Representing Goals Modally: A Production System Model of Problem Solving in the
Tower of London

Gareth E. Miles (gmiles@glam.ac.uk)
University of Glamorgan
Trefforest, CF37 1DL, UK

Abstract

GLAM-PS (Glamorgan Problem Solver) is a production
system model of problem solving in the Tower of London
(TOL) puzzle. It is introduced as a draft cognitive architecture
that is similar to John Anderson’s (1998, 2004) ACT-R, but
represents system goals, long term memory and production
memory modally, rather than amodally. The current paper
demonstrates how GLAM-PS models problem solving on 3-
disk TOL problems (a comparison with human data is also
made). GLAM-PS uses representations of intended actions
to control behaviour and planning utilizes the simulation of
future problem states.

Keywords: Grounded Cognition;
Problem Solving; Goal Handling

Production Systems;

Introduction

Our ability to engage in goal-directed action is a defining
characteristic of human behaviour. Different cognitive
architectures have taken various approaches to modelling
goal driven behaviour. Early versions of Anderson’s ACT
included a goal stack as part of the architecture (e.g.
Anderson, 1993), more recent versions (Anderson et al.,
2004) have modeled goals as alike to other memories in
terms of representation and storage, but distinct in the way
they are utilised (through the action of an architecturally
specified goal buffer). Other prominent architectures have
placed significant emphasis on the role of amodal goal
representations (e.g. EPIC, Meyer & Kieras, 1997).

The current paper presents GLAM-PS a draft cognitive
architecture which has been computationally implemented
in the domain of knowledge-lean problem solving
(specifically the Tower of London problem, a classic test of
executive function commonly used in the diagnosis of
Dyexecutive Syndrome). GLAM-PS is a production system
architecture that represents goals modally, indeed the only
cross-modal representation used is a ‘system state’
representation, containing details of active modal
representations in each of the architectures modules.

A key feature of GLAM-PS is that it is derived heavily
from current production system architectures (primarily
ACT-R and EPIC). In this respect it allows for an
interesting comparison between current modal-amodal
architectures and a draft modal-only architecture. In the
current paper these differences are examined, in particular
the paper explores how executive control is handled by
GLAM-PS in a classic problem solving domain. GLAM-PS
can be interpreted as a simplification of existing
architectures and broadly speaking is functionally similar to
ACT-R / EPIC. Given this, a key question is whether

GLAM-PS is a competent model of complex human
behaviour and an effort is made in this paper to compare it
with human data.

GLAM-PS is also an example of an implemented
simulation-based grounded cognition theory of the type
proposed by Barsalou (2008). A criticism of some
grounded cognition theories is that they lack symbolic
computational explorations that implement the somewhat
abstract ideas they are based on (Dennett & Viger, 1999).
Whilst GLAM-PS was not designed to be a computational
implementation of theories of grounded cognition, it never-
the-less behaves in a way that is almost entirely congruent
with these grounded theories. As such, GLAM-PS provides
a much-needed symbolic explication of ideas inherent in
grounded cognition. The status of GLAM-PS as a
simulation-based theory is most evident when it is planning
ahead. GLAM-PS does this by simulating the consequences
of intended actions.

The paper is structured in the following way: The first
principal section outlines the theoretical assumptions that
GLAM-PS is based upon, highlighting its relationship with
existing cognitive architectures. The second principal
section describes the computational implementation of
GLAM-PS. Following this, the main section demonstrates
in detail how GLAM-PS solves a 3-disk TOL problem. The
paper ends with a general discussion of key features of
GLAM-PS and a brief outline of how it is hoped GLAM-PS
will be developed in the future.

Principal Assumptions of GLAM-PS Theory

Whilst GLAM-PS is similar to existing Cognitive
Architectures, the differences of interest emerge from
number of simple assumptions. These assumptions and
their rationale are outlined below.

Assumption 1: Output modules (buffers in ACT-r) can be
loaded with a response, without that response being
necessarily executed

Assumption 2: The contents of output modules are
available as an input to other cognitive processes

These two related assumptions partially specify the action
of the output modules in GLAM-PS. The impact of these
assumptions, and indeed GLAM-PS as a whole, is easiest to
understand by relating it to ACT-r (the architecture it is
primarily derived from). The key difference between the
two architectures is the absence of a goal buffer/module and
retrieval buffer/module in GLAM-PS.  The former is a

1852



Visual/Spatial Input

——»| Module PRODUCTION
& MEMORY

Output Threshold

Manual Output Module

PRODUCTION
MEMORY LTM

7

Tactile Input Module
~

PRODUCTION |
LT™ MEMORY

\

System State
Representation

[Contains most active WM elements
from each module]

Visual Focus Output

The \fVorId

l

Auditory Input Module

PRODUCTION
LT™M MEMORY

The Physical Body

<€—> | PrODUCTION Module
MEMORY LTM

\ Speech Output
PRODUCTION Module

MEMORY LTM

Figure 1: Diagrammatic Summary of GLAM-PS (LTM = Long Term Memory, WM = Working Memory).

direct result of Assumptions 1 and 2 (the absence of the
retrieval buffer is linked to Assumption 3, see below).
Crucially, Assumptions 1 and 2 allow the output modules of
GLAM-PS to control action in a similar way to how ACT-
r’s goal buffer exerts control over action. Essentially the
motor, eye movement and speech output modules are used
to control and structure action in a broadly similar way to
how amodal goal representations are used in ACT-r. This is
best illustrated by seeing how GLAM-PS uses its output
modules to control action in an example task (see the
section on modelling problem solving in the TOL).

Whilst Assumptions 1 and 2 are to the author’s
knowledge wunique to GLAM-PS (at least in the
computational modelling of problem solving), a version of
the third assumption is also found in many embodied
theories of cognition.

Assumption 3: All Long Term Memories (incl.
productions) are stored modally.

One of the primary purposes of GLAM-PS is to attempt to
provide a modal-only account of complex behaviour. The
combination of Assumptions 1 to 3 allows for an
architecture that does not need to assume the existence of
any amodal representations (cf. Harnad, 1990).

The GLAM-PS Theory

GLAM-PS (shown diagrammatically in Figure 1) is a
draft cognitive architecture based on a production system
formalism. As implemented (in Microsoft Visual Studio
2005) the architecture is also supported by simple modality
specific semantic networks that help regulate the activation
levels of elements of working memory (ACT-r adopted a
similar hybrid architecture, see Anderson, 1993). Below the
key features of GLAM-PS are discussed in sub-sections
dedicated to Working Memory, Production Matching and
Action Execution.

Working Memory

The syntax of both the working memory elements and
working memory (WM) types used by GLAM-PS will be
familiar to ACT-r users. However the way GLAM-PS

handles WM is conceptually different from WM in ACT-r
and other traditional production system architectures. In
particular all WM types and elements are modality and
input/output specific. Hence not only is the seen image of a
square and the spoken word 'square' coded as separate WM
elements, but the word 'square' heard is coded separately
from the word 'square' spoken. Each WM type and element
is specific to one module.

WM types are defined with a type-name, a module
assignment, and then a list of slot names. For example the
WM type representing seen disks in the Tower of London is
defined below (left, VisIn = Visual Input):

Type: Disk, Module: Visin Red disk
Slots: Label, Display, Type: Disk
Disks_above, Disks_below, Label: F

Rea, Disks, Parent Display: Current_state

Disks_above: 0
Disks_below: 2
Real: Yes

Individual WM elements (WME) are then specified using
the format outlined in the WM type definition. The disk
labelled ‘F’ in the TOL problems used is represented as
shown above, when it is viewed.

Each WME has an activation level. This activation
decreases over time, but is increased when the WME is used
(e.g. in production matching) or when activation spreads
from an associated WME. The level of activation can also
be increased or decreased (inhibited) through the action-side
of productions. The action-side of productions is also able
to create new WMEs.

When a WME is referenced in the action-side of a
production then other WMEs associated with this WME
have their activation level increased. Associations are
formed when a particular WME (e.g. A) is replaced as the
most active WME within a module by a second WME (e.g.
B). Everytime this occurs one unit of association is added
between these two elements (e.g A and B become associated
+1 unit).  This, of course, dictates that inter-WME
associations will be all within-module.

Activation is spread from a WME to other associated
WMEs whenever the source WME’s activation level is
raised. A parameter is set to control how much activation is
spread (e.g. currently .5 in the TOL model).

1853



Production Matching and Conflict Resolution

The productions used by GLAM-PS are matched against
the active elements in each module.' As an example, two
simple productions, initializing TOL problem solving after
reading the instructions on screen are shown below. The
first searches for instructions, whilst the second represents
them in the speech output buffer.

Prod mve_vis_focus_to_instr [P1]
VisIn =problem

Prod recode_instructions [P2]
VisIn =instructions

Type: TOL_problem Type: written_verb_noun
>> Verb: =verbl
+VisFoc Noun: =nounl

Type: Search_for target -speech =not_already_recoded
Target type: written_verb_noun Type: spoken_verb_noun
Search_Area: all screen Verb: =verbl
Activate: +20 Noun: =nounl
>>
+speech
Type: spoken_verb_noun
Verb: =verbl
Noun: =nounl
Activate: +1

Buffer dependant matching of productions was explored
in EPIC, and is now an established part of the ACT-R
architecture (post 2000). However in GLAM-PS although
production-matching is achieved in a very similar way to
ACT-r and EPIC, the modules used do not act as buffers.
Rather any active WME specific to a particular module can
potentially be matched to a production's conditions.

Productions are matched in parallel. Conflict between
productions occurs when two or more productions try to act
on the same module (ACT-r handles conflicts in a similar
way). This conflict is resolved by summing activation
across the WMESs that were matched on the condition side
of the production. The production with the greater summed
activation is selected.

Productions in GLAM-PS are modal. Like WMEs, each
production is tied to, and stored in, one module. Each
production can only act on the module it is stored in, but is
able to take input from all of the modules (including the one
it is stored in).

The Action Execution Threshold (AET)

GLAM-PS as thus far described has no means of acting.
The output modules hold actions ready to be executed, but
this execution is not automatic or compulsory. So when
will an action held in an output module be used? GLAM-
PS answers this question by requiring a given action to
reach a threshold level of excitation before it will be
executed. Each output module’s production memory not
only contains productions that instantiate new actions, but
also contains productions that review suggested actions and
either excite or inhibit that action. In addition, productions
are able to force execution (if the suggested action is judged
ideal), or remove the suggested action from the module (if it

! See Figure 1 for module architecture; though note more and/or
different modules are likely in future versions of GLAM-PS

is judged to be unwise). Typically though the threshold will
play a role and the output module will gather evidence for
and against a suggested action (in the form of exciting
productions and inhibiting productions), with the action
only executed when a sufficient level of excitation is
reached. Executed actions are automatically inhibited to
zero activation.

Modeling Problem Solving Competence in the
Tower of London using GLAM-PS

The Tower of London (TOL) is a variant of the Tower of
Hanoi (TOH) that has been used in problem solving
research and clinical settings for nearly 30 years. It is
particularly important within Cognitive Neuropsychology,
where it has been used as a test of frontal function, for
instance in the diagnosis of Dysexecutive Syndrome.
Example 3-disk problems are shown in Figures 2 and 3.
Like the TOH, the goal is to transform the start state into the
goal state, only one disk may be moved at a time, and there
are three pegs. Unlike the TOH there are no size
restrictions, so any disk may be stacked on top of any other
disk. A key requirement of the TOL is that the shortest
route (in terms of number of moves) is taken to the goal
state. In essence, it is a planning task, with marked
similarity to the classic blocks world task as well as to the
TOH.

Current State Goal State
—>
Peg 1 Peg 2 Peg 3 Peg 1 Peg 2 Peg 3

Figure 2: First three-disk Tower of London (TOL)
problem (correct solution: F to 3, C to 2, F to 2, X to 3)

The best way of highlighting the impact of the unusual
elements of GLAM-PS is to step through an example of
GLAM-PS’s behaviour on TOL problems. In the following
section the key features of GLAM-PS (the action-based
control mechanism and the modal long term memory) are
shown in action to help facilitate understanding of how
these features work in practice.

Problem Solving the TOL without Planning

In the first (and principal) example GLAM-PS is solving the
problem shown in Figure 2. The first thing GLAM-PS
needs to do is initalise the problem solving process. This is
achieved via Production 3 (P3, see top of next page).

A verbalised instruction to solve the problem, held in the
speech output module, is the catalyst of the problem solving
process. The production then loads the manual output
module with an underspecified disk move action (neither the
disk to be moved or the location it is to be moved is

1854



specified, all GLAM-PS knows is that it needs to move a
disk).
Prod start_to_move_disks [P3]
Visln =problem

Prod specify_disk_for move [P5]
Visin =disk_focus

Type: TOL problem Type: disk

Speech =goal Label: =disk_id
Type: spoken_verb_noun Display: Current_state
Verb: Complete Peg: =peg _id

manual =movel
Type: Disk_move
Disk: [EMPTY]

Noun: Problem
-manual =no_move_in_progress
Type: Disk_move

>> >>
+Manual manual =movel
Type: Disk_move Disk: =disk_id
Activate: +1 From_peg: =peg id

The next actions taken by GLAM-PS are to look for a
disk. The production (P4, not shown) matches all three
disks in the problem, triggering a conflict resolution process
that favours the most activated disk. The problem (shown in
Figure 2) is a relatively easy problem for human problem
solvers, the majority of whom select the optimal move
choices (61 of 87 in Miles, 1998). Though in a significant
minority of cases a second pattern of moves is followed (21
of 87 in Miles, 1998; this pattern in Figure 2 would start F
to 2, C to 2, X to 3). Both of these patterns stem from the
same set of productions in GLAM-PS, with the different
patterns a result of a different disk being the focus of visual
attention initially.

The next production to execute, specifies which disk is to
be moved (P5, see above). Once the disk to be moved has
been specified, the next production looks at the disks
location in the goal display (P6, see below)

Prod find_disk_in_goal display [P6]

Visln =disk_focus
Type: disk
Label: =disk_id
Display: Current_state
manual =movel
Type: disk_move
Disk: =disk_id
>>
+VisFoc
Type: Search_for _match
Target: disk
Label: =disk_id
Search_area: goal state
Activate: +20

Prod disk_requires_move [P7]

VisIn =disk_focus
Type: disk
Label: =disk_id
Display: Goal_state
Peg: =peg id
manual =movel
Type: disk_move
Disk: =disk_id
From_Peg: NOT[=peg id]

>>

manual =movel

To_peg: =peg id
Activation: +5

If the disk is on different pegs in the current and goal
displays, then the location of the intended move is specified

in P7 (see above).

At this point P8 and possibly P9 will typically be

instantiated (see below).

P8 looks at the location of the

intended move and then P9 projects the impact on the
current state of the intended move (in a way very similar to

simulation models).

Prod find_move_loc_in_current [PS]  Prod project_move [P9]
Visln =disk_focus Visln =target _peg

Type: disk Type: Peg
Label: =disk_id Display: Current_state
Display: goal state Label: =peg_id

manual =movel
Type: disk_move
Disk: =disk_id
To _peg: =peg id
Not_to: [EMPTY]

Disks_on_peg: =X
manual =movel
Type: disk_move
Disk: =disk_id
To_peg: =peg_id

>> Not_to: [EMPTY]
+VisFoc >>
Type: Search_for match +Visln
Target: peg Type: disk
Label: =peg id Label: =disk_id

Display: Current_state
Peg: =peg id
Disks_below: =X
Disks_above: 0

Real: No

Search_area: current state
Activate: +20

P10 (see below) then compares the simulated state with
the goal state. If there is a mismatch in the number of disks
beneath the two disks then the intended move is inhibited.
Note the production does not check the identity of the disks
beneath the simulated and goal disks.

Prod execute_move [P13]
Visin =disk_goal

Prod project_goal _mismatch [P10]
Visln =disk_goal

Type: Disk Type: Disk

Disk: =disk_id Disk: =disk_id
Display: Goal_state Display: Current_state
Peg: =pegl Peg: =pegl

Disks_below: =X
Visln =disk_projected

Disks_above: 0
Parent: [EMPTY]

Type: Disk Manual =movel
Disk: =disk_id Type: disk_move
Display: Current_state Disk: =disk_id
Peg: =pegl From_peg: =pegl
Disks_below: NOT[=X] To _peg: NOT[EMPTY]
Manual =movel >>

Type: disk_move Manual =movel
To_peg: =pegl Activation: +1

>>

Manual =movel
Activation. -1

A similar production (P11, not shown) checks for a match
and then returns visual focus to the actual disk in the current
state. There is also a production (P12 not shown) that
returns visual focus to the disk in the current state without
checking for a match, indeed without the need for P8 to P11
to be invoked. This helps simulate common beginner errors
in the TOL where a moved disk is placed on top of a disk
occupying the moved disks goal location.

Once the ‘real’ disk is back in visual focus with the move
fully specified, the move is excited by repeated firings of
P13 (see above), but only if the disk is free to move.

2 This helps simulate an error common in human participants,
that occurs when a disk is moved to a target location, but the disks
below it are in the wrong order, and subsequently the participant
cannot understand why the problem has not be ‘solved’ (as
evidenced by an extreme next move latency).

1855



If the disk is not free to move then P14 will focus visual
attention on the blocking disk or disks® and then P15 will
create a new action moving the blocking disk or disks to a
location that is not the goal location of the original disk (see
below). In this manner GLAM-PS is effectively creating a
subgoal to remove the blocking disks in order to allow the
originally intended move. Note that association will be
established between the original intended move and the new
move representation.

Prod vis_focus_to_block [P14] Prod subgoal _remove_block [P15]

Visln =disk_goal VisIn =block
Type: Disk Type: Disk
Disk: =disk_id Disk: =disk_id

Display: Current_state
Disks_above: NOT[0]
Peg: =pegl

Manual =movel
Type: disk_move
Disk: =disk_id
From_peg: =pegl

Display: Current_state
Disks_above: 0
Peg: =pegl

Manual =movel
Type: disk_move
Disk: NOT[=disk_id]
From_peg: =pegl

To_peg: NOT[EMPTY] To_peg: =peg?2
>> >>
+VisFoc +manual
Type: Objects_above Type: disk_move
Target: disk Disk: =disk_id
Search_area: =disk_goal From_peg: =pegl
Activate: +20 Not_to: =peg2

Critically the representation of the move in the manual
output module is different from the representation of the
originally intended move. The fact that the move is being
used to remove a block allows that move to be executed
without being assessed by P8 to P11 (which only assess
moves designed to get disks into their goal locations).
Further productions (P16 and P17, not shown) move visual
focus to the peg the block is to be moved to, and then add
the peg to the To_peg slot of the move. Once this is done
P12 returns visual focus to the block and then P13 will
execute the removal of the blocks.

When this occurs activation passes from the successfully
executed representation to other associated representations
in the same buffer. In this case the activation will pass to
the move representation that was present when the block
removal was subgoaled. In this way GLAM-PS implements
an implicit form of goal stack, with executed actions
triggering other actions that were active when they were
first represented.

Current Goal State

Peg 2

Peg 1 Peg 2 Peg 3 Peg 1 Peg 3

Figure 3: Second three-disk Tower of London (TOL)
problem (correct solution: Fto 3,Cto2,Fto2, Xto3,Fto3

3 Note GLAM-PS uses the disk WM type to represent adjacent
disks as perceptual groups, as well as representing individual disks.
This facilitates the modelling of perceptual grouping in the TOL.

Problem Solving with Planning

The 3-disk problem shown in Figure 3 cannot be
successfully solved by these productions alone. P18 (not
shown) can be used to generate random moves,
implementing a generate-and-test style strategy. However,
solving the problem in Figure 2 requires GLAM-PS to use
limited planning (or be lucky). Its planning capabilities
emerge from the ability to simulate a short sequence of
actions and the related outcomes.” Previously we saw how
P9 projects the impact of a move. P19 maintains the
activation of a projected disk position and inhibits the disk’s
actual position, instead of trying to execute a possible move
(it competes with P13). This allows P20 to initiate planning
Prod maintain_proj disk [P19]
Visln =disk_goal

Prod init_planned move [P20]
manual =parent_move

Type: Disk Type: disk_move
Disk: =disk_id Disk: =disk_id
Display: Current_state From_peg: NOT[EMPTY]
Peg: =pegl To_peg: =pegl
Disks_above: 0 Visln =projected disk
Real: Yes Type: Disk

VisIn =projected_disk Disk: =disk_id
Type: Disk Display: Current_state
Disk: =disk_id Peg: =pegl
Display: Current_state Real: No
Peg: =peg2 >>

>> +manual

Visln =projected _disk
Activation: +1

Visln =disk_goal
Activation: -1

Type: disk_move
Parent: =parent_move
Activate: +1

The effect of P19 is to create a simulated problem state in
the visual input module. The existing productions in the
model are then able to 'act' on that simulated state. The
majority of the productions in the model will process
simulated disk positions as well as ‘real’ disk positions.
These productions may in turn create further simulated
states.  As the simulated state becomes increasingly
different from the actual state the ability of P19 to maintain
the simulated state will decrease. In the TOL if GLAM-PS
is limited to maintaining a maximum of three simulated disk
positions then a decent match to practiced human problem
solving is achieved (preliminary runs of GLAM-PS on more
complex TOL problems suggests that 4 or more simulated
disk positions allows GLAM-PS to solve some 5-disk
problems that humans often cannot solve unaided).

The handling of plan execution in GLAM-PS is currently
rather inelegant. P21 (not shown) matches moves with
existing parent moves (found through the parent slot) that
have reached the AET (due to matching P13), it reduces the
moves activation (-5), and then forces execution (+20) of
any move that does not have an existing parent (this should
almost always be the first move of the plan assuming it is
active enough to match P21). Then, spreading activation
from this initial move should be enough to trigger the next
move in the plan, and so on. A production (P22, not shown)

* GLAM-PS planning is conceptually similar to the interacting
inverse and forward models used by Moller & Schenck (2008) for
planning robot movement

1856



is used to restart a plan when the activation of the next move
is not greater than the AET (it looks for moves with no
existing parents and increases their activation).’

GLAM-PS Vs Human Behaviour on the TOL

The emphasis in the current paper is on providing a
detailed account of how GLAM-PS solves 3-disk TOL
problems, but it is important to note that this model has been
compared to human data taken from Miles (1998). The
human data was taken from 231 problem solving episodes
on five different 3-disk problems (involving 99 different
participants). GLAM-PS was able to provide a good match
for this data. Overall GLAM-PS was able to predict 209 of
231 observed move patterns (90.5%) without the need for
assuming random move choices (i.e. using P18). Fourteen
of the 22 unpredicted cases were on the problem shown in
Figure 3 (versus 75 that were predicted on this problem).
This was the hardest of the five problems used, and GLAM-
PS is much more inclined to resort to random moves (P18)
on this problem than on any of the other four problems,
reflecting the human data.

General Disucussion

In summary, GLAM-PS provides an insightful account
into problem solving in the TOL, using a draft cognitive
architecture based on modal-only represenatation. Space
constraints do not allow a full discussion of GLAM-PS and
its relationship with existing theories of cognition, however
it is important to highlight three key features within GLAM-
PS that suggest interesting future directions.

The Action Execution Threshold (AET) in GLAM-PS
allows actions to be represented and held, without
necessarily being executed. They can then be used to control
action (in a similar way to goal representations in other
architectures). There are several questions about the AET
that are only tentatively answered in GLAM-PS: Are there
different thresholds for different modules? Are there
individual differences in AET? What factors influence the
AET? However, the potential usefulness of the AET
construct is suggested by recent work on modelling
playfulness in young children by Howard & Miles (2008).
They modelled a child in a playful state as having a reduced
AET (Vs the same child when not playful), thus explaining
the increased behavioural fluency observed in play.

The System State Representation (SSR) used by GLAM-
PS to match productions has the potential to be used to
model consciousness. Intriguingly, the SSR proposal is
congruent with the idea that executive function emerges
from consciousness. Each module within GLAM-PS
functions independently of one another, except for the
influence of the SSR, which in essence binds the
independent sub-systems into a cohesive whole. This idea is
explored in more detail by Miles (2009).

5 The +5 activation in the action-side of P7 ensures that plans
that place disks in their goal positions will be much preferred to
plans consisting of guessed moves (i.e. using P16).

Finally, it is also important to note the important role
played by the speech-output buffer in GLAM-PS. There is
much evidence to show that inner speech / articulation plays
a role in goal-based behaviour (e.g. Saeki, 2007). In
GLAM-PS the speech output module provides a necessary
way of controlling complex sequences of action. In addition,
it would also appear to have a pivotal role to play in any
GLAM-PS based account of semantic memory.

The next stage for GLAM-PS is the modelling of human
performance on 4-disk and 5-disk TOL problems. Although
detailed matches to human behaviour haven’t been
established yet on these more complex problems, early
model runs indicate that the 3-disk model generalizes to
these more difficult problems. It is anticipated that GLAM-
PS will eventually be used to simulate performance as well
as competence in the TOL. There are also plans to extend
GLAM-PS to Tower of Hanoi problem solving, Episodic
Memory Recall, and Serial Recall.

Presently GLAM-PS is a work in progress. It has only
been used as a computational model in one domain, the
conflict resolution mechanism is underspecified, it does not
currently have a learning mechanism (though one has been
outlined on paper), and it is not yet suitable for comparison
to detailed performance data (e.g. RTs). It is hoped these,
and other, shortcomings will be addressed in future.

References

Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ:
Lawrence Erlbaum Associates.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,
Lebiere, C., & Qin, Y. (2004). An integrated theory of
mind. Psychological Review, 111, 1036-1060.

Barsalou, L. W. (2008). Grounded cognition. Annual
Review of Psychology, 59, 617-45.

Dennett, D. C., & Viger, C. D. (1999). ”Sort-of symbols?”.
Behavioural and Brain Sciences, 22, 613.

Harnad, S. (1990). The symbol grounding problem. Physica,
42,335-346.

Howard, J. L., & Miles, G. E. (2008). A behavioural
threshold and fluency theory of play. BPS Education
Section Conference, Milton Keynes, UK.

Meyer, D. E., & Kieras, D. E. (1997). A computational
theory of executive cognitive processes and multiple-task
performance: Part 1. Basic mechanisms. Psychological
Review, 104, 3-65.

Moller, R., & Schenck, W. (2008). Bootstrapping cognition
from behaviour — A computational thought experiment.
Cognitive Science, 32, 504-542.

Miles, G. E. (1998). Reminding in a knowledge lean
domain. Unpublished PhD Thesis, Cardiff University.

Miles, G. E. (2009). How can executive function emerge
from consciousness? Evidence from a production system
model. Paper to be submitted to International Conference
on Cognitive Modeling 2009.

Saeki, E. (2007). Phonological loop and goal maintenance:
Effect of articulatory suppression in number size
consistency task. Psychologia, 50, 122-132.

1857



