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Abstract

Previous research has revealed differences in what is learned
when people acquire concepts through inference and
supervised classification. Following these findings, we
hypothesized that another difference is representational
flexibility in novel category contrasts. An experiment tested
the flexibility of category representations across inference and
classification tasks by (1) having people make novel contrasts
with categories learned earlier in the experiment and (2)
recording eye movements as participants acquired knowledge
of four categories. Significant differences in the attention
patterns were observed in the eye movement data. Differences
in attention were coupled with an advantage for inference
learners in making novel category contrasts.
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Introduction

Two assumptions have guided the study of concept learning
ever since Hull (1920). The first is that category learning
amounts to learning a common label for sets of objects. This
assumption is explicit in the ubiquitous supervised
classification task, in which people receive feedback when
classifying visually presented stimuli. This paradigm has
been used to determine, for example, whether prototype
models are superior to exemplar models (Smith & Minda,
1998, or vice versa, Zaki, Nosofsky, Stanton, & Cohen,
2003). Over the years, researchers have taught people to
group objects into (usually two) sets and have examined the
resulting representations.

A second assumption has been that information about a
category learned in one context, should not transfer well to
another. Consider the goal of distinguishing roses from
raspberry bushes. If the most diagnostic feature is the
presence of berries, then people will learn that the berry
feature should receive the most attention weight (since both
plants have thorns) (Nosofsky, 1984; Rehder & Hoffman,
2005a; Shepard et al. 1961). However, when one later has to
distinguish raspberry from cranberry bushes, thorns
suddenly become diagnostic, because while both have red
berries, only the raspberry bush has thorns.

The problem is that optimizing attention for one category
contrast (raspberry vs. rose) is not always optimal for
another (raspberry vs. cranberry). The consequence of

ignoring irrelevant dimensions for one set of category
contrasts means that the learner has to re-attend (and learn
about) those dimensions when familiar categories are
contrasted in novel ways. That is, the learner has to relearn
about raspberries. In this manner, the heralded powers of
selective attention assumed by present theories are predicted
to harm performance when previously irrelevant dimensions
become relevant.

The mechanisms of attention allocation in many
computational models of category learning (Kruschke,
1992; Erickson & Kruschke, 1998; Kruschke & Johansen,
1999) suggest that people learn to attend to only that
information needed to distinguish the two categories being
acquired. The problem we raise is that after learning one
classification in which, say, cue A is most diagnostic,
people should have trouble learning a second classification
in which B is the good cue, because prior classifications
have taught people to ignore it (Kruschke, Kappenman, &
Hetrick, 2005). We ask two questions in this study. First,
how rigid are learners’ representations across different
learning tasks? Second, can attention provide an explanatory
variable for differences in what is learned between tasks?

We speculate that flexible category representations are
necessary for everyday classification, since particular
category contrasts are not always known ahead of time by
the categorizer. Previous research points to inference as
being a likely candidate for producing flexible
representations. To the extent that inference but not
classification produces flexible category representations, it
may reflect a more ecologically valid task for studying the
kinds of concepts that people use everyday.

Inference and Classification

Other tasks, where the goal is not to classify, but to learn
about the properties of categories, may yield a flexible
representation that can handle novel contrasts. Research that
has expanded the array of concept acquisition tasks
(Markman & Ross, 2003) led us to consider a task that may
produce flexible conceptual representations. Whereas
classification involves predicting the category label from
features, feature inference learning involves predicting a
missing feature from other features and the category label.
So rather than determining that a plant is a raspberry bush,
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the inference task asks learners to determine whether a
raspberry bush has thorns, or some other property.

Comparisons of the feature inference task with supervised
classification are of current interest, with evidence that
inference produces different representations. It has been
found that inference produces: increased sensitivity to
within-category correlations of features (e.g., berries go
with thorns, a leaf type and stem) (Chin-Parker & Ross,
2002), increased sensitivity to nondiagnostic, prototypical
features (Anderson, Ross, & Chin-Parker, 2002; Chin-
Parker & Ross 2004; Sakamoto & Love, 2006; Yamauchi &
Markman, 2000a; b), more prototypical-feature inferences,
and faster learning of linearly separable categories
(Yamauchi & Markman, 1998). Thus, in spite inference and
classification tasks being formally identical (Anderson,
1991), it is possible that the resulting flexiblity of category
representations can also differ.

The above-cited evidence suggests that whereas
classification learning may foster attention to the diagnostic
dimensions that serve to distinguish between categories,
inference learning may focus categorizers on within-
category information. Our hypothesis is that because the
within-category information acquired by inference learners
is not tied to any particular set of contrast categories, such
knowledge yields a more general and flexible
representation. As a consequence, with respect to novel
contrasts, inference learners may be at an advantage over
classification learners.

Experiment

Across two training phases participants learned about
categories A, B, C, and D in Table 1 via inference or
classification. Eye tracking was used throughout to monitor
participants’ attention to the three feature dimensions and
the category label. A test phase examined classification
performance and attention profiles as people made novel
category contrasts. From prior research we expected
classification subjects to learn to ignore the irrelevant
dimensions during training; this attention optimization
should lead to a difficulty in making novel classifications. In
contrast, prior research has demonstrated a tendency for
inference learners to acquire within-category information,
suggesting a general motivation to learn about all the
dimensions in the inference task. Such motivation can
potentially produce flexible category representations—that
is—ones that support novel contrasts. Measuring eye
movements during training will help explain differences in
concept flexibility between groups.

In contrast to previous studies comparing inference and
classification, a change was introduced to our inference
training procedure: One of the dimensions, the contrast
dimension 3, was never queried (inference subjects were not
aware of this at the start of the study). This change was
made to better equate the two tasks; allowing inference
participants to ignore task-irrelevant dimensions just like
classification learners could. This allowed a test of whether
inference learners are in fact generally motivated to learn

about category features, or whether the demands of the task,
i.e., querying the features, is what draws learners’ attention.

Method

Participants Twenty-four New York University students
participated for course credit. They were assigned to
standard classification or to an inference task. They were
also assigned to one of six ways of distributing dimensions
to screen locations.

Materials Subjects learned categories of “ceremonial
symbols.” The features of the symbols were 2 degrees of
visual angle in diameter. An example is shown in Figure 1.
The top left of each symbol contained the category label.
The other locations contained features.

The eye tracker was an SMI Eyelink 1, 250 Hz. We
programmed a gaze-contingent window of 4 x 4 degrees of
visual angle to center on subjects’ gaze, when gaze was
directed near a feature it was visible, but if their gaze was
away from a feature, it became jumbled. Gaze-contingence

Figure 1. Example stimulus, with queried
dimension marked by a dashed line.

ensured that subjects could only extract feature information
when fixating it.

Classification Task 1: A versus B Table 1 presents a three-
dimensional structure with categories A, B, C, and D.
Subjects were trained on these categories using different
contrasts. First, categorizers learned to contrast As versus
Bs. To classify As and Bs, they needed to use dimension 1,
in which feature-value 1 predicted category A and 0

Table 1: Category structure.

Dimension

Category 2
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predicted category B. Dimension 2 was irrelevant, with 1s
and Os occuring in each category equally. Dimension 3
contained a 1 for all category A and B members (i.e., it had
perfect category validity), so it too was irrelevant for
discriminating As and Bs.

Before each trial, we presented a drift correction, in which
the subject fixated the point in the center to display the
stimulus. There was no response deadline for classifying.
The stimulus with the correct category label would remain
for 4 s after a response. Training continued for five blocks.
Classification Task 2: C versus D Subjects next learned a
second contrast, between Cs and Ds. As Table 1 shows, this
contrast required use of dimension 2, with 1s predicting Cs,
and Os Ds. Dimensions 1 and 3 were irrelevant. Thus, the
task was identical to the A versus B task, but with the
relevant dimension switched. (Note that the additional block
in Task 1 was to allow learners to acclimate to the
procedure.)

Inference Task 1: Category A and B The inference
condition was similar to the classification condition, but
instead of classifying, inference learners predicted missing
features. Figure 1 provides an example inference trial,
where the bottom left of the stimulus, contains a feature
option; the subject must decide which feature belongs there.
The relative positions of features indicated which button to
press for each option. The left button selected the feature on
the left, and the right button selected the feature on the right.

Inference learning on categories A and B lasted for five
blocks. Every exemplar was presented with two dimensions
queried twice. Exemplars were presented in random order,
for a total of 16 trials per block.

Inference Task 2: Category C and D Inference learning
continued with the second set of categories in Table 1, for
four blocks.

Perfect performance was attainable on only one of the two

queried dimensions in either A-B (dimension 1) and C-D
(dimension 2) training.
Switch Task After the first two tasks, both classification
and inference subjects were presented with classification
trials involving contrasts between categories that were
unpaired during training. For example, they would be
presented with a member of category A or C and asked to
classify it into the correct category. Other novel contrasts
involved category B versus C, B versus D, and A versus D.
Importantly, correct responding on these novel contrasts
required the contrast dimension 3 which had been
previously irrelevant during training. Dimensions 1 and 2
yield a maximum accuracy of only 75% accuracy and thus
alone cannot be used to attain perfect performance on these
classification trials.

Additional instructions were provided to the inference
group since the switch classification task was different than
their inference task from previous trials.

Feedback was provided. Subjects completed two blocks
of 16, switch-contrast trials. Each block was constructed by
randomly sampling with replacement from the 16 unique
switch trials.

Results and Discussion

Learning AB (blocks 1-5) and CD training performance (6-
9) are shown in Figure 2. The figure shows average
classification performance for the classification group and
relevant cue inference performance. Both classification and
inference groups improved over training blocks, but
classification training was easier than inference training,
with a higher proportion correct over blocks. The inference
learners performed above chance levels in predicting the
valid cue, t(11) = 4.46, p < .01, but were marginally lower
than the classification group, t(22) = 1.81, p <.10 on the last
AB training block. The CD training blocks were similar.

Fixations A crucial question was whether inference learners
fixated the non-queried dimension during learning. If
inference is a more natural learning task than classification,
it should motivate a general interest in learning about the
category dimensions; fixations should be distributed to all
dimensions, regardless of whether those dimensions are
queried. However, if it is the attentional demands of the
inference task that drive learning about dimensions (and not
a general interest in the category dimensions), then fixations
should shift away from the non-queried dimension, since it
is no longer immediately relevant for the task. The latter
result would suggest that differences in what is learned via
inference and classification are from different attentional
requirements, and not motivational factors. Eye fixations
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Figure 2. Proportion correct by block.

will be used to distinguish between these two possibilities.
Figure 3 shows proportion of fixations to category label
and dimensions over AB and CD blocks, as a function of
task. Replicating our earlier work, at the beginning of
learning, the average classification learner (top) fixated
dimensions about equally. We also observed the expected
shift in fixations from irrelevant to relevant dimensions,
until irrelevant dimensions were fixated rarely or not at all.
At the onset of CD training in block six, there is uneven
attention distribution resulting from the learned fixation
patterns from AB training, so that in the first trial of CD
training, classification learners were not fixating the contrast
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dimension or the CD relevant dimension. A second attention
optimization obtained for classification subjects.

We next examined whether the inference condition
yielded any kind of attention optimization. Recall that the
contrast dimension was never queried. If inference
motivates a general interest in the category features, we
should observe continued fixations to the contrast
dimension, in spite of it now being task-irrelevant.
However, Figure 3 (bottom) shows that throughout learning,
inference learners largely ignored the contrast dimension.
Although attention to dimensions 1 and 2 remained high
throughout learning, even in the first learning block
inference learners largely ignored the contrast dimension. In
fact, in the first block of learning, the amount of time
fixating the contrast dimension was already significantly
less than that of fixating the other two dimensions and the
category label (all ps < .01). Apparently, inference learners
do in fact optimize their attention away from task-irrelevant
cues.

Attention optimization in the inference task contradicts

the idea that inference motivates a general interest in the
category features beyond what is strictly necessary. Rather,
the results of Figure 3 support the idea that what
distinguishes classification from inference is the attentional
demand it places on the learner. Learners fixate dimensions
because the task requires it and not because of motivational
factors. Any motivation there may have been to learn about
all of the category features extinguished quickly (also see
Rehder, Colner, & Hoffman, 2009).
Switch-trial performance Eye fixation data have ruled out
that inference motivates general interest in category
features. By not querying the contrast dimension in the
inference condition, we allowed inference learners the
opportunity to optimize their attention, just as the
classification learners could. In fact, inference learners
optimized their attention to just those queried dimensions,
ignoring the never-queried contrast dimension. As a result
of this manipulation, the inference learners may now
struggle to include the contrast dimension, since they largely
ignored it during training. On the other hand, although the
inference learners never directed their attention to the
contrast dimension, because it was not part of the task, they
never had to learn to direct their attention away from that
dimension either. Rather, the task focused their attention
more on the two queried cues, and inference subject learned
which dimensions were task-relevant. It is this fact that may
still allow inference learning to nevertheless produce
flexible attention allocation. By not learning to ignore the
contrast dimension, inference learners may be free to use it
during the switch trials.

Blocks 10 and 11 of Figure 2 show proportion correct for
switch-classification. In spite of not deploying significant
fixations to the contrast dimension during training, the
inference condition nevertheless showed an advantage
during the switch trials. In the first block of switch trials, the
inference group (M = 0.93, SD = 0.09) outperformed the
classification group (M =0.83, SD = 0.16),t (22) = 1.95,p =
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Figure 3. Fixations by task, block, and location.

.064. Likewise, during the second block of switch trials, the
inference group (M = 0.99, SD = 0.02) outperformed the
classification group (M =0.89, SD = 0.15), t (22) = 2.26, p <
.05. Spending a large amount of time fixating a dimension
during learning does not seem necessary for using that
dimension later in a flexible way. Whatever inference
subjects learned (or didn’t learn) during training allowed
them to perform well during switch trials.

The eye movement results from training showed that
classification and inference learners both largely ignored the
contrast dimension. It makes sense then that classification
learners should fail to use the contrast dimension during the
switch trials, but what allowed inference learners to have
more flexible category representations than the
classification group? Figure 4 shows learners’ attention
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Figure 4. Fixations to contrast dimension by
trial, first block of A-B and first block of C-D.
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allocation to the contrast dimension as a function of trial for
the first block of AB (trials 1-16) and CD training (trials 81-
96). The figure shows that at the trial level, the largest
attentional difference between the two conditions was that
the classification learners allocated more attention to the
contrast dimension early in learning. In the first 16 trials of
AB training, the classification condition allocated about
twice as much fixation time to the contrast dimension (M =
0.16, SD = 0.07) than the inference condition (M = 0.09, SD
= 0.06), F(1, 18) = 4.87, MSE = 0.073, p < .05, 5°, =0.21,
and was slower to ignore the contrast dimension, as
indicated by a trial by task interaction, F(15, 270) = 2.06,
MSE =0.008, 5%, = 0.10, p < .05.

A similar pattern obtained in CD training. The
classification condition allocated more fixations (M = 0.08,
SD = 0.05) to the contrast dimension than the inference
condition (M = 0.04, SD = 0.04), F(1, 18) = 2.92, MSE =
.034, ;72,) = 0.14, p = .104, and was slower to ignore the
contrast dimension, F(15, 270) = 2.67, MSE = 0.008, p <
.01. (More accurately, this interaction reflects an inverted u-
shaped pattern, in which the classification condition first
increased fixations and then decreased fixations to the
contrast dimension.) The different patterns of attention
reflect different reasons the two groups probably ignored the
contrast dimension. Inference learners ignored it because the
task directed their attention to those dimensions being
queried. Since the contrast dimension was never queried,
their attention was never allocated to it. Classification
learners were in a different position. From their perspective,
any or all dimensions could have been important for getting
the answer right, so they had to learn to ignore the contrast
dimension, as they gradually discovered that the contrast
dimension didn’t help them classify As from Bs or Cs from
Ds. We suspect that this is why there is an initial increase in
fixations to the contrast dimension in the first CD block,
because classification learners attended to it, and then
learned that it was useless in classifying Cs and Ds.
Classification learners’ fixation results reflected a learned
inattention to the contrast dimension, which probably
caused their difficulty in attending to the contrast dimension
during the switch trials.

General Discussion

We began with the observation that real-life categorizers
can make novel category contrasts and that information
learned about one set of categories transfers to another
without difficulty. This observation seemed to be at odds
with the robust finding that people in classification
experiments tend to optimize their attention to the fewest
necessary dimensions. Such optimization would necessarily
force learners to reallocate attention when previously
irrelevant dimensions at once become relevant.

To resolve the contradiction that people can make novel
category contrasts on one hand and but also tend to optimize
attention on the other, we looked to other types of learning
tasks they may produce classification performance that is
less optimal (in a specific context) but more flexible overall.

Inference training seemed like the best candidate. There
were two reasons for this. The first was based on evidence
that inference yields a special type of processing in humans;
although the exact source of this special processing was
until now not entirely clear, classification learning has been
found to cause humans to attend to diagnostic information
and inference learning can cause learners to focus on within-
category correlations and prototypical features. We
imagined that such differences may reflect that inference is
a more typical learning task than classifying, and it isn’t
hard to imagine how familiarity in the learning task can lead
to greater ease and flexibility in using the acquired
information.

Our second hypothesis for how inference learning could
yield flexible category representations was based on
differences in attentional demands of inference and
classification. Whereas most classification tasks allow
learners to ignore some of the irrelevant dimensions, in the
typical inference learning experiment, all of the dimensions
are queried several times throughout training. Focusing
people’s attention on all of the dimensions in this way may
cause people to look at all dimensions on every trial, in
order to prepare for future queries. In fact, the eye tracking
results from this study (and also in Rehder, Colner, &
Hoffman, 2009) show that never querying one of the
dimensions allows the inference learner to optimize their
attention to only those task-relevant dimensions, i.e., those
dimensions that are sometimes queried.

As it turned out, our initial hypotheses about inference
learning were not exactly right. Our data showed that
inference subjects very quickly ignored the never-queried
dimension. Significant differences in fixations to the
contrast dimension were found within the first learning
block. Apparently, attending to the contrast dimension
during training was not necessary for creating flexible
category representations. Rather, what gave subjects the
advantage in switch-classification trials is that they never
had to learn to ignore the contrast dimension, as the
classification subjects did, as evidence by the much larger
drop in attention to the contrast dimension from the
beginning to the end of training in the classification
condition. In other words, classification subjects were
harmed in their task by their learned attention profiles, but
the inference subjects were not.

Such a finding is in fact consistent with theories of
attention and category learning. Several models, for
example, RASHNL Kruschke and Johansen (1999), and
EXIT Kruschke (2001), which are based on Macintosh’s
(1975) theory of learned attention, propose that attention
weights are learned for a given set of inputs. In these
models, if feature inputs are irrelevant, or if for other
reasons the features increase the number of classification
errors committed, the attention system will direct attention
away from those features in favor of others. These attention
mechanisms help the models explain a large array of
blocking and highlighting phenomena in addition to
benchmark category learning data. They also explain why it
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is that our classification subjects failed to redirect attention
to the contrast dimension during the switch trials.

Beyond supporting certain theories of categorization and
attention, our results underscore an important difference
between the attention profiles acquired through trial and
error learning and those that arise out of task goals. It seems
that ignoring features as a result of discovering that they are
statistically irrelevant over numerous trials is qualitatively
different than cues that are never queried, and are thus
irrelevant for the task. Thus, how the learner acquires an
attention profile is as important as the attention profile itself.
Conclusion We conclude that much of the observed
difference in learning between inference and classification is
likely because of differences in how attention is directed
towards certain features by the demands of the task. Before
we do, however, we would first emphasize that we do not
think this is a trivial discovery.

With regards to the larger question of how it is that people
build up flexible representations to learn novel category
contrasts, it is clear that inference training does a much
better job at this than classification training does. Thus
based on our findings and the previous studies comparing
learning tasks, we think it would be a mistake to generalize
too broadly about category representations or about how
people allocate attention when classifying based on the
classification task alone. If a significant proportion of
people’s experience with categories involves inference and
or experience, e.g., communication and problem solving, as
we think it probably does, then it is critical that we
understand better how tasks interact with what is learned.
Finally, in the service of this goal, we believe that methods
such as eye tracking, that allow researchers to access
information processing online will continue to prove
invaluable.
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