
Learning Hierarchical Skills from Problem Solutions
Using Means-Ends Analysis

Nan Li (nan.li.3@asu.edu)
David J. Stracuzzi (david.stracuzzi@asu.edu)

Pat Langley (langley@asu.edu)
School of Computing and Informatics, Arizona State University, Tempe, AZ 85281 USA

Negin Nejati (negin@stanford.edu)
Computational Learning Laboratory, CSLI, Stanford University, Stanford, CA 94305 USA

Abstract

Humans acquire skills in different ways, one of which involves
learning from worked-out solutions to problems. In this paper,
we present an extension to the ICARUS cognitive architecture
that lets it acquire complex hierarchical skills in this manner.
Unlike previous work on this topic, our approach relies on an
existing architectural mechanism, means-ends analysis, to ex-
plain steps in the problem solution and to learn new structures.
We illustrate this method in the domains of multi-column sub-
traction and football, after which we discuss related work and
consider directions for future research in this area.

Introduction
Research on cognitive architectures (Newell, 1990) attempts
to explain the entire range of human cognition. In previous
papers, we have described ICARUS (Langley & Choi, 2006),
an architecture that, in addition to other capabilities, acquires
hierarchical skills during problem solving. However, as Ohls-
son (2008) has noted, humans learn skills from many different
sources of input. Thus, an important research goal involves
extending ICARUS to support the full range of human skill ac-
quisition. In this paper, we report progress on modeling learn-
ing from worked-out problem solutions, which often arise in
educational settings.

Our approach builds on previous work, LIGHT, a system
that constructs hierarchical skills from expert solutionsto
problems developed by Nejati, Langley, and Konik (2006).
Although LIGHT utilized ICARUS knowledge structures as
input and output, it operated as a separate module that was not
part of the unified architecture. At the same time, the system’s
approach to explaining problem solutions bore a close resem-
blance to ICARUS’ existing mechanism for means-ends prob-
lem solving. In response, we have adapted the latter mech-
anism to support explanation of, and learning from, worked-
out solutions to acquire complex cognitive skills, extending
ICARUS’ coverage of human cognition.

In the sections that follow, we briefly review the ICARUS

architecture, including its assumptions about representation,
performance, and learning, along with Nejati et al.’s approach
to learning from solution traces. After this, we describe our
adaptation of the framework’s means-ends mechanism to ex-
plain and learn from such traces, followed by an example in
the domain of multi-column subtraction. We then report ex-
periments that demonstrate the generality of our approach.In
closing, we discuss related research and propose avenues for
additional work on this topic.

The ICARUS Architecture
In previous work, Langley and Choi (2006) have presented
ICARUS, a cognitive architecture that shares many features
with other frameworks like Soar (Laird, Rosenbloom, &
Newell, 1986) and ACT-R (Anderson, 1993), including a
distinction between short-term and long-term memories, re-
liance on a recognize-act cycle, and a mixture of goal-driven
with data-driven behavior. ICARUS also has distinctive fea-
tures, such as separate memories for concepts and skills, in-
dexing skills by the goals they achieve, and an architectural
commitment to hierarchical structures. Before describingour
approach to learning from problem solutions, we should re-
view the framework’s basic assumptions.

Beliefs, Concepts, and Inference

Most cognitive architectures operate in discrete cycles that
produce mental or physical action. However, before an agent
takes action, it must first understand its situation. ICARUS

accomplishes this by matching conceptual structures in long-
term memory against dynamic percepts and beliefs that it up-
dates on each cycle. This process begins when descriptions
of the environment are deposited into aperceptual buffer.
The architecture complements this with abelief memorythat
encodes higher-level inferences about the environment, typi-
cally about relations among entities.

ICARUS beliefs are instances of generalized concepts
stated in a long-term, hierarchicalconceptual memory. Ta-
ble 1 shows some concepts for multi-column subtraction.
Primitive concepts match directly against the perceptual
buffer, whereas nonprimitive concepts match against in-
stances of lower-level concepts. Each nonprimitive concept
specifies subconcepts that must be present for it to match. For
example, theall-processedconcept in the table refers topro-
cessedandrightmost-column. An inference mechanism up-
dates belief memory at the beginning of each cycle by match-
ing the generalized concept definitions with percepts and ex-
isting beliefs in a bottom-up manner, and stops when it infers
all beliefs deductively implied by the concepts and percepts.

Goals, Skills, and Execution

After inferring a set of beliefs about its environment, ICARUS

uses its available skills to take action there. The system stores
these structures in askill memory, which also has a hierarchi-
cal organization. Skill clauses are indexed by the concepts

1858



Table 1: Sample concepts from multi-column subtraction.

; PROCESSED describes the situation in which the column
; contains an answer.
((processed ?col)
:percepts ((column ?col below ?below))
:tests ((not (equal ?below nil))))

; ALL-PROCESSED describes the situation in which all the
; columns right of ?left have been processed, including ?left.
((all-processed ?col)
:percepts ((column ?col))
:relations ((processed ?col)

(rightmost-column ?col)))

((all-processed ?left)
:percepts ((column ?left) (column ?right))
:relations ((processed ?left) (left-of ?left ?right)

(all-processed ?right)))

they aim to achieve. Table 2 shows some sample skill clauses
for multi-column subtraction. The body of a primitive clause
indicates actions that the agent can directly execute in the
world, as in the first example. In contrast, the body of a non-
primitive skill clause specifies subgoals the agent should pur-
sue to achieve the goal in the head, as in the second example.

On each cycle, ICARUS retrieves skill clauses that could
achieve its goal, and attempts to find an applicable path down-
ward through the skill hierarchy. Upon reaching a primitive
skill, the architecture executes its actions in the environment,
possibly changing its percepts and beliefs on the next cycle.

Problem Solving and Skill Learning

When its long-term memory contains relevant knowledge,
ICARUS retrieves and executes skills in an effort to achieve
its goals. However, in some cases the system encounters an
impasse (VanLehn, 1990) in which it cannot find appropri-
ate skills. When this occurs, it calls on a problem-solving
module that carries out means-ends analysis. This mecha-
nism reasons backwards from known skills and concepts in
an attempt to construct a novel solution.

The problem solver prefers skills that, if applied, would
achieve the current goal but that are not yet applicable. In
this case, ICARUS creates a subgoal based on the skill’s in-
stantiated start condition and attempts to satisfy it. If itcan-
not find such a skill, the problem solver examines the concept
definition for the current goal, selects one of its unsatisfied
subconcepts, and makes this the active subgoal. Whenever
ICARUS finds an applicable path that could achieve the cur-
rent subgoal, it executes that skill path in the environment.
Upon achieving a subgoal, the system either shifts to another
unsatisfied subgoal or marks the parent goal as achieved, con-
tinuing this process until the top-level goal is satisfied.

Although ICARUS’ problem solver lets it overcome im-
passes and achieve goals for which it has no stored skills,
the process can require considerable search and backtrack-
ing. For this reason, the architecture also includes a learning
mechanism that caches the results of successful problem solv-
ing in skill memory. Whenever means-ends analysis achieves

Table 2: Sample skills from multi-column subtraction.

; Achieve PROCESSED by writing down the difference in
; cases where borrowing is not needed.
((processed ?col)
:percepts ((column ?col top ?top bottom ?bottom))
:start ((top-greater ?col))
:actions ((*find-diff ?col ?top ?bottom)))

; Achieve PROCESSED by achieving TOP-GREATER
; followed by PROCESSED when borrowing is needed.
((processed ?col)
:percepts ((column ?col) (column ?left))
:start ((left-of ?left ?col))
:subgoals ((top-greater ?col) (processed ?col)))

; Achieve ALL-PROCESSED by processing any column to
; the right before processing the current column.
((all-processed ?col)
:percepts ((column ?col))
:start ((rightmost-column ?col))
:subgoals ((processed ?col)))

((all-processed ?left)
:percepts ((column ?left) (column ?right))
:start ((left-of ?left ?right))
:subgoals ((all-processed ?right) (processed ?left)))

a goal or subgoal G, ICARUS creates a new skill in which the
head is a generalized version of G. If system achieved G by
chaining off an existing primitive skill S, the new skill’s sub-
goals are S’s start condition plus S’s head in the order they
were achieved. If system achieved G by chaining off an exist-
ing non-primitive skill S, the new skill’s subgoals are S’s start
condition plus S’s subgoals in the order they were achieved.
In both cases, the new skill’s start condition is the same as that
for the first subgoal. If ICARUS achieved G through chaining
on concept C, the new skill’s subgoals are the subconcepts of
C that were initially unsatisfied, again in the order they were
achieved. In this case, the start condition is the conjunction
of C’s subconcepts that were true initially.

In subsequent runs, ICARUS will apply the new skills
whenever they are relevant to its goals and their start con-
ditions match the current state. As a result, the agent can
achieve its goals through reactive skill execution withoutcall-
ing the problem solver. Langley and Choi (2006) have re-
ported encouraging results with this learning mechanism ina
driving environment, the Blocks World, and Freecell solitaire.

Review of the LIGHT System
Despite ICARUS’ accomplishments, it provides an incomplete
account of human cognition in that it acquires skills only
from its own attempts at problem solving. As Ohlsson (2008)
has argued, people learn from a variety of sources, including
worked-out problem solutions. Recently, Nejati et al. (2006)
report one approach to acquiring knowledge in this manner.

Their LIGHT system accepts as input a goal, a sequence
of skill instances and the associated state sequence. Given
this information as input, the learner parses the solution by
reasoning backward from the final state, at each step explain-
ing how the action achieves the goal or one of its subgoals

1859



by chaining over skills or concept definitions. LIGHT starts
by examining the final skill instance S in the trace and, if
S’s effects include the goal, creates a subgoal for the earlier
steps based on S’s preconditions. If no skill instance in the
trace could have achieved the goal, the learner decomposes
it into subgoals using its conceptual definition. LIGHT then
looks back through the solution trace to determine the order
in which it achieved each subgoal, explaining recursively how
the observed actions achieved each one. The process termi-
nates when it links the achievement of each goal to the trace.

Using this hierarchical explanation structure, LIGHT uses
the ICARUS learning methods to create new skills for each
explained goal and subgoal. If a given explanation step in-
volved chaining off a skill, then the system acquires the same
structure that ICARUS would learn in this situation. If an
explanation step involved chaining off a concept definition,
then LIGHT constructs the same skill that the architecture
would acquire under those conditions. Nejati et al. demon-
strated their approach on two domains from the AI planning
literature, Blocks World and Depots, showing their system
acquires effective skills that solve most problems in each do-
main, and also captures recursive structures that generalize to
situations beyond those the system has encountered.

Although LIGHT implements a novel and interesting
method for acquiring hierarchical skills from solution traces,
it operates as a standalone process. The system runs outside
ICARUS’ basic cognitive cycle and connects to it only by us-
ing the same knowledge structures and the same skill-caching
mechanism. Thus, it does not directly aid our goal of ac-
counting for learning from problem solutions within a unified
theory of the human cognitive architecture.

Extending ICARUS to Learn from Solutions
Nevertheless, Nejati et al.’s system introduced some promis-
ing ideas that deserve further attention. Because LIGHT’s
approach to explanation bears a close relation to means-ends
analysis, we decided to adapt ICARUS’ problem-solving mod-
ule to support a similar ability to learn from solution traces.

We had two aims in mind when pursuing this work. First,
we wanted to account for people’s ability to learn from
worked-out solutions within a unified cognitive architecture,
drawing on existing ICARUS mechanisms where possible.
Second, we wanted an approach that could take advantage of
previously learned skills to aid later learning, which ICARUS

supports but which LIGHT did not. Both characteristics add
to the psychological plausibility of our model.

A typical run begins with the architecture passively observ-
ing a state sequence that a tutor presents.1 As the state de-
scriptions appear in its perceptual buffer, ICARUS infers be-
liefs that describe each state in more abstract terms. For sub-
traction, these include relations between columns and num-
bers that are relevant to the domain skills. One difference
from previous versions of ICARUS is that the inference pro-

1We wanted to remove LIGHT’s assumption that traces include
skill instances, since humans observe only a sequence of states.

cess tracks augments beliefs with time stamps that note when
they first became true and when they ceased to hold. This pro-
vides a simple episodic memory, which we introduced into
ICARUS for another project, but which also proved useful for
the explanation process.

Once the system has observed the problem solution and
stored it in the episodic belief memory, the tutor provides it
with the problem’s goal and an indication that it should learn
from the trace. This leads ICARUS to invoke its means-ends
analysis module, which we have extended to operate slightly
differently when a solution trace is available. As usual, the
module begins by chaining backwards off the top-level goal,
selecting a skill from primitive or non-primitive skills that
would produce the goal as its effect and selecting a concep-
tual clause otherwise. In the first case, it creates a subgoalto
achieve the skill’s instantiated start condition; in the second, it
creates one subgoal for each unsatisfied subconcept. The pro-
cess bottoms out whenever it finds a skill that explains how a
skill executed in one state in the solution leads to achieving a
goal or subgoal in a later state, with this activity continuing
until it accounts for the entire sequence of solution steps.

This explanatory mode of means-ends analysis differs from
the traditional problem-solving mode in two key ways. One
is that the system chains off a goal that is already satisfied
in an effort to explain how it occurred, rather than trying to
alter the environment to achieve it. However, each step in
the process requires one cognitive cycle, so that explanation
is deeply integrated into the architecture in the same manner
as the problem solver. The other difference is that chaining
is constrained by the contents of the episodic belief memory.
This limits the search that arises during means-ends analysis
greatly, although it may not eliminate it entirely, in which
case the system backtracks and considers another path.

In addition, ICARUS prefers to explain the observed state
sequence using its skills rather conceptual knowledge, and
it prefers skill instances that reach farther back in the se-
quence. The second bias encourages the system to reuse
learned, higher-level skills when they are available. In the
extreme case, when the means-ends module can explain the
entire solution with a single high-level skill, then no learning
is necessary. However, typically the system uses a mixture
of primitive skills, concept definitions, and possibly learned
skills to produce an explanation.

As in means-ends problem solving, ICARUS interleaves the
explanation process with skill learning. Whenever the system
accounts for how an observed subsequence of states produces
a goal or subgoal, it creates a new skill for that goal. The ar-
chitecture uses the same learning mechanism as for standard
means-ends analysis that we described earlier. After storing a
new skill in memory, ICARUS returns to its efforts to account
for other parts of the solution trace, continuing until it has ex-
plained, and acquired skills for, the entire sequence. The new
skills become available to solve new problems that the sys-
tem encounters or, if presented with additional worked-out
solutions, to explain and learn from them.

1860



Figure 1: Solution trace for a subtraction problem.

An Example from Multi-Column Subtraction

In order to clarify the mechanism’s operation further, we pro-
vide an example from multi-column subtraction, a domain
that has been well studied by cognitive scientists with educa-
tional interests. Figure 1 shows a sequence of states for the
problem 35− 17, which we provide to ICARUS along with
a set of concepts that describe various situations in this do-
main, including the clauses forprocessedandall-processed
in Table 1, as well as ones likeleft-of, rightmost-column, and
top-positive. We also provide the system with a set of prim-
itive skills that describe basic subtraction actions, including
finding differences, adding ten to the top of a column, and
subtracting one from the top number. As Figure 2 depicts, the
problem’s top-level goal is(all-processed c1), which means
that the agent should process columnc1and all columns right
of columnc1. Sincec1 is the leftmost column, achieving(all-
processed c1)equates to solving the entire problem.

Given the solution to this task, ICARUS first steps through
the states, inferring higher-level beliefs that hold in each case.
Next, the system attempts to explain the solution trace using
means-ends analysis. Since it has no skill that would achieve
the all-processedgoal, it resorts to conceptual knowledge.
Belief memory indicates that(all-processed c1)is supported
by instantiated subconcepts(left-of c1 c2), (all-processed c2),
and(processed c1). The first held in the initial state, and the
other two became true on cycles 4 and 5, respectively. As
a result, the problem solver separates the solution trace into
subtraces. TraceT14 from cycle 1 to cycle 4, is associated
with the subgoal(all-processed c2), whileT55, which involves
only cycle 5, is associated with(processed c1).

The problem solver then attempts to explain recursively
how each subtrace achieves its associated subgoals. For(all-
processed c2), belief memory indicates that, since columnc2
is the rightmost column,(all-processed c2)was linked to ac-
complishing(processed c2). Since the system has a primitive
skill (see Table 2) for achievingprocessed, it uses this skill to
explainT14. ICARUS notes that the start condition of the skill
instance(top-greater c2)did not become true until cycle 3, so
it decomposesT14 into two subtraces,T13 andT44, whereT13

is associated with(top-greater c2)andT44 with (processed
c2). Among these subgoals, only(top-greater c2)cannot be
achieved with available skills; this leads to further chaining,
but we will not present the details here for simplicity’s sake.

The explanation process does not proceed monolithically.
Whenever the problem solver explains how a solution trace
or subtrace achieves a goal or subgoal, it triggers ICARUS’
learning mechanism to produce a new skill that encodes this

Figure 2: A multi-column subtraction explanation trace. Con-
cept instances are shown as circles, and skill instances are
shown as rectangles.

understanding. In our example, the first subgoal explained
is (processed c2), using subtraceT14. Since this involves a
skill instance with the instantiated start condition(top-greater
c2), the system constructs a skill with generalized versions of
(top-greater c2)and(processed c2)as its two subgoals, as Ta-
ble 2 indicates. The learned skill’s start condition is a gener-
alized version of the start condition for the skill that achieved
(top-greater c2), that is,(left-of ?left ?col).

Having successfully explained(processed c2)with T14,
ICARUSacquires another skill for(all-processed c2)with this
as the only subgoal and with(rightmost-column c2)as the
start condition – again, with variables substituted for argu-
ments – as Table 2 shows. Having explained(all-processed
c2) with subtraceT14 and (processed c1)with subraceT55,
ICARUSconstructs a skill for the top-level goal(all-processed
c1). In this case, the skill includes two subgoals based on(all-
processed c2)and(processed c1), along with a start condition
based on(left-of c1 c2). Having acquired skills for each goal
in the explanation tree, learning halts at this point.

Generality of the Approach
To determine the generality of our architectural extensions,
we carried out experiments with a number of problems from
two domains. The first study involved multi-column subtrac-
tion. We provided ICARUS with 16 concepts and six prim-
itive skills, then presented it with four solved subtraction
problems of increasing complexity. These involved, respec-
tively, no borrowing (45− 32), basic borrowing (35− 17),
borrowing from zero (805− 237), and borrowing across ze-
roes (2005−237). ICARUS learned seven new skills from the
first three tasks, in each case building on ones it had acquired
earlier. The final exercise produced no learning, since the
system solved it using previously acquired recursive skills.

This result encouraged us to examine more closely the
learned skills’ ability to generalize. When presented with
each of the six subtraction tasks in Table 3, ICARUSacquired,
in each case, a set of skills that transferred in expected ways to
the other five problems. For instance, the architecture’s exe-

1861



Table 3: Multi-column subtraction problems used for training
and testing the new learning mechanism.

45 − 32 = 13 40 − 17 = 23
35 − 17 = 18 805 − 237 = 568
45 − 17 = 28 2005− 237 = 1768

cution module could use recursive skills learned from 45−32
to solve other nonborrowing tasks, even if they involved fewer
or more columns, but not to solve borrowing problems. Af-
ter learning on a task like 45− 17, it could solve problems
that involved a mixture of basic borrowing and nonborrowing
columns (i.e., the first four tasks in Table 3).

Because we also desired to show that our approach is not
limited to controlled educational settings, we carried outa
second study on learning from traces of observed football
plays. Here we provided ICARUS with segmented descrip-
tions of video footage for three separate plays that we spec-
ified with a set of 58 concepts. Hess and Fern (2007) report
the methods used to transform the pixel-based videos into
sequences of percepts that characterize objects in terms of
attribute-value pairs. After learning skills from each video,
ICARUS attempted to execute the same plays in football sim-
ulator. We evaluated the quality of the learned skills qualita-
tively by comparing plots of the player trajectories generated
from the video to plots generated in the simulator.

During these runs, ICARUS acquired a total of 11 skills, in-
cluding seven from the first play, one from the second play,
and three from the third. The architecture acquired these
skills cumulatively, with skills learned from later plays build-
ing upon those learned earlier. Most lower-level skills were
acquired from the first trace, so that the system learned only
higher-level behaviors like complex receiver patterns from
later ones. A qualitative comparison of player trajectories re-
vealed that ICARUS’ execution of all three plays correspond
to idealized versions of plays in the video, which makes sense
because both ICARUS and the simulators are less hampered
by momentum than humans on the field. Taken together,
these results suggest that our approach to learning from ob-
served behavior can acquire complex skills in both academic
domains like arithmetic and physical ones like sports.

Discussion

There has been considerable research on learning within cog-
nitive architectures. The best-known work involves Soar
(Laird et al., 1986), which acquires knowledge that con-
strains problem-space search through a chunking mechanism,
and ACT-R (Anderson, 1993), which creates new production
rules through a compilation process that gradually transforms
declarative representations into procedural ones (Taatgen &
Lee, 2003). The learning mechanisms in ICARUS, Soar, and
ACT-R are all analytic but differ in their details, although
ICARUS’ method is similar to Soar’s in that it reduces search
and akin to ACT-R’s in that it transforms knowledge from

one form to another. However, it has closer ties to PRODIGY,
which used an analytical technique to acquire control rules
for means-ends problem solving (Minton et al., 1989).

Although research on cognitive architectures has not fo-
cused on the acquisition of skills from worked-out solutions,
there have been some efforts along these lines. Van Lent and
Laird (2001) describe analogous work on learning Soar op-
erators, but their approach relied on annotated traces thatour
method does not require. Work by Neves (1978) and Mat-
suda et al. (2008) on learning production rules for algebra
also took advantage of solution traces, but neither acquired
complex hierarchical procedures.

Other research in AI has examined learning complex pro-
cedures from problem solutions. Segre (1987), Mooney
(1990) and VanLehn and Jones (1993) report analytical ap-
proaches to this task, but none of their systems acquired hier-
archical or recursive structures. More recent work by Hogg,
Muñoz-Avila, and Kuter (2008) acquires hierarchical skills
from solution traces, but requires knowledge about high-level
tasks that our approach does not assume. Reddy and Tade-
palli’s (1997) X-LEARN comes closest to our own in terms
of inputs and outputs, but it used a nonincremental method to
learn conditions on its hierarchical skills.

Another closely related system, VanLehn’s (1990) Sierra,
also models the impasse-driven acquisition of hierarchical
procedures for multi-column subtraction from sample solu-
tions. However, his work focused on explaining the origin
of bugs, which we have not attempted. Also, Sierra exam-
ined similarities among a number of problem solutions dur-
ing learning, whereas ICARUS acquires multiple skills from
individual problem solutions in an incremental manner.

Although our results to date provide a promising account of
skill learning within a theory of cognitive architecture, there
remain many avenues for additional research. We should
evaluate the extended ICARUS’ abilities in subtraction and
football more extensively, as well as demonstrate the abil-
ity to learn from solution traces on other tasks of educational
interest, such as physics problem solving.

In addition, we should make our framework more consis-
tent with results on human skill acquisition. In particular,
our studies of multi-column subtraction revealed that ICARUS

learns more rapidly than people, in that it masters all seven
skills from a single problem 2005− 237. A human student
typically requires a variety of simple training problems before
he moves on to ones that involve complex combinations. The
system can acquire skills in a more gradual, cumulative fash-
ion, but this is not necessary. The most promising response
would limit the architecture’s episodic memory to retain only
the most recentN beliefs. The revised version would still be
able to learn from complex solutions, but it would only ac-
quire simpler skills that occur low in the explanation tree be-
fore it forgot steps higher in the tree. Once ICARUS had mas-
tered these skills, it could benefit from more complex prob-
lems, since it would not need to explain the lower levels and
could focus its efforts on higher levels of the solution trace.

1862



Our longer-term agenda includes extending ICARUS on
two additional fronts. The first involves even stronger uni-
fication between its explanation mechanism and other capa-
bilities. An improved system would resort to regular means-
ends problem solving when presented solutions with missing
steps, using search to fill in the gaps. We should also make ex-
planation process as interruptable as problem solving, which
the current ICARUS will suspend if a higher-priority goal be-
comes unsatisfied unexpectedly. The second involves aug-
menting the architecture to learn from the additional sources
of information that Ohlsson (2008) discusses, such as external
feedback and violated constraints. As in the current work, we
should model these abilities with as few changes to ICARUS

as possible, since our goal is a unified theory of cognition.

Concluding Remarks
Learning from demonstrated solutions is one of the main
ways that humans acquire skills, making it a crucial ability
for any broad theory of cognition to explain. In this paper,
we reported extensions to an existing cognitive architecture,
ICARUS, that provided it with the ability to learn in this man-
ner. The most important aspect of our account is that it uti-
lizes the framework’s mechanism for means-ends analysis to
explain the observed solution trace. This extension required
almost no changes to the architecture and used the same ma-
chinery for creating subgoals, marking them as satisfied, and
learning new skills as the standard means-ends process.

We demonstrated the extended ICARUS’ behavior on multi-
column subtraction, showing that it can learn complex hier-
archical and recursive skills in this domain that generalize
correctly to new problems. Although the system learns sub-
traction procedures more rapidly than humans, it provides a
promising initial account of learning from problem solutions
that is embedded within a unified theory of the human cog-
nitive architecture. We hope to take a similar approach when
we provide the framework with additional learning abilities.

Acknowledgements
This material is based in part on research sponsored by
DARPA under agreement FA8750-05-2-0283. The views
contained herein are those of the authors and should not be in-
terpreted as representing the official policies or endorsements,
expressed on implied, of DARPA or the U. S. Government.

References
Anderson, J. R. (1993).Rules of the mind. Hillsdale, NJ:

Lawrence Erlbaum Associates.
Hess, R., & Fern, A. (2007). Improved video registration

using non-distinctive local image features. InProceedings
of the IEEE Conference on Computer Vision and Pattern
Recogntion.Minneapolis, MN: IEEE Press.

Hogg, C., Muñoz-Avila, H., & Kuter, U. (2008). HTN-
Maker: Learning HTNs with minimal additional knowl-
edge engineering required. InProceedings of the Twenty-
Third Conference on Artificial Intelligence(pp. 950–956).
Chicago: AAAI Press.

Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986). Chunk-
ing in soar: The anatomy of a general learning mechanism.
Machine Learning, 1, 11–46.

Langley, P., & Choi, D. (2006). A unified cognitive architec-
ture for physical agents. InProceedings of the Twenty-First
National Conference on Artificial Intelligence.Boston:
AAAI Press.

Matsuda, N., Cohen, W. W., Sewall, J., Lacerda, G., &
Koedinger, K. R. (2008). Why tutored problem solving
may be better than example study: Theoretical implica-
tions from a simulated-student study. InProceedings of
the Nineth International Conference on Intelligent Tutor-
ing Systems(pp. 111–121). Berlin: Springer-Verlag.

Minton, S., Carbonell, J. G., Knoblock, C. A., Kuokka, D. R.,
& Etzioni, O. (1989). Explanation-based learning: A prob-
lem solving perspective.Artificial Intelligence, 40, 63–118.

Mooney, R. J. (1990).A general explanation-based learning
mechanism and its application to narrative understanding.
San Mateo, CA: Morgan Kaufmann.

Nejati, N., Langley, P., & Konik, T. (2006). Learning hi-
erarchical task networks by observation. InProceedings
of the Twenty-Third International Conference on Machine
Learning.Pittsburgh, PA: ACM Press.

Neves, D. M. (1978). A computer program that learns al-
gebraic procedures by examining examples and working
problems in a textbook. InProceedings of the Second Bien-
nial Conference of the Canadian Society for Computational
Studies of Intelligence(pp. 191–195). Toronto, Canada.

Newell, A. (1990).Unified theories of cognition. Cambridge,
MA, USA: Harvard University Press.

Ohlsson, S. (2008). Computational models of skill acquisi-
tion. In R. Sun (Ed.),The cambridge handbook of com-
putational psychology. New York: Cambridge University
Press.

Reddy, C., & Tadepalli, P. (1997). Learning goal-
decomposition rules using exercises. InProceedings of the
Fourteenth International Conference on Machine Learning
(pp. 278–286). San Francisco: Morgan Kaufmann.

Segre, A. (1987). A learning apprentice system for mechani-
cal assembly. InProceedings of the Third IEEE Conference
on AI for Applications(pp. 112-117).

Taatgen, N. A., & Lee, F. J. (2003). Production compilation:
A simple mechanism to model complex skill acquisition.
Human Factors, 45, 61–76.

Van Lent, M., & Laird, J. E. (2001). Learning procedural
knowledge by observation. InProceedings of the First In-
ternational Conference on Knowledge Capture(pp. 179–
186). Victoria, BC: ACM Press.

VanLehn, K. (1990).Mind bugs: The origins of procedural
misconceptions. Cambridge, MA, USA: MIT Press.

Vanlehn, K., & Jones, R. M. (1993). Learning by explaining
examples to oneself: A computational model. In S. Chip-
man & A. L. Meyrowitz (Eds.),Cognitive models of com-
plex learning(pp. 25–82). Kluwer Academic Publishers.

1863


