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Abstract

There is strong evidence that human sentence processing is in-
cremental, i.e., that structures are built word by word. Recent
experiments show that the processor also predicts upcoming
linguistic material on the basis of previous input. We present a
computational model of human parsing that is based on a vari-
ant of tree-adjoining grammar and includes an explicit mecha-
nism for generating and verifying predictions, while respecting
incrementality and connectedness. An algorithm for deriving
a lexicon from a treebank, a fully implemented parser, and a
probability model for this formalism are also presented. We
devise a linking function that explains processing difficulty as
a combination of prefix probability (surprisal) and verification
cost. The resulting model captures locality effects such as the
subject/object relative clause asymmetry, as well as surprisal
effects such as prediction ineither . . . or constructions.
Keywords: Sentence Processing; Incrementality; Prediction;
Surprisal; Locality Effects; Tree-adjoining Grammar.

Introduction
Evidence from psycholinguistic research suggests that lan-
guage comprehension is largelyincremental, i.e., that com-
prehenders build an interpretation of a sentence on a word-
by-word basis. Evidence for incrementality comes from
speech shadowing, self-paced reading, and eye-tracking stud-
ies (Marslen-Wilson, 1973; Konieczny, 2000; Tanenhaus
et al., 1995): as soon as readers or listeners perceive a wordin
a sentence, they integrate it as fully as possible into a repre-
sentation of the sentence thus far. They experience differential
processing difficulty during this integration process, depend-
ing on the properties of the word and its relationship to the
preceding context.

There is also evidence for fullconnectivity in human lan-
guage processing (Sturt & Lombardo, 2005). Full connec-
tivity means that all words are connected by a single syn-
tactic structure; the parser builds no unconnected tree frag-
ments, even for the incomplete sentences (sentence prefixes)
that arise during incremental processing.

Furthermore, there is evidence that readers or listeners
makepredictions about upcoming material on the basis of
sentence prefixes. Listeners can predict an upcoming post-
verbal element, based on the semantics of the preceding verb
(Kamide et al., 2003). Prediction effects can also be observed
in reading. Staub & Clifton (2006) showed that following the
word either readers predictor and the complement that fol-
lows it; processing was facilitated compared to structuresthat
includeor withouteither. In an ERP study, van Berkum et al.
(1999) found that listeners use contextual information to pre-
dict specific lexical items and experience processing difficulty
if the input is incompatible with the prediction.

The concepts of incrementality, connectedness, and predic-
tion are closely related: in order to guarantee that the syntac-
tic structure of a sentence prefix is fully connected, it may be

necessary to build phrases whose lexical anchors (the words
that they relate to) have not been encountered yet. Full con-
nectedness ensures that a fully interpretable structure isavail-
able at any point during incremental sentence processing.

In this paper, we explore how these key psycholinguistic
concepts (incrementality, connectedness, and prediction) can
be realized within a new version of tree-adjoining grammar,
which we call Psycholinguistically Motivated TAG (PLTAG).
We propose a formalization of PLTAG and a linking theory
that derives predictions of processing difficulty from it. We
then present an implementation of this model and evaluate it
against key experimental data relating to incrementality and
prediction. The resulting model is shown to offer a unified
framework that captures both locality effects and surprisal ef-
fects in sentence processing.

Background
Among existing models of sentence processing, two stand out
as potential candidates for accounting for prediction effects.
One of them is Dependency Locality Theory (DLT), proposed
by Gibson (1998). A central notion in DLT isintegration cost,
a distance-based measure of the amount of processing effort
required when the head of a phrase is integrated with its syn-
tactic dependents. In other words, dependents in DLT predict
the existence of a subsequent head, and the verification of
these predictions causes processing cost at the head, basedon
its distance from the dependents.

A key experimental result captured by DLT is the fact that
subject relative clauses (SRCs) as in (1a) are easier to process
than object relative clauses (ORCs) as in (1b). Shorter reading
times are observed on the verbattacked for SRCs compared
to ORCs (King & Just, 1991).

(1) a. The reporter that attacked the senator admitted
the error.

b. The reporter that the senator attacked admitted
the error.

At the relative clause verbattacked, a dependency to the rel-
ative pronounthat is constructed; in the SRC, this involves
a distance of one, while in the ORC, the subjectthe senator
intervenes, resulting in a distance of two, thus explainingthe
higher processing cost in DLT terms.

DLT has been shown to also capture a range of other
complexity results, including processing overload phenom-
ena such as center embedding and cross-serial dependencies
(Gibson, 1998). However, DLT is not a broad coverage the-
ory: it captures the integration costs at main verbs and nouns,
but makes no predictions for any other syntactic categories.
This limits its usefulness in accounting for corpus data (Dem-
berg & Keller, 2008a).
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Hale (2001) proposed surprisal as an alternative measure of
processing difficulty, based on ideas from probabilistic pars-
ing. When a new word is processed during incremental inter-
pretation, the probability of the sentence up to the new wordis
compared to the probability of the sentence up to the previous
word. The amount of change in the probability distribution
that occurs (the relative entropy of the two distributions)cor-
responds to the processing difficulty experienced at the new
word. This means that words that are highly predictable (low
relative entropy) incur low processing difficulty, while sur-
prising words incur high processing difficulty.

As an example, consider the sentence in (2). Here, Staub &
Clifton (2006) found thatan essay is processed more quickly
in (2a) than in (2b). This is captured straightforwardly by sur-
prisal: either . . . or is highly likely to be followed by an NP,
while or without either can be followed by a wide range of
phrases (including S), encountering an NP is thus more sur-
prising in this case, resulting in elevated reading times.

(2) a. Peter read either a book or an essay in the school
magazine.

b. Peter read a book or an essay in the school mag-
azine.

Surprisal captures a range of sentence processing effects,in-
cluding certain garden path effects, speed-up effects in verb-
final contexts, and word order asymmetries (Hale, 2001;
Levy, 2008). It is not capable, however, to account for the
SRC/ORC asymmetry, as Levy (2008) shows.

DLT and surprisal therefore model complementary aspects
of sentence processing. While DLT can be regarded as a
backward-looking measure that focuses on integrating pre-
vious information with new information, surprisal can be
seen as forward-looking, measuring whether the new input
meets the comprehender’s expectations. Recently, Demberg
& Keller (2008a) conducted a broad-coverage evaluation of
DLT and surprisal (on the Dundee Corpus, a collection of
newspaper text annotated with eye-movements), and found
that the predictions of the two theories are uncorrelated and
account for complementary parts of the variance in the corpus
reading times.

The challenge, therefore, is to develop a model of sentence
processing that not only captures the properties of incremen-
tality, connectivity, and prediction, but is also capable of ex-
plaining the complementary processing effects explained by
DLT and surprisal.

Modeling Explicit Prediction
We propose a theory of sentence processing guided by the
principles of incrementality, connectedness, and prediction.
The core assumption of our proposal is that a sentence pro-
cessor that maintains explicit predictions about the upcoming
structure has to validate these predictions against the input
it encounters. Using this assumption, we can naturally com-
bine the forward-looking aspect of surprisal (sentence struc-
tures are computed incrementally and unexpected continu-
ations cause difficulty) with the backward-looking integra-
tion view of DLT (previously predicted structures are veri-
fied against new evidence, leading to processing difficulty as
predictions decay with time).

In order to build a model that implements this theory, we

require an incremental parser that is capable of building fully
connected structures and generating explicit predictionsfrom
which we can then derive a measure of processing difficulty.
Existing parsers and grammar formalisms do not meet this
specification. While there is substantial previous work on in-
cremental parsing, none of the existing models observes full
connectivity. One likely reason for this is that full connectiv-
ity cannot be achieved using canonical linguistic structures
as assumed in standard grammar formalisms such as CFG,
CCG, TAG, LFG, or HPSG. Instead, a stack has to be used to
store partial structures and retrieve them later when it hasbe-
come clear (through additional input) how to combine them.

Here, we therefore use a new variant of the tree-adjoining
grammar (TAG) formalism which realizes full connectedness.
The key idea is that in cases where new input cannot be com-
bined immediately with the existing structure, we need to pre-
dict additional syntactic material, which needs to be verified
against future input later on. Our variant of TAG is called
Psycholinguistically Motivated TAG (PLTAG). It is outlined
below and described in more detail in Demberg & Keller
(2008b).

Incremental Processing with PLTAG
Tree-Adjoining Grammar
Tree-adjoining grammar (TAG) was developed by Joshi et al.
(1975) as a linguistically inspired grammar formalism. It
makes a fundamental distinction between initial trees and
auxiliary trees. Initial trees are non-recursive and are used
in substitution operations, as illustrated by the tree withthe
lexical anchorthe in Figure 1a, and the trees forsenator and
attacked in Figure 1b. Auxiliary trees are recursive structures
and are integrated into a derivation with the adjunction op-
eration; examples are the trees with lexical anchoror in Fig-
ure 2d and the tree forthat in Figure 1a. Both initial and auxil-
iary trees can have zero or more substitution nodes, i.e., nodes
that another tree must substitute into; substitution nodesare
marked with↓. Auxiliary trees furthermore have exactly one
foot node marked with *, which always has the same cat-
egory as the tree’s root node (rendering it recursive). Most
TAG grammars are assumed to be lexicalized (LTAG); lex-
icalization of a grammar means that all trees have a lexical
anchor, i.e., they are associated with a lexical item.

Psycholinguistically Motivated TAG
PLTAG extends normal LTAG in that it specifies not only
the canonical lexicon containing lexicalized initial and auxil-
iary trees, but also a predictive lexicon which contains poten-
tially unlexicalized trees, which we will callprediction trees.
Each node in a prediction tree is annotated with indices of
the form

s j
s j , where inner nodes have two identical indices,

root nodes only have a lower index and foot and substitution
nodes only have an upper index. The reason for only having
half of the indices is that these nodes (root, foot, and substitu-
tion nodes) still need to combine with another tree in order to
build a full node. If an initial tree substitutes into a substitu-
tion node, the node where they are integrated becomes a full
node, with the upper half contributed by the substitution node
and the lower half contributed by the root node.

Prediction trees have the same shape as trees from the nor-
mal lexicon, with the difference that they do not contain sub-
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stitution nodes to the right of their spine (the spine is the path
from the root node to the anchor), and that their spine does
not have to end with a lexical item. The reason for the missing
right side of the spine and the missing lexical item are con-
siderations regarding the granularity of prediction. Thisway,
for example, we avoid predicting verbs with specific subcate-
gorization frames (or even a specific verb) at the point of en-
countering the determiner of an ORC subject (as in Figure 1,
discussed in more detail below). In general, we only predict
upcoming structure as far as we need it, i.e., as required by
connectivity or subcategorization. (However, this is a prelim-
inary assumption, the optimal prediction grain size remains
an open research question.)

PLTAG allows the same basic operations (substitution and
adjunction) as normal LTAG, the only difference is that these
operations can also be applied to prediction trees. In addition,
we assume a verification operation, which is needed to val-
idate previously integrated prediction trees. The tree against
which verification happens has to always match the predicted
tree in shape (i.e., the verification tree must contain all the
nodes with a unique, identical index that were present in the
prediction tree, and in the same order; any additional nodes
present in the verification tree must be below the prediction
tree anchor or to the right of its spine). This means that the
verification operation does not introduce any tree configura-
tions that would not be allowed by normal LTAG. (Due to
space restrictions, we cannot provide a formal equivalence
proof of PLTAG and LTAG here.) Note that substitution or
adjunction with a predictive tree and the verification of that
tree always occur pairwise, since each predicted node has to
be verified. A valid parse for a sentence must not contain any
nodes that are still annotated as being predictive – all of them
have to be validated through verification by the end of the
sentence.

In PLTAG, prediction occurs in two cases: when required
by connectivity, and when required by subcategorization.

Prediction through Connectivity As briefly mentioned
above, canonical elementary trees can not always be con-
nected directly to a previously built syntactic structure.Ex-
amples are situations when two dependents precede a head,
or when a grandparent and a child have been encountered,
but the head of the parent node has not. This happens, for
instance, at the integration of the second determiner in the
ORC in (1b), as illustrated in Figure 1. The elementary tree
for the cannot directly be combined with the preceding rela-
tive clause structure. The intervening structure will onlylater
be provided by the trees for the nounsenator and the verbat-
tacked (see Figure 3). If we want to maintain connectivity at
this point, we therefore need to predict this intervening struc-
ture (see the right hand side tree in Figure 1).1 Predicted struc-
tures are marked with unique indices, indicating which tree
they originally came from. In our example, the nodes origi-
nating from the tree structure ofsenator have indexS2, and
nodes from the tree forattacked have indexS1.2

1Because of the recursivity of natural language, it is possible that
there are infinitely many ways to connect two trees. Although em-
bedding depth can be infinite in theory, we assume that it is finite
and indeed very small due to limitations of human memory.

2For efficiency reasons during parsing, we pre-combine predic-
tion trees that we find in the training data, and later do not allow the
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Figure 1: Prediction and Verification

Prediction through Subcategorization Another source of
predictions are the lexicon entries themselves via their sub-
categorization frames. Subcategorization in TAG is expressed
through substitution nodes, which have to be filled with an
argument in order to construct a valid sentence. Each substi-
tution node that is to the right of the tree’s anchor naturally
becomes a prediction during the parsing process. Modifiers
are generally not predicted in our framework, unless they are
needed for connectivity.3

We also exploit TAG’s extended domain of locality in or-
der to construct lexicon entries such that they encode lexi-
cal entries together even if they occur as two separate words.
We can use this to explain predictive facilitation foreither
. . . or and related constructions (Staub & Clifton 2006; see
Background section above). For theeither . . . or case, we as-
sign a lexicon entry toeither which predicts the occurrence of
the conjunctionor, as well as predicting a coordinate struc-
ture that combines two entities of the same category, see Fig-
ure 2a.

When processing aneither . . . or disjunction in PLTAG,
processing ator will be facilitated compared to a simple
or construction. For the sequencePeter read a book or, the
or occurs unexpectedly, and can be attached either at the
NP level or at the S level (see Figure 2), leading to an am-
biguity which will have to be resolved later on. In contrast,
or was predicted already ateither for the sequencePeter read
either a book or, and will therefore be less costly to integrate:
the probability ofor given the predictedeither structure is
higher than the probability ofor given the structure without
either. In addition, there is no NP/S-coordination ambiguity,
see Figure 2b.

parsing algorithm to integrate prediction trees which it then does not
use.

3Whether or not modifiers are predicted syntactically is a subject
for further research. Preliminary evidence suggests that modifiers
are predicted when they are required by the discourse context.

1890



NP CC NP

NP

DT

either or

Peter

NP VP

read a book

NPV

S

Peter

NP

DT NP CC NP

either a book or

V

read

VP

S

NP

CC SS*
or

CC NPNP*
or

NP

(b) derivation at "or" in either−case(a) lexicon entry for "either"

(c) ambiguity at "or"
adjunction

(d) lexicon entries for "or"
S

S1

S1
S1

Figure 2: Extended domain of locality for expressions that
trigger predictions.

The Incremental Parser
In order to obtain a computational model that implements the
prediction processes defined by PLTAG we require an incre-
mental probabilistic parsing algorithm, which in turn requires
a lexicon and a training set from which we can estimate the
probabilistic model for the parser. We describe these compo-
nents in turn.

Lexicon Induction and Treebank Transformation

We induce the lexicon needed for our incremental version of
TAG from the Penn Treebank, complemented by noun phrase
annotation (Vadas & Curran, 2007), Propbank (Palmer et al.,
2003), and an adapted version of Magerman’s (1994) head
percolation table. These additional resources help determine
the elementary trees using procedures proposed by Xia et al.
(2000) and allow us to distinguish arguments (for which we
generate an initial tree, and a substitution node in the parent
tree) from modifiers (for which we generate auxiliary trees).

Figure 3 shows how a syntactic tree in the Treebank is cut
up into elementary trees by the lexicon induction process.
Each node is indexed with the number of the word that is its
lexical anchor. So the tree forthe includes thethe node and
the DT node as the tree’s root node, while the tree forthat
contains all the nodes with index 3, i.e., the lexical anchor,
the inner nodes WHNP and RC, the substitution node S, the
root node NP and the foot node NP.

Once the trees have been segmented into elementary trees,
we calculate the connection path for each prefix, as proposed
by Lombardo & Sturt (2002). A connection path for words
w1 . . .wn is the minimal structure that is needed to connect
all wordsw1 . . .wn into the same syntactic tree. The structure
needed for each of the first five words in Figure 3 is indicated
by the circles enclosing the connection path at each stage.

We then use the connection paths and the canonical ele-
mentary trees to determine which parts of the structure are
included in the connection path for wordsw1 . . .wn, but are
not part of any of the elementary trees with feetw1 . . .wn. In
Figure 3, this occurs for the first time at wordw4: its connec-
tion path contains nodes with indices 5 and 6. This means that
parts of the structure from lexical itemsw5 andw6 have to be
predicted atw4, and two prediction trees are generated (they
can be pre-combined, for the result see the predicted structure
in Figure 1a).
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Figure 3: Generating lexicon entries from the Penn Treebank
for an example sentence.

For our lexicon induced from the Penn Treebank, we found
that the average ambiguity per lexical item is 4.5 trees (the
distribution is Zipfian, meaning that there are a few words
with very high ambiguity, and many words with very low
ambiguity, or just one lexicon entry). Among the derivations
where predictive trees were needed in order to achieve con-
nectivity, 96.15% of cases used one prediction tree, in 3.55%
of cases, two prediction trees had to be combined before con-
nectivity was achieved (as in our ORC example case dis-
cussed above); in less than 0.4% of cases were three to six
trees needed, and never more than seven.

Parsing Algorithm
The parsing algorithm is strictly incremental and only allows
operations that maintain the full connectivity of the partial
trees that cover wordsw1 . . .wi. The algorithm processes al-
ternative analyses in parallel and does not do any kind of
backtracking.

When a new wordwi+1 is encountered, the algorithm re-
trieves the elementary trees for this word from the lexicon,
and tries to integrate each of them with previous analyses,
while making sure that only correct PLTAG trees are derived
at each step. The parser can also use trees from the predictive
lexicon after each new word that was read in. The operations
in the parsing algorithm are substitution, adjunction and ver-
ification, as outlined in the description of PLTAG above.

For illustration, assume we are parsing the sentenceThe
reporter that the senator attacked admitted his error. We first
retrieve trees for the lexemethe from the lexicon, and one of
those entries is the tree forthe shown in Figure 1. Next the
algorithm predicts a number of structures that are compatible
with the current structure and then reads in the next word,re-
porter. One of the trees for reporter has the structure shown
in Figure 1 for the wordsenator, and the prefix tree can be in-
tegrated with the new tree by substituting the tree forthe into
the tree forreporter (without using any predictions). Next,
prediction trees are generated and attached, and we then en-
counter the wordthat, retrieve its tree structure and adjoin it
into the NP of the prefix treethe senator. When we try to
attach the next round of prediction trees, one of them is the
prediction tree shown at the right hand side of Figure 1a. This
prediction tree is substituted into the open substitution node
with category S in the prefix tree, and the tree structure for
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the following wordthe can then be substituted into the open
predictive substitution node with category DT. Again, more
prediction trees will then be generated and integrated withthe
prefix, but they are not needed at encountering the next word,
senator. Here, the first verification operation takes place. The
tree forsenator can validate all nodes with indexS2, and also
introduces the lexicalized nodesenator. Another verification
takes place at the wordattacked, and this time, all nodes with
index S1 can be validated, and the V node and theattacked
node, as well as the right NP substitution node, are also added
to the structure.

Probability Model

The probabilities of the analyses are calculated incrementally
during the parsing process. When a new treeε is integrated
into the partial derivationβ, we retrieve the probability (a
maximum likelihood estimate from the Penn Treebank) ofε
conditional on the integration pointηβ (a substitution node
for the substitution operation or an adjunction node for the
adjunction operation, or the prediction treeπβ it is verify-
ing in the case of the verification operation). To reduce data
sparseness, we estimate the probability ofε as its unlexical-
ized tree structureτε multiplied with the probability of the
anchorλε given the unlexicalized tree structure. The integra-
tion pointηβ is characterized by its categorycβ, its prediction
statusφβ (prediction tree or not) and, in the adjunction oper-
ation, its positionpβ among competing adjunction sites. The
anchorλβ of a tree depends on its prediction status. It is either
the lexemew and the part-of-speech tagt for full elementary
trees, or its leaf category for prediction trees. We smooth the
probabilities to alleviate data sparseness problems usingthe
smoothing algorithm proposed by Brants (2000).

Substitution:
∑ε Ps(ε|ηβ) = 1
whereP(ε|ηβ) = Ps(τε|cβ,φβ)P(λε|τε,λβ)

(1)

Adjunction:
∑ε Pa(ε|ηβ)+Pa(NONE|ηβ) = 1
whereP(ε|ηβ) = Pa(τε|cβ, pβ,φβ)P(λε|τε,λβ)
andP(NONE|ηβ) = Pa(NONE|cβ, pβ,φβ)

(2)

Verification:
∑ε Pv(ε|πβ) = 1
whereP(ε|πβ) = Pv(τε|πβ)P(wε|τε)

(3)

Modeling Processing Difficulty
The PLTAG formalism proposed in the previous sections is
designed to implement a specific set of assumptions about
human language processing (strong incrementality with full
connectedness, prediction, ranked parallel processing).The
formalism forms the basis for the processing theory, which
uses the parser states to derive estimates of processing diffi-
culty. We now need a linking theory that specifies the mathe-
matical relationship between parser states and processingdif-
ficulty in our model.

During processing, the elementary tree of each new word
εwi is integrated with any previous structure (βw1...wi−1), and
a set of syntactic expectations is generated (these expecta-
tions can be easily read off the generated tree in the form of

predicted treesπ). Each of these predicted treesπ has a time-
stampt that encodes when it was first predicted, or last acti-
vated (i.e., accessed). Based on the timestamp, a tree’s nodes’
decayd at verification time is calculated, under the assump-
tion that recently-accessed structures are easier to integrate.

In our model, processing difficultyD is thus incurred dur-
ing the construction of the syntactic analyses, as calculated
from the probabilities of the elementary trees (this directly
corresponds to Haleian surprisal calculated over PLTAG
structures instead of over CFG structures, see the first lineof
Equation (4) below). In addition to this,D has a second com-
ponent, the cost of verifying earlier predictions, which subject
to a decayd (see the second line of Equation (4)). The overall
processing difficultyD at wordwi is therefore:

Dwi = − log ∑
β1...wi

P(β1...wi)+ log ∑
β1...wi−1

P(β1...wi−1)(4)

− log∑
π

P(π)(1−dtπ )

Note that the prefix probabilities∑β1...wi
P(β1...wi), which are

needed to calculate surprisal, fall out of the parsing process
naturally, because of strict incrementality.

The verification cost component ofD bears similarities to
DLT integration costs, but we do not calculate distance in
terms of number of discourse referents intervening betweena
dependent and its head. Rather verification cost is determined
by the number of words intervening between a prediction and
its verification, subject to decay. This captures the intuition
that a prediction becomes less and less useful the longer ago
it was made, as it decays from memory with increasing dis-
tance.

Experiments and Results

We tested our model on the SRC/ORC asymmetry and on
the 48either . . . or sentences from Staub & Clifton’s (2006)
experiment. The modeling results reported here are based on
a decay factor ofd = 0.8, and the number of timesteps was
set to the number of intervening words. The probabilities for
the PLTAG grammar were derived from the Penn Treebank
using maximum likelihood estimation.

Figure 4 shows the model predictions for the SRC and
ORC sentences in (1). Model predictions and reading times
are very similar for both sentences in the main clause re-
gions, so we focus on the relative clause regions. As detailed
in the Background section, experimental evidence indicates
that processing time is higher at the ORC verb compared to
the SRC verb. The graph in Figure 4a shows that we correctly
predict this fact for the full version of the model, i.e., the
version that includes both the surprisal component and the
verification component in Equation (4). In a baseline model
that only includes surprisal, but no verification, we incorrectly
predict that the ORC verb is read faster than the SRC verb.
This is consistent with Levy’s (2008) observation that a prob-
abilistic context-free grammar derived from the Penn Tree-
bank, combined with the surprisal linking hypothesis, is un-
able to predict the ORC/SRC asymmetry correctly. In both
version of our model, predicted reading time for the relative
clause NP (see Figure 4b) is slightly higher for the ORC than
the SRC. The version with surprisal and verification predicts
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(a) verb region:attacked (b) NP region:the senator

Figure 4: PLTAG predictions for the verb region and the NP
region for subject and object relative clauses.

Figure 5: Mean fist pass time and mean PLTAG prediction for
the post-or for the sentences used by Staub & Clifton (2006).

higher costs across the board, due to the fact that it has to pre-
dict and later verify a noun when integrating the determiner.

Figure 5 graphs the predictions for the full model (surprisal
and verification components) for theeither . . . or sentences of
Staub & Clifton (2006). The graph shows the first pass read-
ing times found experimentally for the NP followingor. Dif-
ferences between theeither and the no-either conditions were
significant according to a pairedt-test. Our model was run on
the exact same sentences and replicates this pattern very well:
the presence ofeither facilitates reading at the post-or NP in
both the NP coordination and the S coordination condition.
(The graph shows the model run with the same parameters
as in the surprisal and verification condition in the RC exper-
iment. A surprisal-only version of our model would predict
the same pattern, but with lower difficulty predictions for the
either-conditions.) This results demonstrate that our PLTAG
model is also able to capture effects that can be explained by
surprisal, but not by DLT.

Conclusions
We presented a computational model of human parsing based
on PLTAG, a psycholinguistically motivated version of tree-
adjoining grammar. The design of PLTAG was guided by the
principles of incrementality and connectedness and includes
an explicit mechanism for generating and verifying syntactic
predictions. An algorithm for deriving a lexicon from a tree-
bank, a fully implemented parser, and a probability model for
PLTAG were also presented. This was complemented by a
linking function that explains processing difficult as a combi-
nation of prefix probability (surprisal) and verification cost.

We demonstrated that the resulting model captures exper-

imental results from the literature, and can explain both lo-
cality and prediction effects, which standard models of sen-
tence processing like DLT and surprisal are unable to account
for simultaneously. Our model therefore constitutes an impor-
tant step towards a unified theory of human parsing. In future
work, we will evaluate our model against a broader range of
data, both from experiments and from eye-tracking corpora.
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