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Abstract 

GLAM-PS (Glamorgan Problem Solver) is a production 
system model of problem solving in the Tower of London 
(TOL) puzzle. It is introduced as a draft cognitive architecture 
that is similar to John Anderson’s (1998, 2004) ACT-R, but 
represents system goals, long term memory and production 
memory modally, rather than amodally.  The current paper 
demonstrates how GLAM-PS models problem solving on 3-
disk TOL problems (a comparison with human data is also 
made).  GLAM-PS  uses representations of intended actions 
to control behaviour and planning utilizes the simulation of 
future problem states.  

Keywords: Grounded Cognition; Production Systems; 
Problem Solving; Goal Handling 

Introduction 

Our ability to engage in goal-directed action is a defining 

characteristic of human behaviour.  Different cognitive 

architectures have taken various approaches to modelling 

goal driven behaviour. Early versions of Anderson’s ACT 

included a goal stack as part of the architecture (e.g. 

Anderson, 1993), more recent versions (Anderson et al., 

2004) have modeled goals as alike to other memories in 

terms of representation and storage, but distinct in the way 

they are utilised (through the action of an architecturally 

specified goal buffer).  Other prominent architectures have 

placed significant emphasis on the role of amodal goal 

representations (e.g. EPIC, Meyer & Kieras, 1997). 

The current paper presents GLAM-PS a draft cognitive 

architecture which has been computationally implemented 

in the domain of knowledge-lean problem solving 

(specifically the Tower of London problem, a classic test of 

executive function commonly used in the diagnosis of 

Dyexecutive Syndrome).  GLAM-PS is a production system 

architecture that represents goals modally, indeed the only 

cross-modal representation used is a ‘system state’ 

representation, containing details of active modal 

representations in each of the architectures modules. 

A key feature of GLAM-PS is that it is derived heavily 

from current production system architectures (primarily 

ACT-R and EPIC).  In this respect it allows for an 

interesting comparison between current modal-amodal 

architectures and a draft modal-only architecture.  In the 

current paper these differences are examined, in particular 

the paper explores how executive control is handled by 

GLAM-PS in a classic problem solving domain.  GLAM-PS 

can be interpreted as a simplification of existing 

architectures and broadly speaking is functionally similar to 

ACT-R / EPIC.  Given this, a key question is whether 

GLAM-PS is a competent model of complex human 

behaviour and an effort is made in this paper to compare it 

with human data. 

GLAM-PS is also an example of an implemented 

simulation-based grounded cognition theory of the type 

proposed by Barsalou (2008).  A criticism of some 

grounded cognition theories is that they lack symbolic 

computational explorations that implement the somewhat 

abstract ideas they are based on (Dennett & Viger, 1999).  

Whilst GLAM-PS was not designed to be a computational 

implementation of theories of grounded cognition, it never-

the-less behaves in a way that is almost entirely congruent 

with these grounded theories.  As such, GLAM-PS provides 

a much-needed symbolic explication of ideas inherent in 

grounded cognition.  The status of GLAM-PS as a 

simulation-based theory is most evident when it is planning 

ahead.  GLAM-PS does this by simulating the consequences 

of intended actions. 

The paper is structured in the following way:  The first 

principal section outlines the theoretical assumptions that 

GLAM-PS is based upon, highlighting its relationship with 

existing cognitive architectures.  The second principal 

section describes the computational implementation of 

GLAM-PS. Following this, the main section demonstrates 

in detail how GLAM-PS solves a 3-disk TOL problem.  The 

paper ends with a general discussion of key features of 

GLAM-PS and a brief outline of how it is hoped GLAM-PS 

will be developed in the future.  

Principal Assumptions of GLAM-PS Theory 

Whilst GLAM-PS is similar to existing Cognitive 

Architectures, the differences of interest emerge from 

number of simple assumptions.  These assumptions and 

their rationale are outlined below. 

 

Assumption 1: Output modules (buffers in ACT-r) can be 

loaded with a response, without that response being 

necessarily executed 

Assumption 2: The contents of output modules are 

available as an input to other cognitive processes  

 

These two related assumptions partially specify the action 

of the output modules in GLAM-PS.  The impact of these 

assumptions, and indeed GLAM-PS as a whole, is easiest to 

understand by relating it to ACT-r (the architecture it is 

primarily derived from).  The key difference between the 

two architectures is the absence of a goal buffer/module and 

retrieval buffer/module in GLAM-PS.   The former is a 
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direct result of Assumptions 1 and 2 (the absence of the 

retrieval buffer is linked to Assumption 3, see below).  

Crucially, Assumptions 1 and 2 allow the output modules of 

GLAM-PS to control action in a similar way to how ACT-

r’s goal buffer exerts control over action.  Essentially the 

motor, eye movement and speech output modules are used 

to control and structure action in a broadly similar way to 

how amodal goal representations are used in ACT-r.  This is 

best illustrated by seeing how GLAM-PS uses its output 

modules to control action in an example task (see the 

section on modelling problem solving in the TOL).   

Whilst Assumptions 1 and 2 are to the author’s 

knowledge unique to GLAM-PS (at least in the 

computational modelling of problem solving), a version of 

the third assumption is also found in many embodied 

theories of cognition. 

 

Assumption 3:  All Long Term Memories (incl. 

productions) are stored modally. 

 

One of the primary purposes of GLAM-PS is to attempt to 

provide a modal-only account of complex behaviour.  The 

combination of Assumptions 1 to 3 allows for an 

architecture that does not need to assume the existence of 

any amodal representations (cf. Harnad, 1990).   

The GLAM-PS Theory 

GLAM-PS (shown diagrammatically in Figure 1) is a 

draft cognitive architecture based on a production system 

formalism.  As implemented (in Microsoft Visual Studio 

2005) the architecture is also supported by simple modality 

specific semantic networks that help regulate the activation 

levels of elements of working memory (ACT-r adopted a 

similar hybrid architecture, see Anderson, 1993). Below the 

key features of GLAM-PS are discussed in sub-sections 

dedicated to Working Memory, Production Matching and 

Action Execution.  

Working Memory 

The syntax of both the working memory elements and 

working memory (WM) types used by GLAM-PS will be 

familiar to ACT-r users.  However the way GLAM-PS 

handles WM is conceptually different from WM in ACT-r 

and other traditional production system architectures.  In 

particular all WM types and elements are modality and 

input/output specific.  Hence not only is the seen image of a 

square and the spoken  word 'square' coded as separate WM 

elements, but the word 'square' heard is coded separately 

from the word 'square' spoken.  Each WM type and element 

is specific to one module. 

WM types are defined with a type-name, a module 

assignment, and then a list of slot names.  For example the 

WM type representing seen disks in the Tower of London is 

defined below (left, VisIn = Visual Input): 

 

 

 

 

 

 

 

Individual WM elements (WME) are then specified using 

the format outlined in the WM type definition.  The disk 

labelled ‘F’ in the TOL problems used is represented as 

shown above, when it is viewed. 

Each WME has an activation level.  This activation 

decreases over time, but is increased when the WME is used 

(e.g. in production matching) or when activation spreads 

from an associated WME.  The level of activation can also 

be increased or decreased (inhibited) through the action-side 

of productions.  The action-side of productions is also able 

to create new WMEs. 

When a WME is referenced in the action-side of a 

production then other WMEs associated with this WME 

have their activation level increased.  Associations are 

formed when a particular WME (e.g. A) is replaced as the 

most active WME within a module by a second WME (e.g. 

B).  Everytime this occurs one unit of association is added 

between these two elements (e.g A and B become associated 

+1 unit).  This, of course, dictates that inter-WME 

associations will be all within-module.    

Activation is spread from a WME to other associated 

WMEs whenever the source WME’s activation level is 

raised.  A parameter is set to control how much activation is 

spread (e.g. currently .5 in the TOL model). 

Output Threshold 

LTM 

PRODUCTION 

MEMORY 

System State 
Representation 

[Contains most active WM elements 

from each module] 

PRODUCTION 

MEMORY LTM 

PRODUCTION 

MEMORY LTM 

PRODUCTION 

MEMORY 

PRODUCTION 

MEMORY 

PRODUCTION 

MEMORY 

LTM 

LTM 

LTM 

Visual/Spatial Input 
Module 

Tactile Input Module 

Auditory Input Module 
Speech Output 

Module 

Visual Focus Output 
Module 

Manual Output Module 

Figure 1:  Diagrammatic Summary of GLAM-PS (LTM = Long Term Memory, WM = Working Memory). 

Red_disk 

Type: Disk 
Label: F 

Display: Current_state 
Disks_above: 0 

Disks_below: 2 

Real: Yes 

 

Type: Disk, Module: VisIn 

Slots: Label, Display,         
Disks_above, Disks_below, 

Rea, Disks, Parent  
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Production Matching and Conflict Resolution 

The productions used by GLAM-PS are matched against 

the active elements in each module.
1
  As an example, two 

simple productions, initializing TOL problem solving after 

reading the instructions on screen are shown below. The 

first searches for instructions, whilst the second represents 

them in the speech output buffer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Buffer dependant matching of productions was explored 

in EPIC, and is now an established part of the ACT-R 

architecture (post 2000).  However in GLAM-PS although 

production-matching is achieved in a very similar way to 

ACT-r and EPIC, the modules used do not act as buffers.  

Rather any active WME specific to a particular module can 

potentially be matched to a production's conditions. 

  Productions are matched in parallel.  Conflict between 

productions occurs when two or more productions try to act 

on the same module (ACT-r handles conflicts in a similar 

way).  This conflict is resolved by summing activation 

across the WMEs that were matched on the condition side 

of the production.  The production with the greater summed 

activation is selected. 

Productions in GLAM-PS are modal.  Like WMEs, each 

production is tied to, and stored in, one module.  Each 

production can only act on the module it is stored in, but is 

able to take input from all of the modules (including the one 

it is stored in). 

The Action Execution Threshold (AET) 

GLAM-PS as thus far described has no means of acting.  

The output modules hold actions ready to be executed, but 

this execution is not automatic or compulsory.   So when 

will an action held in an output module be used?  GLAM-

PS answers this question by requiring a given action to 

reach a threshold level of excitation before it will be 

executed.  Each output module’s production memory not 

only contains productions that instantiate new actions, but 

also contains productions that review suggested actions and 

either excite or inhibit that action. In addition, productions 

are able to force execution (if the suggested action is judged 

ideal), or remove the suggested action from the module (if it 

                                                           
1 See Figure 1 for module architecture; though note more and/or 

different modules are likely in future versions of GLAM-PS 

is judged to be unwise).  Typically though the threshold will 

play a role and the output module will gather evidence for 

and against a suggested action (in the form of exciting 

productions and inhibiting productions), with the action 

only executed when a sufficient level of excitation is 

reached.   Executed actions are automatically inhibited to 

zero activation. 

Modeling Problem Solving Competence in the 

Tower of London using GLAM-PS 

The Tower of London (TOL) is a variant of the Tower of 

Hanoi (TOH) that has been used in problem solving 

research and clinical settings for nearly 30 years.  It is 

particularly important within Cognitive Neuropsychology, 

where it has been used as a test of frontal function, for 

instance in the diagnosis of Dysexecutive Syndrome.  

Example 3-disk problems are shown in Figures 2 and 3.  

Like the TOH, the goal is to transform the start state into the 

goal state, only one disk may be moved at a time, and there 

are three pegs.  Unlike the TOH there are no size 

restrictions, so any disk may be stacked on top of any other 

disk.  A key requirement of the TOL is that the shortest 

route (in terms of number of moves) is taken to the goal 

state. In essence, it is a planning task, with marked 

similarity to the classic blocks world task as well as to the 

TOH. 

 
 

 

 

The best way of highlighting the impact of the unusual 

elements of GLAM-PS is to step through an example of 

GLAM-PS’s behaviour on TOL problems.  In the following 

section the key features of GLAM-PS (the action-based 

control mechanism and the modal long term memory) are 

shown in action to help facilitate understanding of how 

these features work in practice.  

Problem Solving the TOL without Planning 

In the first (and principal) example GLAM-PS is solving the 

problem shown in Figure 2.  The first thing GLAM-PS 

needs to do is initalise the problem solving process.  This is 

achieved via Production 3 (P3, see top of next page). 

A verbalised instruction to solve the problem, held in the 

speech output module, is the catalyst of the problem solving 

process. The production then loads the manual output 

module with an underspecified disk move action (neither the 

disk to be moved or the location it is to be moved is 

Disk F 

Disk C 

Disk X 

Disk F 

Disk C Disk X 

Peg 1 Peg 2 Peg 3 Peg 1 Peg 2 Peg 3 

Goal State Current State 

Figure 2: First three-disk Tower of London (TOL) 

problem (correct solution: F to 3, C to 2, F to 2, X to 3) 

Prod recode_instructions [P2] 

  VisIn =instructions 
Type: written_verb_noun 

Verb: =verb1 
Noun: =noun1 

  -speech =not_already_recoded 

Type: spoken_verb_noun 
Verb: =verb1 

Noun: =noun1 
>> 

 +speech 

Type: spoken_verb_noun 
Verb: =verb1 

Noun: =noun1 
Activate: +1 

 

Prod mve_vis_focus_to_instr [P1] 

 VisIn =problem 

Type: TOL_problem 
>> 

 +VisFoc 
Type: Search_for_target 

Target_type: written_verb_noun 

Search_Area: all_screen 
Activate: +20 
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specified, all GLAM-PS knows is that it needs to move a 

disk). 

 

 

 

 

 

 

 

 

 

 

 

 

 

The next actions taken by GLAM-PS are to look for a 

disk.  The production (P4, not shown) matches all three 

disks in the problem, triggering a conflict resolution process 

that favours the most activated disk. The problem (shown in 

Figure 2) is a relatively easy problem for human problem 

solvers, the majority of whom select the optimal move 

choices (61 of 87 in Miles, 1998).  Though in a significant 

minority of cases a second pattern of moves is followed (21 

of 87 in Miles, 1998; this pattern in Figure 2 would start F 

to 2, C to 2, X to 3). Both of these patterns stem from the 

same set of productions in GLAM-PS, with the different 

patterns a result of a different disk being the focus of visual 

attention initially.  

The next production to execute, specifies which disk is to 

be moved (P5, see above). Once the disk to be moved has 

been specified, the next production looks at the disks 

location in the goal display (P6, see below) 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

If the disk is on different pegs in the current and goal 

displays, then the location of the intended move is specified 

in P7 (see above). 

At this point P8 and possibly P9 will typically be 

instantiated (see below).  P8 looks at the location of the 

intended move and then P9 projects the impact on the 

current state of the intended move (in a way very similar to 

simulation models).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P10 (see below) then compares the simulated state with 

the goal state.  If there is a mismatch in the number of disks 

beneath the two disks then the intended move is inhibited.  

Note the production does not check the identity of the disks 

beneath the simulated and goal disks.
2
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A similar production (P11, not shown) checks for a match 

and then returns visual focus to the actual disk in the current 

state.  There is also a production (P12 not shown) that 

returns visual focus to the disk in the current state without 

checking for a match, indeed without the need for P8 to P11 

to be invoked.  This helps simulate common beginner errors 

in the TOL where a moved disk is placed on top of a disk 

occupying the moved disks goal location. 

Once the ‘real’ disk is back in visual focus with the move 

fully specified, the move is excited by repeated firings of 

P13 (see above), but only if the disk is free to move. 

                                                           
2 This helps simulate an error common in human participants, 

that occurs when a disk is moved to a target location, but the disks 

below it are in the wrong order, and subsequently the participant 

cannot understand why the problem has not be ‘solved’ (as 

evidenced by an extreme next move latency). 

Prod start_to_move_disks  [P3] 
  VisIn =problem 

Type: TOL_problem 

  Speech =goal 
Type: spoken_verb_noun 

Verb: Complete 
Noun: Problem 

  -manual =no_move_in_progress 

Type: Disk_move 
>> 

  +Manual 
Type: Disk_move 

Activate: +1 

 

Prod specify_disk_for_move  [P5] 
  VisIn =disk_focus 

Type: disk 

Label: =disk_id 
Display: Current_state 

Peg: =peg_id 
  manual =move1 

Type: Disk_move 

Disk: [EMPTY] 
>> 

  manual =move1 
Disk: =disk_id 

From_peg: =peg_id 

 

Prod find_disk_in_goal_display [P6] 
  VisIn =disk_focus 

Type: disk 
Label: =disk_id 

Display: Current_state 

  manual =move1 
Type: disk_move 

Disk: =disk_id 
>> 

  +VisFoc 

Type: Search_for_match 
Target: disk 

Label: =disk_id 
Search_area: goal_state 

Activate: +20 

Prod disk_requires_move [P7] 
  VisIn =disk_focus 

Type: disk 
Label: =disk_id 

Display: Goal_state 

Peg: =peg_id 
  manual =move1 

Type: disk_move 
Disk: =disk_id 

From_Peg: NOT[=peg_id] 

>> 
  manual =move1 

To_peg: =peg_id 
Activation: +5 

 

Prod find_move_loc_in_current [P8] 

  VisIn =disk_focus 
Type: disk 

Label: =disk_id 

Display: goal_state 
  manual =move1 

Type: disk_move 
Disk: =disk_id 

To_peg: =peg_id 

Not_to: [EMPTY] 
>> 

  +VisFoc 
Type: Search_for_match 

Target: peg 

Label: =peg_id 
Search_area: current_state 

Activate: +20 

 

Prod project_move [P9] 

  VisIn =target_peg 
Type: Peg 

Display: Current_state 

Label: =peg_id 
Disks_on_peg: =X 

  manual =move1 
Type: disk_move 

Disk: =disk_id 

To_peg: =peg_id 
Not_to: [EMPTY] 

>> 
  +VisIn 

Type: disk 

Label: =disk_id 
Display: Current_state 

Peg: =peg_id 
Disks_below: =X 

Disks_above: 0 

Real: No 

 

Prod project_goal_mismatch [P10] 

  VisIn =disk_goal 
Type: Disk 

Disk: =disk_id 

Display: Goal_state 
Peg: =peg1 

Disks_below: =X 
  VisIn  =disk_projected 

Type: Disk 

Disk: =disk_id 
Display: Current_state 

Peg: =peg1 
Disks_below: NOT[=X] 

  Manual =move1 

Type: disk_move 
To_peg: =peg1 

>> 
  Manual =move1 

Activation: -1 

 

Prod execute_move  [P13] 

  VisIn =disk_goal 
Type: Disk 

Disk: =disk_id 

Display: Current_state 
Peg: =peg1 

Disks_above: 0 
Parent: [EMPTY] 

  Manual =move1 

Type: disk_move 
Disk: =disk_id 

From_peg: =peg1 
To_peg: NOT[EMPTY] 

>> 

  Manual =move1 
Activation: +1 
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If the disk is not free to move then P14 will focus visual 

attention on the blocking disk or disks
3
 and then P15 will 

create a new action moving the blocking disk or disks to a 

location that is not the goal location of the original disk (see 

below).   In this manner GLAM-PS is effectively creating a 

subgoal to remove the blocking disks in order to allow the 

originally intended move.  Note that association will be 

established between the original intended move and the new 

move representation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

Critically the representation of the move in the manual 

output module is different from the representation of the 

originally intended move.  The fact that the move is being 

used to remove a block allows that move to be executed 

without being assessed by P8 to P11 (which only assess 

moves designed to get disks into their goal locations).  

Further productions (P16 and P17, not shown) move visual 

focus to the peg the block is to be moved to, and then add 

the peg to the To_peg slot of the move.  Once this is done 

P12 returns visual focus to the block and then P13 will 

execute the removal of the blocks. 

When this occurs activation passes from the successfully 

executed representation to other associated representations 

in the same buffer.  In this case the activation will pass to 

the move representation that was present when the block 

removal was subgoaled.  In this way GLAM-PS implements 

an implicit form of goal stack, with executed actions 

triggering other actions that were active when they were 

first represented. 

 
 

                                                           
3 Note GLAM-PS uses the disk WM type to represent adjacent 

disks as perceptual groups, as well as representing individual disks.  

This facilitates the modelling of perceptual grouping in the TOL. 

Problem Solving with Planning 

The 3-disk problem shown in Figure 3 cannot be 

successfully solved by these productions alone.  P18 (not 

shown) can be used to generate random moves, 

implementing a generate-and-test style strategy. However, 

solving the problem in Figure 2 requires GLAM-PS to use 

limited planning (or be lucky).  Its planning capabilities 

emerge from the ability to simulate a short sequence of 

actions and the related outcomes.
4
  Previously we saw how 

P9 projects the impact of a move.  P19 maintains the 

activation of a projected disk position and inhibits the disk’s 

actual position, instead of trying to execute a possible move 

(it competes with P13). This allows P20 to initiate planning  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The effect of P19 is to create a simulated problem state in 

the visual input module. The existing productions in the 

model are then able to 'act' on that simulated state.  The 

majority of the productions in the model will process 

simulated disk positions as well as ‘real’ disk positions.  

These productions may in turn create further simulated 

states.  As the simulated state becomes increasingly 

different from the actual state the ability of P19 to maintain 

the simulated state will decrease.  In the TOL if GLAM-PS 

is limited to maintaining a maximum of three simulated disk 

positions then a decent match to practiced human problem 

solving is achieved (preliminary runs of GLAM-PS on more 

complex TOL problems suggests that 4 or more simulated 

disk positions allows GLAM-PS to solve some 5-disk 

problems that humans often cannot solve unaided). 

The handling of plan execution in GLAM-PS is currently 

rather inelegant. P21 (not shown) matches moves with 

existing parent moves (found through the parent slot) that 

have reached the AET (due to matching P13), it reduces the 

moves activation (-5), and then forces execution (+20) of 

any move that does not have an existing parent (this should 

almost always be the first move of the plan assuming it is 

active enough to match P21).  Then, spreading activation 

from this initial move should be enough to trigger the next 

move in the plan, and so on.  A production (P22, not shown) 

                                                           
4 GLAM-PS planning is conceptually similar to the interacting 

inverse and forward models used by Moller & Schenck (2008) for 

planning robot movement 

Disk F 

Disk C 

Disk X 

Disk F 

Disk C Disk X 

Peg 1 Peg 2 Peg 3 Peg 1 Peg 2 Peg 3 

Goal State Current 

State 

Prod vis_focus_to_block [P14] 
  VisIn =disk_goal 

Type: Disk 
Disk: =disk_id 

Display: Current_state 

Disks_above: NOT[0] 
Peg: =peg1 

  Manual =move1 
Type: disk_move 

Disk: =disk_id 

From_peg: =peg1 
To_peg: NOT[EMPTY] 

>> 
  +VisFoc 

Type: Objects_above 

Target: disk 
Search_area: =disk_goal 

Activate: +20 

 

Prod subgoal_remove_block [P15] 
  VisIn =block 

Type: Disk 
Disk: =disk_id 

Display: Current_state 

Disks_above: 0 
Peg: =peg1 

  Manual =move1 
Type: disk_move 

Disk: NOT[=disk_id] 

From_peg: =peg1 
To_peg: =peg2 

>> 
  +manual 

Type: disk_move 

Disk: =disk_id 
From_peg: =peg1 

Not_to: =peg2 

 

Prod maintain_proj_disk [P19] 

  VisIn =disk_goal 
Type: Disk 

Disk: =disk_id 
Display: Current_state 

Peg: =peg1 

Disks_above: 0 
Real: Yes 

  VisIn =projected_disk 
Type: Disk 

Disk: =disk_id 

Display: Current_state 
Peg: =peg2 

>> 
  VisIn =projected_disk 

Activation: +1 

  VisIn =disk_goal 
Activation: -1 

 

Prod init_planned_move [P20] 

  manual =parent_move 
Type: disk_move 

Disk: =disk_id  
From_peg: NOT[EMPTY] 

To_peg: =peg1 

  VisIn =projected_disk 
Type: Disk 

Disk: =disk_id 
Display: Current_state 

Peg: =peg1 

Real: No 
>> 

  +manual 
Type: disk_move 

Parent: =parent_move 

Activate: +1 

 

Figure 3: Second three-disk Tower of London (TOL) 

problem (correct solution: F to 3, C to 2, F to 2, X to 3, F to 3 

3) 
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is used to restart a plan when the activation of the next move 

is not greater than the AET (it looks for moves with no 

existing parents and increases their activation).
5
 

GLAM-PS Vs Human Behaviour on the TOL 

The emphasis in the current paper is on providing a 

detailed account of how GLAM-PS solves 3-disk TOL 

problems, but it is important to note that this model has been 

compared to human data taken from Miles (1998).  The 

human data was taken from 231 problem solving episodes 

on five different 3-disk problems (involving 99 different 

participants).  GLAM-PS was able to provide a good match 

for this data.  Overall GLAM-PS was able to predict 209 of 

231 observed move patterns (90.5%) without the need for 

assuming random move choices (i.e. using P18).  Fourteen 

of the 22 unpredicted cases were on the problem shown in 

Figure 3 (versus 75 that were predicted on this problem).  

This was the hardest of the five problems used, and GLAM-

PS is much more inclined to resort to random moves (P18) 

on this problem than on any of the other four problems, 

reflecting the human data. 

General Disucussion 

In summary, GLAM-PS provides an insightful account 

into problem solving in the TOL, using a draft cognitive 

architecture based on modal-only represenatation. Space 

constraints do not allow a full discussion of GLAM-PS and 

its relationship with existing theories of cognition, however 

it is important to highlight three key features within GLAM-

PS that suggest interesting future directions. 

The Action Execution Threshold (AET) in GLAM-PS 

allows actions to be represented and held, without 

necessarily being executed. They can then be used to control 

action (in a similar way to goal representations in other 

architectures).  There are several questions about the AET 

that are only tentatively answered in GLAM-PS: Are there 

different thresholds for different modules? Are there 

individual differences in AET?  What factors influence the 

AET?  However, the potential usefulness of the AET 

construct is suggested by recent work on modelling 

playfulness in young children by Howard & Miles (2008).  

They modelled a child in a playful state as having a reduced 

AET (Vs the same child when not playful), thus explaining 

the increased behavioural fluency observed in play.  

The System State Representation (SSR) used by GLAM-

PS to match productions has the potential to be used to 

model consciousness.  Intriguingly, the SSR proposal is 

congruent with the idea that executive function emerges 

from consciousness.  Each module within GLAM-PS 

functions independently of one another, except for the 

influence of the SSR, which in essence binds the 

independent sub-systems into a cohesive whole. This idea is 

explored in more detail by Miles (2009). 

                                                           
5 The +5 activation in the action-side of P7 ensures that plans 

that place disks in their goal positions will be much preferred to 

plans consisting of guessed moves (i.e. using P16). 

Finally, it is also important to note the important role 

played by the speech-output buffer in GLAM-PS.  There is 

much evidence to show that inner speech / articulation plays 

a role in goal-based behaviour (e.g. Saeki, 2007).  In 

GLAM-PS the speech output module provides a necessary 

way of controlling complex sequences of action. In addition, 

it would also appear to have a pivotal role to play in any 

GLAM-PS based account of semantic memory.   

The next stage for GLAM-PS is the modelling of human 

performance on 4-disk and 5-disk TOL problems.  Although 

detailed matches to human behaviour haven’t been 

established yet on these more complex problems, early 

model runs indicate that the 3-disk model generalizes to 

these more difficult problems.  It is anticipated that GLAM-

PS will eventually be used to simulate performance as well 

as competence in the TOL. There are also plans to extend 

GLAM-PS to Tower of Hanoi problem solving, Episodic 

Memory Recall, and Serial Recall. 

Presently GLAM-PS is a work in progress.  It has only 

been used as a computational model in one domain, the 

conflict resolution mechanism is underspecified, it does not 

currently have a learning mechanism (though one has been 

outlined on paper), and it is not yet suitable for comparison 

to detailed performance data (e.g. RTs).  It is hoped these, 

and other, shortcomings will be addressed in future. 
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