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Abstract

Modeling the encoding of visual stimuli is a complex, and
often ignored, problem in computational models of visual and
spatial problem solving. This paper outlines a toolkit for
exploring encoding for two-dimensional visual scenes, Visual
Routines for Sketches. The utility of this approach is shown
by a new model for computing positional relationships, the
Vector Symmetry model, that explains data from seven
experiments and is more parsimonious than Regier &
Carlson’s (2001) AVS model.
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Introduction

A number of models have explored how people reason
about visual stimuli and solve spatial problems (e.g.,
Carpenter, Just, & Shell, 1990; Goldstone & Medin, 1994).
However, they typically do not model the processes by
which stimuli are first encoded. Human perceptual
processes put important constraints on what visual and
spatial representations are available for reasoning.
Incorporating models of the computation of visual features
is an important step for creating more complete visual and
spatial models.

Ullman (1984) proposed that people have access to a set
of elementary operations, operations we can run over our
visual working memory to extract information. This finite
set of operations can be combined in different ways to
create a near-infinite set of visual routines for computing
different spatial features and relations.

A number of computer models have been based on the
idea of visual routines. However, many of these models are
designed only to solve a particular problem (e.g., Chapman,
1992; Horswill, 1995), and thus miss out on the generality
promised by the original idea. Rao (1998) constructed a
system for both learning and performing visual routines for
solving different spatial problems. However, because his
focus was on controlling a physical robot, the elementary
operations in his system are often more complex and higher-
level than the simple operations proposed by Ullman.

We are developing Visual Routines for Sketching (VRS)
as a platform for experimenting with computational models
of perception. It provides a set of low-level elementary
operations, supported by the psychophysics and cognitive
psychology literature. Using these operations, researchers
can construct visual routines based on their theories for how
a particular spatial feature is computed. These routines can
be run and evaluated on two-dimensional visual scenes

created in or imported into CogSketch® (Forbus et al., 2008),
an open-domain sketch understanding system.

This paper uses VRS to implement a model for the
computation of positional relations. Positional, or
projective, relations describe the location of one object, the
target, relative to another, the referent, in a visual scene. A
number of researchers (Logan & Carlson, 1996; Hayward &
Tarr, 1995; Gapp, 1995; Regier & Carlson, 2001) have
studied how people compute these relations. Regier and
Carlson demonstrated several different factors that
independently contribute to participants’ assessments of
whether a target is “above” a referent. They built a
mathematical model which predicted all these factors and
correlated closely with human data.

While the Regier and Carlson model helped reveal what
factors people consider in computing positional relations, it
does not describe the actual processes used by humans in
performing the computation. Here we show that a
parsimonious VRS model can achieve similar results on
Reiger and Carlson’s data.

We begin with a brief introduction to VRS. We then
summarize prior research on positional relations. We show
how VRS can be used to construct a new, simple model of
positional relations, the Vector Symmetry model. We then
test our model’s ability to match human results on the full
set of seven experiments run by Regier and Carlson (2001).
Finally, we conclude and discuss future work.

Visual Routines for Sketching

Visual Routines for Sketching (VRS) is built into the
CogSketch sketch understanding system. Users can create
stimuli in CogSketch either by drawing with a pen or by
importing shapes built in PowerPoint. VRS works directly
with the ink of the sketch, the lines representing the edges of
each object. Thus, it avoids edge segmentation issues.

Basic Representation

Ullman (1984) suggested that the human perceptual system
uses a bottom-up, parallel approach to build an initial basic
representation of the visual world. VRS computes a basic
representation via two steps: First, the ink is projected onto
a retinotopic map, a simplification of V1 in the primary
visual cortex which represents the orientation of any edges

! Available for download at:
http://silccenter.org/projects/cogsketch_index.html
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Figure 1: Ratings for “above” depend on the target’s location
relative to the reference (a), relative to the reference’s center-
of-mass (b), and relative to the reference’s proximal point (c).

at each location in the image. This produces a set of edge
activations at various locations. Second, edge activations
are grouped together to form contours. This step is based on
the contour integration literature (Yen & Finkel, 1998; Li,
1998), which suggests that there is a parallel process in
which individuals group edges together based on the Gestalt
grouping principles of good continuation and closedness. To
these principles we add the constraint of uniform
connectedness (Palmer & Rock, 1994).

Incremental Representation

Ullman proposed that there are a set of elementary
operations that can be applied serially to the basic
representation. By combining these operations into visual
routines, an individual can both gather information and
update the representation, thus producing an incremental
representation. In VRS there are three key elementary
operations, inspired by Ullman’s proposal, which gather
data and add elements to the incremental representation:

1) Curve tracing traces along consecutive edge
activations. It produces a curve, a new grouping of
activations which may lie along one or multiple contours.

2) Scanning begins at one location and moves forward in
a fixed direction. It produces a straight curve representing
the line scanned over.

3) Region coloring fills in the area between curves and
contours, creating a new region.

All three operations can be constrained in several ways,
e.g., curve tracing along a region, region coloring along a
curve, or scanning between two points. These operations
can be used to gather new information, detecting what other
elements lie along a curve or within a region. The elements
they produce can also be queried to access their attributes,
such as the size of an element, the center of an element, the
curvedness of a curve, or the orientation of a straight curve.

Current State of VRS

At present, VRS contains the elementary operations
described above, as well as others for marking locations,
inhibiting elements, and grouping elements to form objects
(Kahneman et al., 1992), mid-level representations that
serve as a bridge between the visual and the conceptual.
However, we are still in the process of determining the full
set of operations and the ways they can interact. Eventually,
we hope to develop a simple coding language which will
allow users to build their own visual routines by combining
elementary operations in novel ways.

a) b)
Figure 2: Targets lying above the grazing line (a) receive much

higher “above” scores than targets lying on or below the
grazing line (b).

Positional Relations

The positional relations most commonly studied are
above/below and left/right. For simplicity, we will use the
“above” relation for all examples throughout this section.
However, in most cases researchers have studied either
“above” and “below,” or all four of the relations together.

Positional relations are typically studied in an assessment
task. Participants are shown a proposition, such as “X is
ABOVE Y,” followed by a visual scene containing X and
Y. They then state whether the proposition is true or rate the
proposition on a numerical scale. Much of the research
based on this paradigm (Logan & Sadler, 1996; Hayward &
Tarr, 1995; Gapp, 1995) suggests that participants’ ratings
are based on the orientation of a line drawn from the
referent to the target (see Figure 1a). If this line is perfectly
vertical, the example is an ideal instance of “above.” As the
angle between this line and a vertical reference line
increases, the ratings decrease at a linearly rate. As the angle
approaches 90 degrees, the ratings drop more sharply,
approaching 0 for a target that lies directly beside or even
below the referent.

Studies by Regier and Carlson (2001) teased apart four
different factors and showed that each one contributed
independently to assessments of positional relations. The
first is center-of-mass orientation, i.e., the target’s deviation
from directly above the referent’s center-of-mass (Figure
1b). Importantly, this is distinct from the second factor,
proximal orientation. The proximal orientation describes the
target’s location relative to the closest point on the referent
(Figure 1c). The third factor is the grazing line, the
horizontal line at the level of the topmost point of the
referent (see Figure 2). As the target approaches and then
falls below the grazing line, ratings for “above” fall
sharply—this explains the nonlinearity as the angle between
the referent and the target approaches 90 degrees.

The final factor is an interaction between center-of-mass
orientation and the distance between the referent and target
(see Figure 3). When the target is far above the referent,
deviations in the center-of-mass orientation will result in a
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Figure 3: Targets far above the referent (a) differ more in their
“above” ratings than targets immediately above the referent.
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noticeable drop in “above” ratings. In contrast, when the
target lies immediately above the referent, especially for a
wide referent, changes in the center-of-mass orientation will
have little effect on “above” ratings.

The AVS Model of Positional Relations

Regier and Carlson’s Attentional Vector-Sum Model (AVS)
for positional relations assessment consists of two
components: the vector sum and the grazing line. The vector
sum component computes vectors from every point along
the referent to the target (see Figure 4). It takes a weighted
sum of the orientations of these vectors, with the
distribution of the weights depending on the proximity of
the target to the referent. The summed orientation is
compared to the vertical reference line (for “above™) to
determine angular deviation. The second component is the
grazing line, which looks at the height of the target
compared to both the topmost point and bottommaost point
of the referent. A sigmoid function is applied to these
heights and averaged.

Regier and Carlson evaluated their model, along with
three other models, on a set of seven studies designed to test
the influence of the four factors described previously on
“above” ratings. While all four models showed a strong
correlation with human ratings, only the AVS model
correctly predicted that all four factors would affect the
ratings. Regier and Carlson argued this demonstrated that
the AVS model best described how humans compute
positional relations.

AVS is a strong mathematical model of the factors that
contribute to assessing positional relations. However, we
believe it does not describe the cognitive processes used by
humans in computing positional relations. Firstly, the vector
sum component requires computing a large number of
vectors. Evidence from curve tracing (Jolicoeur et al., 1986)
suggests that individuals move their attention along a line in
a serial manner, and that the trace is slowed if there are
other distractor lines nearby. Thus, drawing a large number
of lines between points along the referent and the target
would be a serial process requiring a significant amount of
time. It is unclear how else these vector orientations could
be computed.

Secondly, the grazing line component is underspecified.
While people might use the heights of the topmost and
bottommost points of the referent, it is unclear what
processes are used to compute these points.

An Alternative Model: Vector Symmetry
We believe Regier and Carlson’s results can be explained
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Figure 4: Vectors computed for the AVS and VS models.

using a different, simpler model: the Vector Symmetry
Model (VS). Like the AVS model, the VS model requires
computing vectors from the referent to the target. However,
the VS model computes vectors from only two points: the
leftmost and rightmost points along the upper surface of the
referent (see Figure 4). The model then examines the
symmetry of these vectors’ orientations about the y-axis, as
measured by the difference between vector A’s orientation
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Figure 5: Using the VS model. As center-of-mass orientation

changes, (a)->(b), symmetry decreases. As proximal

orientation changes, (b)->(c), symmetry decreases. For far

away targets (d), changes in center-of-mass orientation result

in noticeable drops in symmetry. For near targets (), changes

in center-of-mass orientation have little effect on symmetry.
and vector B’s orientation reflected across the y-axis. If they
are perfectly symmetric, the stimulus is an ideal example of
“above.” As the symmetry deviates, the model gives lower
ratings for “above.”

Like the vector sum component of the AVS model, the
VS model predicts three of the four factors presented by
Regier and Carlson: center-of-mass orientation, proximal
orientation, and the interaction between distance and center-
of-mass (see Figure 5). Like AVS, it requires a separate
component to explain the grazing line. However, this
component is computable from these two vectors. In cases
where either the leftmost or rightmost point also lies along
the referent’s grazing line (in Figure 4, both do), that point’s
vector will approach the horizontal orientation as the target
approaches the grazing line. Thus, the VS model uses the
individual orientations of its two vectors to detect the height
of the target relative to the referent’s grazing line.

Computing Positional Relations in VRS

The Vector Symmetry model requires only two input
values: the orientations of the vectors from the top rightmost
and top leftmost points of the referent to the target. We
compute these values via two visual routines, described here
in simplified form:

% In cases where neither of the points lies along the referent’s
grazing line, a third vector from the referent might need to be
computed. Because this is not the case in any of the data currently
being evaluated, we defer this question to a future time.
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Figure 6: Stimuli for three of the Regier & Carlson (2001) experiments, as entered into CogSketch. The numbers are human ratings for

each position as an instance of “above.”

Find objects in the visual scene

1) Region Coloring: Color the ground, locate any contours
init.

2) Curve Tracing: Trace each contour to determine
whether it is a closed shape.

3) Region Coloring: If a contour is a closed shape, color the
area inside it to identify its interior.

4) Object Creation: Make an object for each curve and the
accompanying interior region.

Computing vectors for positional relations

1) Scanning: Scan from the referent’s center upward to
locate a point pointTop along the top of the referent’s
surface.

2) Curve Tracing: Trace the referent’s curve clockwise and
counter-clockwise from pointTop to find the rightmost and
leftmost points along its top (pointR and pointL).

3) Scanning: Scan from pointR and pointL to the target’s
center to produce two new curves, curveR and curveL.

4) Attribute Access: Sample the orientation of the two
curves to produce two orientation values, oR and oL.

Which object is the referent and which object is the target
is currently indicated by labeling the sketch. We plan to
explore doing this automatically via a visual routine that, for
example, compared the sizes of the two objects.

Formula for “Above” Ratings

As stated above, the VS model contains two components:
vector symmetry and a grazing line estimate. Vector
symmetry is computing by reflecting the orientation oR
about the y-axis and comparing it to oL:

SymmetryDist = X-Reflection (0R) — oL

where a SymmetryDist of 0 indicates perfect symmetry.
The second component, the grazing line, is also computed
from oR and oL. Studying the results for Experiments 6 and

7 from Regier & Carlson (see Figure 6), we noted that when
a target does not lie directly above the referent, i.e., it lies to
the left or to the right, its “above” ratings fall sharply as it
approaches the grazing line, and they approach 0 as it falls
below the grazing line. However, when the target is directly
above the referent, it receives high ratings even when it is
barely above the grazing line (Experiment 7), and the
ratings drop at a slower rate as it falls below the grazing line
(Experiment 6). Based on this observation, we decided to
apply a grazing line penalty only for targets which approach
the grazing line but are not directly above the referent, i.e.,
when oR points right, away from the referent, or when oL
points left, away from the referent. However, it is still
necessary to apply a penalty for targets lying directly above
a referent that fall below the grazing line, i.e., targets that
fall below either pointR or pointL. Therefore, we use the
following formulae:

Height(o) = Degrees of o above the horizontal
Penalty = One-Down-Penalty if one vector points down
Two-Down-Penalty if both vectors point down
0 otherwise
Rating = ((SymmetryDiff * Slope) - Penalty) *
Sigmoid(Minimum(Height(oR), Height(oL)), Height-Gain)

Here we only consider Height(oR) if oR points right, away
from the referent. Thus, Height only plays a role if the
target is not directly above the referent. These formulae
have four free parameters:

1. Slope: the cost as the vectors deviate from
symmetry

2. Height-Gain: a gain value for the sigmoid function
applied to the height

3. One-Down-Penalty: a fixed cost for having one
vector point downwards

4. Two-Down-Penalty: a fixed cost for having both
vectors point downwards
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The assumption of a fixed cost applied when one or both
vectors point downward is simplistic but seems to be a
reasonable first approximation.

Experiment

We evaluated the VS model by simulating the results from
the seven Regier and Carlson experiments. We also ran the
model on an “above” rating experiment by Logan and
Sadler (1996) which used small objects that might be treated
as point masses for both the targets and the referent. We
programmatically generated stimuli in CogSketch which
were at locations identical to those used in the experiments.

We followed Regier and Carlson in fitting our model to
the Logan and Sadler study to determine the values for the
VS model’s free parameters, and then using those values to
evaluate it on the other seven experiments. We fit the model
by performing an exhaustive, breadth-first search over all
combinations of reasonable values for the free parameters,
returning the set of values that resulted in the highest
correlation between the model and Logan and Sadler’s
results. Correlations were R2 computed via linear regression.

One parameter of VS, One-Down-Penalty, only applies
when pointR and pointL are at different heights and the
target lies between them. Thus, this parameter could not be
determined based on the Logan and Sadler study, in which
all referents were small and symmetric. Therefore, once the
other three parameter values had been determined, we
determined the value of this parameter by fitting the model
to the results of Regier and Carlson Experiment 5, one of
their experiments which used an asymmetric referent in
which pointR and pointL were at different levels. Overall,
three of their experiments used such a referent: 4, 5, and 6.
Thus, the parameter fit to Experiment 5 could be evaluated
on the other two experiments.

Results

The results of the eight simulations are given in Table 1. R?
is a measure of the proportion of variance in one variable
that is explained by another. As the table shows, the VS
model correlates well with human performance on every
experiment, achieving an R2 above .90 in all cases.
However, the correlation values are typically slightly below
the correlations for the AVS model.

Each of the seven Regier & Carlson experiments was
designed to test one of the four factors in positional relations
outlined earlier. As Table 1 shows, VS’s performance
qualitatively matched the effects of those factors in almost
all cases, failing only on the second part of Experiment 4.
None of the models which Regier and Carlson compared to
the AV'S model fared as well on these qualitative tests.

Discussion

Overall, the VS model performed quite well on the eight
experiments, matching or nearly matching the AVS model
in most cases, despite using considerably less information,
i.e., the two vector values. However, we believe two
weaknesses of the model should be addressed. Firstly, the

model’s correlations, while high, were generally under the
AVS model. This was particularly noticeable in Experiment
4-Upright Triangle and Experiment 5. There are two
possible reasons for the lower correlations on these
problems: (1) These involved asymmetric shapes—a
triangle and an “L” shape—so0 participants might have been
less likely to consider vector symmetry when computing
“above.” (2) These are two of the problems on which some
targets lay between pointL and pointR, meaning that
vectorL pointed down while vectorR pointed up. Thus, it
may be that our grazing line component, which merely
deducts a fixed cost in such cases, is insufficient. We
suspect that our simplistic grazing line component may have
weakened the model overall in its performance vs. the AVS

model.

Table 1: Simulation results.

Model Qualitative Test R2 Adj. R?
Logan & Sadler
AvVsS | - .963 | .959
vs | e .965 | .965
Experiment 1 Proximal
Tall Rectangle Orientation
AVS pass 996 | .995
VS pass 985 | .984
Wide Rectangle
AVS pass 994 | .993
VS pass 970 | .969
Experiment 2 Center-of-Mass
Tall Rectangle Orientation
AVS pass 993 | .992
VS pass .980 | .980
Wide Rectangle
AVS pass 995 | .993
VS pass 977 | 975
Experiment 3 Center-of-Mass
Tall Rectangle Orientation
AVS | - .984 | .983
vs | .969 | .968
Wide Rectangle
AVS pass 995 | .993
VS pass .980 | .980
Experiment 4 Center-of-Mass
Upright Triangle Orientation
AVS pass 991
VS pass .959
Inverted Triangle
AVS pass .990
VS fail .999
Experiment 5 Grazing Line
L shape
AVS pass 976 | .975
VS pass .907 | .906
Experiment 6 Grazing Line
Tall Triangle
AVS pass 930 | .919
VS pass .930 | .928
Experiment 7 Distance/Center-of-
Wide Triangle Mass Interaction
AVS pass .965 | .958
VS pass 959 | .956
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Figure 7: “Above” ratings for Regier & Carlson Experiment 4.

The second weakness of the model is that it failed one
qualitative test: the center-of-mass orientation effect in
Experiment 4-Inverted Triangle (see Figure 7b). It failed to
predict that the upper left target would receive a slightly
higher score than the upper right target. However, we
observe that: (1) The effect, while statistically significant, is
quite small. There is a larger effect for center-of-mass in the
Upright case (Figure 7a), wherein the VS model does show
the predicted effect. (2) This experiment contained only
eight stimuli, the four target locations for the two triangle
types. Given so few stimuli, and given that the top three
targets for the Inverted Triangle are so similar, a few
participants may have used a more sensitive strategy to
provide better contrast. They may have looked directly at
the orientation between the referent’s center-of-mass and the
target, or considered the relative width of the referent
directly below each target.

Conclusion

As the results show, the VS model strongly correlates with
human “above” ratings on eight experiments. It correctly
predicts all four factors contributing to “above” ratings, as
given by Regier and Carlson. The VS model does not
correlate quite as well as Regier and Carlson’s AVS model.
However, the VS model takes only two vector orientations
as its input, while the AVS model uses many vector
orientations, as well as the height of the target relative to the
topmost and bottommost points of the referent. The strong
performance of the VS model with only two vector
orientations supports the hypothesis that these two vectors
are used by humans in assessing positional relations.

Because we have implemented the VS model using visual
routines, we can use it to make novel predictions about the
computation of positional relations. The scanning process
can be disrupted by the presence of other curves between
the referent and the target. Therefore the VS model predicts
that distractors lying between the referent and the target,
particularly if they lie along the scan lines used to compute
the VS model’s two vectors, will disrupt the process of
computing positional relations. While Carlson and Logan
(2001) have argued against an effect of distractors between
the target and the referent for letter stimuli, we are currently
evaluating this prediction with simpler stimuli, basic color
patches.

This paper illustrates how Visual Routines for Sketches
can be used to implement and evaluate a perceptual model.
In the future, we hope to make VRS generally available, so
that other researchers can use it to explore the computations
underlying perception.
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