilersu CCG, TAG, LFG, or HPSG. Instead, a stack has to be used to
prising words incur high processing difficulty. store partial structures and retrieve them later when itieas

As an example, consider the sentence in (2). Here, Staub &ome clear (through additional input) how to combine them.
Clifton (2006) found thaan essay is processed more quickly Here, we therefore use a new variant of the tree-adjoining
in (2a) than in (2b). This is captured straightforwardly y-s  grammar (TAG) formalism which realizes full connectedness
prisal: either ...or is highly likely to be followed by an NP, The key idea is that in cases where new input cannot be com-
while or without either can be followed by a wide range of bined immediately with the existing structure, we need & pr
phrases (including S), encountering an NP is thus more sudict additional syntactic material, which needs to be vexiifi
prising in this case, resulting in elevated reading times. against future input later on. Our variant of TAG is called

) ) Psycholinguistically Motivated TAG (PLTAG). It is outlide

(2) a Peterread either a book or an essay in the scho@lejow and described in more detail in Demberg & Keller

magazine. . (2008b).
b. Peter read a book or an essay in the school mag-
azine. Incremental Processing with PLTAG

Surprisal captures a range of sentence processing efiects, Tree-Adjoining Grammar

cluding certain garden path effects, speed-up effectsiin-ve Tree-adjoining grammar (TAG) was developed by Joshi et al.
final contexts, and word order asymmetries (Hale, 2001{1975) as a linguistically inspired grammar formalism. It
Levy, 2008). It is not capable, however, to account for themakes a fundamental distinction between initial trees and
SRC/ORC asymmetry, as Levy (2008) shows. auxiliary trees. Initial trees are non-recursive and aredus
DLT and surprisal therefore model complementary aspectg substitution operations, as illustrated by the tree wiith
of sentence processing. While DLT can be regarded as xical anchotthe in Figure 1a, and the trees feenator and
backward-looking measure that focuses on integrating preattacked in Figure 1b. Auxiliary trees are recursive structures
vious information with new information, surprisal can be and are integrated into a derivation with the adjunction op-
seen as forward-looking, measuring whether the new inpugration; examples are the trees with lexical anafron Fig-
meets the comprehender’s expectations. Recently, Dembe[ge 2d and the tree fahat in Figure 1a. Both initial and auxil-
& Keller (2008a) conducted a broad-coverage evaluation ofary trees can have zero or more substitution nodes, i.dg$10
DLT and surprisal (on the Dundee Corpus, a collection ofthat another tree must substitute into; substitution nades
newspaper text annotated with eye-movements), and foungharked with|. Auxiliary trees furthermore have exactly one
that the predictions of the two theories are uncorrelatetl anfoot node marked with *, which always has the same cat-
account for complementary parts of the variance in the corpuegory as the tree’s root node (rendering it recursive). Most
reading times. TAG grammars are assumed to be lexicalized (LTAG); lex-
The challenge, therefore, is to develop a model of sentencalization of a grammar means that all trees have a lexical

processing that not only captures the properties of increme anchor, i.e., they are associated with a lexical item.
tality, connectivity, and prediction, but is also capabiex-

plaining the complementary processing effects explained bPsycholinguistically Motivated TAG

DLT and surprisal. PLTAG extends normal LTAG in that it specifies not only
. . . . the canonical lexicon containing lexicalized initial andi:
Modeling Explicit Prediction iary trees, but also a predictive lexicon which containsepet

We propose a theory of sentence processing guided by tHéally unlexicalized trees, which we will cafirediction trees.
principles of incrementality, connectedness, and pramict Each nod_e in a prediction tree is annotated with indices of
The core assumption of our proposal is that a sentence prahe form §j where inner nodes have two identical indices,
cessor that maintains explicit predictions about the upngm root nodes only have a lower index and foot and substitution
structure has to validate these predictions against thet inp nodes only have an upper index. The reason for only having
it encounters. Using this assumption, we can naturally comhalf of the indices is that these nodes (root, foot, and #ubst
bine the forward-looking aspect of surprisal (sentenceacstr tion nodes) still need to combine with another tree in order t
tures are computed incrementally and unexpected continusuild a full node. If an initial tree substitutes into a sutst
ations cause difficulty) with the backward-looking integra tion node, the node where they are integrated becomes a full
tion view of DLT (previously predicted structures are veri- node, with the upper half contributed by the substitutiodeno
fied against new evidence, leading to processing difficidty aand the lower half contributed by the root node.
predictions decay with time). Prediction trees have the same shape as trees from the nor-
In order to build a model that implements this theory, wemal lexicon, with the difference that they do not contain-sub
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stitution nodes to the right of their spine (the spine is tatap @  np '
from the root node to the anchor), and that their spine does PN predicted structure

not have to end with a lexical item. The reason for the missing NP /C\ substitution Su
right side of the spine and the missing lexical item are con- WHNP N /\

siderations regarding the granularity of prediction. Tiesy, NP VP

for example, we avoid predicting verbs with specific subcate DT

gorization frames (or even a specific verb) at the point of en- that tr‘]e DT NNg;

countering the determiner of an ORC subject (as in Figure 1,

discussed in more detail below). In general, we only predict substitution

upcoming structure as far as we need it, i.e., as required by ~ ® NP

connectivity or subcategorization. (However, this is dipre /\

inary assumption, the optimal prediction grain size rersain NP* @ verification S

an open research question.) /\i‘ /\
PLTAG allows the same basic operations (substitution and WHNP ! ____NR WP

adjunction) as normal LTAG, the only difference is that #hes that /\ - qp

operations can also be applied to prediction trees. In imuit NPSS VPG M '

we assume a verification operation, which is needed to val- TS/Z\ & amLcked

idate previously integrated prediction trees. The tredrega D‘ N ’\AIst ~NP

which verification happens has to always match the predicted the 1 Y NN

tree in shape (i.e., the verification tree must contain al th N Pl

nodes with a unique, identical index that were present in the verification ™ senator

prediction tree, and in the same order; any additional nodes

present in the verification tree must be below the prediction Figure 1: Prediction and Verification

tree anchor or to the right of its spine). This means that the
verification operation does not introduce any tree configuraPrediction through Subcategorization Another source of
tions that would not be allowed by normal LTAG. (Due to predictions are the lexicon entries themselves via their su
space restrictions, we cannot provide a formal equivalenceategorization frames. Subcategorization in TAG is exgeds
proof of PLTAG and LTAG here.) Note that substitution or through substitution nodes, which have to be filled with an
adjunction with a predictive tree and the verification ofttha argument in order to construct a valid sentence. Each substi
tree always occur pairwise, since each predicted node has totion node that is to the right of the tree’s anchor natyrall
be verified. A valid parse for a sentence must not contain anpecomes a prediction during the parsing process. Modifiers
nodes that are still annotated as being predictive — allafth are generally not predicted in our framework, unless they ar
have to be validated through verification by the end of theneeded for connectivity.
sentence. We also exploit TAG’s extended domain of locality in or-

In PLTAG, prediction occurs in two cases: when requiredder to construct lexicon entries such that they encode lexi-
by connectivity, and when required by subcategorization. ~ cal entries together even if they occur as two separate words
Prediction through Connectivity As briefly mentioned We can use this to explaln. predictive famhtgtlon faither

..or and related constructions (Staub & Clifton 2006; see

above, canonical elementary trees can not always be Corﬁackground section above). For thigher ... or case, we as-
nected directly to a previously built syntactic structux- sign a lexicon entry teither which predicts the occurrence of

amples are situations when two dependents precede a heq € conjunctioror, as well as predicting a coordinate struc-

or when a grandparent and a child have been encountere : - ;
but the head of the parent node has not. This happens, f%:aeztgat combines two entities of the same category, see Fig

instance, at the integration of the second determiner in the Wh . ith disiunction in PLTAG
ORC in (1b), as illustrated in Figure 1. The elementary tree €n processing amtner ...or disjunction in FLIAS,

for the cannot directly be combined with the preceding rela-Pr0cessing abr will be facilitated compared to a simple
tive clause structure. The intervening structure will olalter or construction. For the sequenbeter read a book or, the

be provided by the trees for the nosanator and the verlat- ~ ©_0¢curs unexpectedly, and can be attached either at the
tacked (see Figure 3). If we want to maintain connectivity at NP level or at the S level (see Figure 2), leading to an am-

this point, we therefore need to predict this intervenimgcst biguity which will have to be resolved later on. In contrast,
ture (see the right hand side tree in Figuré Predicted struc- or was predicted already aither for the sequencBeter read

tures are marked with unique indices, indicating which treee|ther abook or, and will therefore be less costly to integrate:

they originally came from. In our example, the nodes origi_the probability ofor given the predictedtither structure is

nating from the tree structure sénator have indexs2, and  nigher than the probability afr given the structure without
nodes from the tree faattacked have indexSl 2 ' either. In addition, there is no NP/S-coordination ambiguity,

see Figure 2b.

1Because of the recursivity of natural language, it is possible that————————
there are infinitely many ways to connect two trees. Although em-parsing algorithm to integrate prediction trees which it then does not
bedding depth can be infinite in theory, we assume that it is finiteuse.
and indeed very small due to limitations of human memory. SWhether or not modifiers are predicted syntactically is a subject
2For efficiency reasons during parsing, we pre-combine predicfor further research. Preliminary evidence suggests that modifiers
tion trees that we find in the training data, and later do not allow theare predicted when they are required by the discourse context.
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(@) lexicon entry for "either" (b) derivation at "or" in either—c S,
S

NP N
NPV
DT NR CCs: NP PeterY NP

N | read
either orgl
DT K CC NR

either a book or Vi adr‘nitteq T3 NNe
5

(c) ambiguity at "or" (d) lexicon entries for "or"

adjuncton 'S . the errord

S— T VPg

S - ——S* CcC §
Wil D \‘/g NPs
petertV NP————

T T .

read 2 Book ~—NP* CC NR P attacked trace:

or

Figure 2: Extended domain of locality for expressions thatFigure 3: Generating lexicon entries from the Penn Treebank
trigger predictions. for an example sentence.

The Incremental Parser
For our lexicon induced from the Penn Treebank, we found

In orpie_r o obtain acompytational model that imp_lemen.ts th(%hat the average ambiguity per lexical item is 4.5 trees (the
prediction processes defined by PLTAG we require an incre- '

mental probabilistic parsing algorithm, which in turn régg S\;ﬁﬂ|€gtr|or1r]ilsh2é|€;rf1lgirl ’uﬂ"eagéggrﬁg%t tr\:veorredsa r\(/avit??': f\(/a(\aN Wl(c)J\r/(\jIS

a Iexicql_"n a}nd a training set from which we can estimate theambigui%g/ o?just ong Ie>></i100n entry)yAmong the derivryaB'on

ﬁg;]tt)g?rlnl Itsljll’% model for the parser. We describe these CGrnpowhe(e. predictive trees were needed in ordgr to ach[eve con-
: nectivity, 96.15% of cases used one prediction tree, in%.55

of cases, two prediction trees had to be combined before con-

nectivity was achieved (as in our ORC example case dis-

We induce the lexicon needed for our incremental version otussed above); in less than 0.4% of cases were three to six

TAG from the Penn Treebank, complemented by noun phrasgees needed, and never more than seven.

annotation (Vadas & Curran, 2007), Propbank (Palmer et al.,

2003), and an adapted version of Magerman’s (1994) heaarsing Algorithm

percolation table. These additional resources help déterm The parsing algorithm is strictly incremental and only ako
the elementary trees using procedures proposed by Xia et aperations that maintain the full connectivity of the peirti
(2000) and allow us to distinguish arguments (for which wetrees that cover words; ... w;. The algorithm processes al-
generate an initial tree, and a substitution node in therpare ternative analyses in parallel and does not do any kind of
tree) from modifiers (for which we generate auxiliary trees) packtracking.

Figure 3 shows how a syntactic tree in the Treebank is cut When a new wordw; 1 is encountered, the algorithm re-
up into elementary trees by the lexicon induction processtrieves the elementary trees for this word from the lexicon,
Each node is indexed with the number of the word that is itsand tries to integrate each of them with previous analyses,
lexical anchor. So the tree fahe includes thethe node and  while making sure that only correct PLTAG trees are derived
the DT node as the tree’s root node, while the treetfiat  at each step. The parser can also use trees from the predictiv
contains all the nodes with index 3, i.e., the lexical anchorlexicon after each new word that was read in. The operations
the inner nodes WHNP and RC, the substitution node S, thi the parsing algorithm are substitution, adjunction aad v
root node NP and the foot node NP. ification, as outlined in the description of PLTAG above.

Once the trees have been segmented into elementary treesFor illustration, assume we are parsing the sentéefiee
we calculate the connection path for each prefix, as proposeayporter that the senator attacked admitted his error. We first
by Lombardo & Sturt (2002). A connection path for words retrieve trees for the lexentbe from the lexicon, and one of
Wi ...Wn is the minimal structure that is needed to connectthose entries is the tree ftine shown in Figure 1. Next the
all wordsw; ... wy, into the same syntactic tree. The structurealgorithm predicts a number of structures that are comfeatib
needed for each of the first five words in Figure 3 is indicatedwith the current structure and then reads in the next wad,
by the circles enclosing the connection path at each stage. porter. One of the trees for reporter has the structure shown

We then use the connection paths and the canonical eléa Figure 1 for the wordenator, and the prefix tree can be in-
mentary trees to determine which parts of the structure aréegrated with the new tree by substituting the treetffierinto
included in the connection path for words ...w,, but are  the tree forreporter (without using any predictions). Next,
not part of any of the elementary trees with fegt. .. wy,. In prediction trees are generated and attached, and we then en-
Figure 3, this occurs for the first time at wond: its connec-  counter the wordhat, retrieve its tree structure and adjoin it
tion path contains nodes with indices 5 and 6. This means thamto the NP of the prefix tre¢he senator. When we try to
parts of the structure from lexical itermg andwg have to be  attach the next round of prediction trees, one of them is the
predicted atvs, and two prediction trees are generated (theyprediction tree shown at the right hand side of Figure 1as Thi
can be pre-combined, for the result see the predicted ateict prediction tree is substituted into the open substitutioden
in Figure 1a). with category S in the prefix tree, and the tree structure for

Lexicon Induction and Treebank Transformation
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the following wordthe can then be substituted into the open predicted trees). Each of these predicted tregfas a time-
predictive substitution node with category DT. Again, more stampt that encodes when it was first predicted, or last acti-
prediction trees will then be generated and integratedtigh  vated (i.e., accessed). Based on the timestamp, a treeéshod
prefix, but they are not needed at encountering the next wordjecayd at verification time is calculated, under the assump-
senator. Here, the first verification operation takes place. Thetion that recently-accessed structures are easier toratteg
tree forsenator can validate all nodes with indé&, and also In our model, processing difficult® is thus incurred dur-
introduces the lexicalized nodenator. Another verification  ing the construction of the syntactic analyses, as caledlat
takes place at the wouttacked, and this time, all nodes with  from the probabilities of the elementary trees (this disect
index S1 can be validated, and the V node and #éltiacked  corresponds to Haleian surprisal calculated over PLTAG
node, as well as the right NP substitution node, are alsodaddestructures instead of over CFG structures, see the firsoline

to the structure. Equation (4) below). In addition to thi§) has a second com-
N ponent, the cost of verifying earlier predictions, whiclhgct

Probability Model to a decayd (see the second line of Equation (4)). The overall

The probabilities of the analyses are calculated increatignt  Processing difficultyd at wordw; is therefore:

during the parsing process. When a new tde integrated 4y p,, = —log z P(By.w ) +log z P(Br.w ;)

into the partial derivatiorf3, we retrieve the probability (a
maximum likelihood estimate from the Penn Treebank$ of )
conditional on the integration poimfs (a substitution node —logy P(m)t-d™
for the substitution operation or an adjunction node for the T

adjunction operation, or the prediction treg it is verify-  Note that the prefix probabilitiesg, ,, P(B1.w ), which are

ing in the case of the verification operation). To reduce dat . .
sparseness, we estimate the probabilitg @f its unlexical- %ngfﬂgﬂytobgi!fﬁslztifsslﬂ%'?ﬁé}éﬂeonltj;ﬁ;the parsing pssce

ized tree structura, multiplied with the probability of the Th ificat B b imilariti

anchorh; given the unlexicalized tree structure. The integra- J - e verification cost %ompongnt ealrs ‘T"m' %r_ltles o

tion pointng is characterized by its categary, its prediction integration costs, but we do not calculate distance in
terms of number of discourse referents intervening betveeen

statu rediction tree or not) and, in the adjunction oper- . e ) X
s (P ) ) P dependent and its head. Rather verification cost is detedmin

ation, its positionpg among competing adjunction sites. The i ) L
anchor\g of a tree depends on its prediction status. Itis eithelpy the_n_um_ber of wprds Intervening between a predlc_'glon_ and
its verification, subject to decay. This captures the ifgnit

the lexemew and the part-of-speech tador full elementary .
trees, or its leaf category for prediction trees. We smobéh t _that a prediction _becomes less and less ugefgl the 'OF‘ger ago
it was made, as it decays from memory with increasing dis-

probabilities to alleviate data sparseness problems ubimg

1w 1.wi_1

smoothing algorithm proposed by Brants (2000). tance.
(1)  Substitution: Experiments and Results
ZEPS(SILHB) - 1_ P P(A N We tested our model on the SRC/ORC asymmetry and on
whereP(g[ng) = Ps(Te|Ca, @) P(Ae|Te, Ap) the 48either ...or sentences from Staub & Clifton’s (2006)
; P experiment. The modeling results reported here are based on
(2) Adjunction: .
Pa(Ng) + Pa(NONE|Ng) = 1 a decay factor ofl = 08 and.the number of timesteps was
Z; a P B a P B P(A A set to the number of intervening words. The probabilities fo
whereP(e|np) = Pa(Te|Cp, Pp, @) P(Ac[Te, Ap) the PLTAG grammar were derived from the Penn Treebank
andP(NONE[ng) = Pa(NONE|cg, pg, ¢3) using maximum likelihood estimation.
P Figure 4 shows the model predictions for the SRC and
3 Verification:
3) g'?g' )n_ 1 ORC sentences in (1). Model predictions and reading times
Zsh v PT[B T R p are very similar for both sentences in the main clause re-
whereP(&[T) = P (Te [T ) P(We[Te) gions, so we focus on the relative clause regions. As detaile

; ; e in the Background section, experimental evidence indgate
Modeling Processing Difficulty that processing time is higher at the ORC verb compared to
The PLTAG formalism proposed in the previous sections isthe SRC verb. The graph in Figure 4a shows that we correctly
designed to implement a specific set of assumptions abouiredict this fact for the full version of the model, i.e., the
human language processing (strong incrementality with fulversion that includes both the surprisal component and the
connectedness, prediction, ranked parallel processiftyy.  verification component in Equation (4). In a baseline model
formalism forms the basis for the processing theory, whichthat only includes surprisal, but no verification, we ineatty
uses the parser states to derive estimates of processfirg difpredict that the ORC verb is read faster than the SRC verb.
culty. We now need a linking theory that specifies the matheThis is consistent with Levy’s (2008) observation that aypro
matical relationship between parser states and procedsing abilistic context-free grammar derived from the Penn Tree-
ficulty in our model. bank, combined with the surprisal linking hypothesis, is un
During processing, the elementary tree of each new wordble to predict the ORC/SRC asymmetry correctly. In both
gy, Is integrated with any previous structuf@.{ w_,), and  version of our model, predicted reading time for the rekativ
a set of syntactic expectations is generated (these expectadause NP (see Figure 4b) is slightly higher for the ORC than
tions can be easily read off the generated tree in the form ofhe SRC. The version with surprisal and verification preglict
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imental results from the literature, and can explain both lo

7.25 12
e e cality and prediction effects, which standard models of sen
2 6751 E s tence processing like DLT and surprisal are unable to adcoun
5 657 5 11251 for simultaneously. Our model therefore constitutes andimp
2% [AETE tant step towards a unified theory of human parsing. In future
g 57?: g 10751 work, we will evaluate our model against a broader range of
2 o5 2 105 data, both from experiments and from eye-tracking corpora.
& 525+ o 10.25
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