
Representing Goals Modally: A Production System Model of Problem Solving in the

Tower of London

Gareth E. Miles (gmiles@glam.ac.uk)
University of Glamorgan

Trefforest, CF37 1DL, UK

Abstract

GLAM-PS (Glamorgan Problem Solver) is a production
system model of problem solving in the Tower of London
(TOL) puzzle. It is introduced as a draft cognitive architecture
that is similar to John Anderson’s (1998, 2004) ACT-R, but
represents system goals, long term memory and production
memory modally, rather than amodally. The current paper
demonstrates how GLAM-PS models problem solving on 3-
disk TOL problems (a comparison with human data is also
made). GLAM-PS uses representations of intended actions
to control behaviour and planning utilizes the simulation of
future problem states.

Keywords: Grounded Cognition; Production Systems;
Problem Solving; Goal Handling

Introduction

Our ability to engage in goal-directed action is a defining

characteristic of human behaviour. Different cognitive

architectures have taken various approaches to modelling

goal driven behaviour. Early versions of Anderson’s ACT

included a goal stack as part of the architecture (e.g.

Anderson, 1993), more recent versions (Anderson et al.,

2004) have modeled goals as alike to other memories in

terms of representation and storage, but distinct in the way

they are utilised (through the action of an architecturally

specified goal buffer). Other prominent architectures have

placed significant emphasis on the role of amodal goal

representations (e.g. EPIC, Meyer & Kieras, 1997).

The current paper presents GLAM-PS a draft cognitive

architecture which has been computationally implemented

in the domain of knowledge-lean problem solving

(specifically the Tower of London problem, a classic test of

executive function commonly used in the diagnosis of

Dyexecutive Syndrome). GLAM-PS is a production system

architecture that represents goals modally, indeed the only

cross-modal representation used is a ‘system state’

representation, containing details of active modal

representations in each of the architectures modules.

A key feature of GLAM-PS is that it is derived heavily

from current production system architectures (primarily

ACT-R and EPIC). In this respect it allows for an

interesting comparison between current modal-amodal

architectures and a draft modal-only architecture. In the

current paper these differences are examined, in particular

the paper explores how executive control is handled by

GLAM-PS in a classic problem solving domain. GLAM-PS

can be interpreted as a simplification of existing

architectures and broadly speaking is functionally similar to

ACT-R / EPIC. Given this, a key question is whether

GLAM-PS is a competent model of complex human

behaviour and an effort is made in this paper to compare it

with human data.

GLAM-PS is also an example of an implemented

simulation-based grounded cognition theory of the type

proposed by Barsalou (2008). A criticism of some

grounded cognition theories is that they lack symbolic

computational explorations that implement the somewhat

abstract ideas they are based on (Dennett & Viger, 1999).

Whilst GLAM-PS was not designed to be a computational

implementation of theories of grounded cognition, it never-

the-less behaves in a way that is almost entirely congruent

with these grounded theories. As such, GLAM-PS provides

a much-needed symbolic explication of ideas inherent in

grounded cognition. The status of GLAM-PS as a

simulation-based theory is most evident when it is planning

ahead. GLAM-PS does this by simulating the consequences

of intended actions.

The paper is structured in the following way: The first

principal section outlines the theoretical assumptions that

GLAM-PS is based upon, highlighting its relationship with

existing cognitive architectures. The second principal

section describes the computational implementation of

GLAM-PS. Following this, the main section demonstrates

in detail how GLAM-PS solves a 3-disk TOL problem. The

paper ends with a general discussion of key features of

GLAM-PS and a brief outline of how it is hoped GLAM-PS

will be developed in the future.

Principal Assumptions of GLAM-PS Theory

Whilst GLAM-PS is similar to existing Cognitive

Architectures, the differences of interest emerge from

number of simple assumptions. These assumptions and

their rationale are outlined below.

Assumption 1: Output modules (buffers in ACT-r) can be

loaded with a response, without that response being

necessarily executed

Assumption 2: The contents of output modules are

available as an input to other cognitive processes

These two related assumptions partially specify the action

of the output modules in GLAM-PS. The impact of these

assumptions, and indeed GLAM-PS as a whole, is easiest to

understand by relating it to ACT-r (the architecture it is

primarily derived from). The key difference between the

two architectures is the absence of a goal buffer/module and

retrieval buffer/module in GLAM-PS. The former is a

1852

direct result of Assumptions 1 and 2 (the absence of the

retrieval buffer is linked to Assumption 3, see below).

Crucially, Assumptions 1 and 2 allow the output modules of

GLAM-PS to control action in a similar way to how ACT-

r’s goal buffer exerts control over action. Essentially the

motor, eye movement and speech output modules are used

to control and structure action in a broadly similar way to

how amodal goal representations are used in ACT-r. This is

best illustrated by seeing how GLAM-PS uses its output

modules to control action in an example task (see the

section on modelling problem solving in the TOL).

Whilst Assumptions 1 and 2 are to the author’s

knowledge unique to GLAM-PS (at least in the

computational modelling of problem solving), a version of

the third assumption is also found in many embodied

theories of cognition.

Assumption 3: All Long Term Memories (incl.

productions) are stored modally.

One of the primary purposes of GLAM-PS is to attempt to

provide a modal-only account of complex behaviour. The

combination of Assumptions 1 to 3 allows for an

architecture that does not need to assume the existence of

any amodal representations (cf. Harnad, 1990).

The GLAM-PS Theory

GLAM-PS (shown diagrammatically in Figure 1) is a

draft cognitive architecture based on a production system

formalism. As implemented (in Microsoft Visual Studio

2005) the architecture is also supported by simple modality

specific semantic networks that help regulate the activation

levels of elements of working memory (ACT-r adopted a

similar hybrid architecture, see Anderson, 1993). Below the

key features of GLAM-PS are discussed in sub-sections

dedicated to Working Memory, Production Matching and

Action Execution.

Working Memory

The syntax of both the working memory elements and

working memory (WM) types used by GLAM-PS will be

familiar to ACT-r users. However the way GLAM-PS

handles WM is conceptually different from WM in ACT-r

and other traditional production system architectures. In

particular all WM types and elements are modality and

input/output specific. Hence not only is the seen image of a

square and the spoken word 'square' coded as separate WM

elements, but the word 'square' heard is coded separately

from the word 'square' spoken. Each WM type and element

is specific to one module.

WM types are defined with a type-name, a module

assignment, and then a list of slot names. For example the

WM type representing seen disks in the Tower of London is

defined below (left, VisIn = Visual Input):

Individual WM elements (WME) are then specified using

the format outlined in the WM type definition. The disk

labelled ‘F’ in the TOL problems used is represented as

shown above, when it is viewed.

Each WME has an activation level. This activation

decreases over time, but is increased when the WME is used

(e.g. in production matching) or when activation spreads

from an associated WME. The level of activation can also

be increased or decreased (inhibited) through the action-side

of productions. The action-side of productions is also able

to create new WMEs.

When a WME is referenced in the action-side of a

production then other WMEs associated with this WME

have their activation level increased. Associations are

formed when a particular WME (e.g. A) is replaced as the

most active WME within a module by a second WME (e.g.

B). Everytime this occurs one unit of association is added

between these two elements (e.g A and B become associated

+1 unit). This, of course, dictates that inter-WME

associations will be all within-module.

Activation is spread from a WME to other associated

WMEs whenever the source WME’s activation level is

raised. A parameter is set to control how much activation is

spread (e.g. currently .5 in the TOL model).

Output Threshold

LTM

PRODUCTION

MEMORY

System State
Representation

[Contains most active WM elements

from each module]

PRODUCTION

MEMORY LTM

PRODUCTION

MEMORY LTM

PRODUCTION

MEMORY

PRODUCTION

MEMORY

PRODUCTION

MEMORY

LTM

LTM

LTM

Visual/Spatial Input
Module

Tactile Input Module

Auditory Input Module
Speech Output

Module

Visual Focus Output
Module

Manual Output Module

Figure 1: Diagrammatic Summary of GLAM-PS (LTM = Long Term Memory, WM = Working Memory).

Red_disk

Type: Disk
Label: F

Display: Current_state
Disks_above: 0

Disks_below: 2

Real: Yes

Type: Disk, Module: VisIn

Slots: Label, Display,
Disks_above, Disks_below,

Rea, Disks, Parent

1853

Production Matching and Conflict Resolution

The productions used by GLAM-PS are matched against

the active elements in each module.
1
 As an example, two

simple productions, initializing TOL problem solving after

reading the instructions on screen are shown below. The

first searches for instructions, whilst the second represents

them in the speech output buffer.

Buffer dependant matching of productions was explored

in EPIC, and is now an established part of the ACT-R

architecture (post 2000). However in GLAM-PS although

production-matching is achieved in a very similar way to

ACT-r and EPIC, the modules used do not act as buffers.

Rather any active WME specific to a particular module can

potentially be matched to a production's conditions.

 Productions are matched in parallel. Conflict between

productions occurs when two or more productions try to act

on the same module (ACT-r handles conflicts in a similar

way). This conflict is resolved by summing activation

across the WMEs that were matched on the condition side

of the production. The production with the greater summed

activation is selected.

Productions in GLAM-PS are modal. Like WMEs, each

production is tied to, and stored in, one module. Each

production can only act on the module it is stored in, but is

able to take input from all of the modules (including the one

it is stored in).

The Action Execution Threshold (AET)

GLAM-PS as thus far described has no means of acting.

The output modules hold actions ready to be executed, but

this execution is not automatic or compulsory. So when

will an action held in an output module be used? GLAM-

PS answers this question by requiring a given action to

reach a threshold level of excitation before it will be

executed. Each output module’s production memory not

only contains productions that instantiate new actions, but

also contains productions that review suggested actions and

either excite or inhibit that action. In addition, productions

are able to force execution (if the suggested action is judged

ideal), or remove the suggested action from the module (if it

1 See Figure 1 for module architecture; though note more and/or

different modules are likely in future versions of GLAM-PS

is judged to be unwise). Typically though the threshold will

play a role and the output module will gather evidence for

and against a suggested action (in the form of exciting

productions and inhibiting productions), with the action

only executed when a sufficient level of excitation is

reached. Executed actions are automatically inhibited to

zero activation.

Modeling Problem Solving Competence in the

Tower of London using GLAM-PS

The Tower of London (TOL) is a variant of the Tower of

Hanoi (TOH) that has been used in problem solving

research and clinical settings for nearly 30 years. It is

particularly important within Cognitive Neuropsychology,

where it has been used as a test of frontal function, for

instance in the diagnosis of Dysexecutive Syndrome.

Example 3-disk problems are shown in Figures 2 and 3.

Like the TOH, the goal is to transform the start state into the

goal state, only one disk may be moved at a time, and there

are three pegs. Unlike the TOH there are no size

restrictions, so any disk may be stacked on top of any other

disk. A key requirement of the TOL is that the shortest

route (in terms of number of moves) is taken to the goal

state. In essence, it is a planning task, with marked

similarity to the classic blocks world task as well as to the

TOH.

The best way of highlighting the impact of the unusual

elements of GLAM-PS is to step through an example of

GLAM-PS’s behaviour on TOL problems. In the following

section the key features of GLAM-PS (the action-based

control mechanism and the modal long term memory) are

shown in action to help facilitate understanding of how

these features work in practice.

Problem Solving the TOL without Planning

In the first (and principal) example GLAM-PS is solving the

problem shown in Figure 2. The first thing GLAM-PS

needs to do is initalise the problem solving process. This is

achieved via Production 3 (P3, see top of next page).

A verbalised instruction to solve the problem, held in the

speech output module, is the catalyst of the problem solving

process. The production then loads the manual output

module with an underspecified disk move action (neither the

disk to be moved or the location it is to be moved is

Disk F

Disk C

Disk X

Disk F

Disk C Disk X

Peg 1 Peg 2 Peg 3 Peg 1 Peg 2 Peg 3

Goal State Current State

Figure 2: First three-disk Tower of London (TOL)

problem (correct solution: F to 3, C to 2, F to 2, X to 3)

Prod recode_instructions [P2]

 VisIn =instructions
Type: written_verb_noun

Verb: =verb1
Noun: =noun1

 -speech =not_already_recoded

Type: spoken_verb_noun
Verb: =verb1

Noun: =noun1
>>

 +speech

Type: spoken_verb_noun
Verb: =verb1

Noun: =noun1
Activate: +1

Prod mve_vis_focus_to_instr [P1]

 VisIn =problem

Type: TOL_problem
>>

 +VisFoc
Type: Search_for_target

Target_type: written_verb_noun

Search_Area: all_screen
Activate: +20

1854

specified, all GLAM-PS knows is that it needs to move a

disk).

The next actions taken by GLAM-PS are to look for a

disk. The production (P4, not shown) matches all three

disks in the problem, triggering a conflict resolution process

that favours the most activated disk. The problem (shown in

Figure 2) is a relatively easy problem for human problem

solvers, the majority of whom select the optimal move

choices (61 of 87 in Miles, 1998). Though in a significant

minority of cases a second pattern of moves is followed (21

of 87 in Miles, 1998; this pattern in Figure 2 would start F

to 2, C to 2, X to 3). Both of these patterns stem from the

same set of productions in GLAM-PS, with the different

patterns a result of a different disk being the focus of visual

attention initially.

The next production to execute, specifies which disk is to

be moved (P5, see above). Once the disk to be moved has

been specified, the next production looks at the disks

location in the goal display (P6, see below)

If the disk is on different pegs in the current and goal

displays, then the location of the intended move is specified

in P7 (see above).

At this point P8 and possibly P9 will typically be

instantiated (see below). P8 looks at the location of the

intended move and then P9 projects the impact on the

current state of the intended move (in a way very similar to

simulation models).

P10 (see below) then compares the simulated state with

the goal state. If there is a mismatch in the number of disks

beneath the two disks then the intended move is inhibited.

Note the production does not check the identity of the disks

beneath the simulated and goal disks.
2

A similar production (P11, not shown) checks for a match

and then returns visual focus to the actual disk in the current

state. There is also a production (P12 not shown) that

returns visual focus to the disk in the current state without

checking for a match, indeed without the need for P8 to P11

to be invoked. This helps simulate common beginner errors

in the TOL where a moved disk is placed on top of a disk

occupying the moved disks goal location.

Once the ‘real’ disk is back in visual focus with the move

fully specified, the move is excited by repeated firings of

P13 (see above), but only if the disk is free to move.

2 This helps simulate an error common in human participants,

that occurs when a disk is moved to a target location, but the disks

below it are in the wrong order, and subsequently the participant

cannot understand why the problem has not be ‘solved’ (as

evidenced by an extreme next move latency).

Prod start_to_move_disks [P3]
 VisIn =problem

Type: TOL_problem

 Speech =goal
Type: spoken_verb_noun

Verb: Complete
Noun: Problem

 -manual =no_move_in_progress

Type: Disk_move
>>

 +Manual
Type: Disk_move

Activate: +1

Prod specify_disk_for_move [P5]
 VisIn =disk_focus

Type: disk

Label: =disk_id
Display: Current_state

Peg: =peg_id
 manual =move1

Type: Disk_move

Disk: [EMPTY]
>>

 manual =move1
Disk: =disk_id

From_peg: =peg_id

Prod find_disk_in_goal_display [P6]
 VisIn =disk_focus

Type: disk
Label: =disk_id

Display: Current_state

 manual =move1
Type: disk_move

Disk: =disk_id
>>

 +VisFoc

Type: Search_for_match
Target: disk

Label: =disk_id
Search_area: goal_state

Activate: +20

Prod disk_requires_move [P7]
 VisIn =disk_focus

Type: disk
Label: =disk_id

Display: Goal_state

Peg: =peg_id
 manual =move1

Type: disk_move
Disk: =disk_id

From_Peg: NOT[=peg_id]

>>
 manual =move1

To_peg: =peg_id
Activation: +5

Prod find_move_loc_in_current [P8]

 VisIn =disk_focus
Type: disk

Label: =disk_id

Display: goal_state
 manual =move1

Type: disk_move
Disk: =disk_id

To_peg: =peg_id

Not_to: [EMPTY]
>>

 +VisFoc
Type: Search_for_match

Target: peg

Label: =peg_id
Search_area: current_state

Activate: +20

Prod project_move [P9]

 VisIn =target_peg
Type: Peg

Display: Current_state

Label: =peg_id
Disks_on_peg: =X

 manual =move1
Type: disk_move

Disk: =disk_id

To_peg: =peg_id
Not_to: [EMPTY]

>>
 +VisIn

Type: disk

Label: =disk_id
Display: Current_state

Peg: =peg_id
Disks_below: =X

Disks_above: 0

Real: No

Prod project_goal_mismatch [P10]

 VisIn =disk_goal
Type: Disk

Disk: =disk_id

Display: Goal_state
Peg: =peg1

Disks_below: =X
 VisIn =disk_projected

Type: Disk

Disk: =disk_id
Display: Current_state

Peg: =peg1
Disks_below: NOT[=X]

 Manual =move1

Type: disk_move
To_peg: =peg1

>>
 Manual =move1

Activation: -1

Prod execute_move [P13]

 VisIn =disk_goal
Type: Disk

Disk: =disk_id

Display: Current_state
Peg: =peg1

Disks_above: 0
Parent: [EMPTY]

 Manual =move1

Type: disk_move
Disk: =disk_id

From_peg: =peg1
To_peg: NOT[EMPTY]

>>

 Manual =move1
Activation: +1

1855

If the disk is not free to move then P14 will focus visual

attention on the blocking disk or disks
3
 and then P15 will

create a new action moving the blocking disk or disks to a

location that is not the goal location of the original disk (see

below). In this manner GLAM-PS is effectively creating a

subgoal to remove the blocking disks in order to allow the

originally intended move. Note that association will be

established between the original intended move and the new

move representation.

Critically the representation of the move in the manual

output module is different from the representation of the

originally intended move. The fact that the move is being

used to remove a block allows that move to be executed

without being assessed by P8 to P11 (which only assess

moves designed to get disks into their goal locations).

Further productions (P16 and P17, not shown) move visual

focus to the peg the block is to be moved to, and then add

the peg to the To_peg slot of the move. Once this is done

P12 returns visual focus to the block and then P13 will

execute the removal of the blocks.

When this occurs activation passes from the successfully

executed representation to other associated representations

in the same buffer. In this case the activation will pass to

the move representation that was present when the block

removal was subgoaled. In this way GLAM-PS implements

an implicit form of goal stack, with executed actions

triggering other actions that were active when they were

first represented.

3 Note GLAM-PS uses the disk WM type to represent adjacent

disks as perceptual groups, as well as representing individual disks.

This facilitates the modelling of perceptual grouping in the TOL.

Problem Solving with Planning

The 3-disk problem shown in Figure 3 cannot be

successfully solved by these productions alone. P18 (not

shown) can be used to generate random moves,

implementing a generate-and-test style strategy. However,

solving the problem in Figure 2 requires GLAM-PS to use

limited planning (or be lucky). Its planning capabilities

emerge from the ability to simulate a short sequence of

actions and the related outcomes.
4
 Previously we saw how

P9 projects the impact of a move. P19 maintains the

activation of a projected disk position and inhibits the disk’s

actual position, instead of trying to execute a possible move

(it competes with P13). This allows P20 to initiate planning

The effect of P19 is to create a simulated problem state in

the visual input module. The existing productions in the

model are then able to 'act' on that simulated state. The

majority of the productions in the model will process

simulated disk positions as well as ‘real’ disk positions.

These productions may in turn create further simulated

states. As the simulated state becomes increasingly

different from the actual state the ability of P19 to maintain

the simulated state will decrease. In the TOL if GLAM-PS

is limited to maintaining a maximum of three simulated disk

positions then a decent match to practiced human problem

solving is achieved (preliminary runs of GLAM-PS on more

complex TOL problems suggests that 4 or more simulated

disk positions allows GLAM-PS to solve some 5-disk

problems that humans often cannot solve unaided).

The handling of plan execution in GLAM-PS is currently

rather inelegant. P21 (not shown) matches moves with

existing parent moves (found through the parent slot) that

have reached the AET (due to matching P13), it reduces the

moves activation (-5), and then forces execution (+20) of

any move that does not have an existing parent (this should

almost always be the first move of the plan assuming it is

active enough to match P21). Then, spreading activation

from this initial move should be enough to trigger the next

move in the plan, and so on. A production (P22, not shown)

4 GLAM-PS planning is conceptually similar to the interacting

inverse and forward models used by Moller & Schenck (2008) for

planning robot movement

Disk F

Disk C

Disk X

Disk F

Disk C Disk X

Peg 1 Peg 2 Peg 3 Peg 1 Peg 2 Peg 3

Goal State Current

State

Prod vis_focus_to_block [P14]
 VisIn =disk_goal

Type: Disk
Disk: =disk_id

Display: Current_state

Disks_above: NOT[0]
Peg: =peg1

 Manual =move1
Type: disk_move

Disk: =disk_id

From_peg: =peg1
To_peg: NOT[EMPTY]

>>
 +VisFoc

Type: Objects_above

Target: disk
Search_area: =disk_goal

Activate: +20

Prod subgoal_remove_block [P15]
 VisIn =block

Type: Disk
Disk: =disk_id

Display: Current_state

Disks_above: 0
Peg: =peg1

 Manual =move1
Type: disk_move

Disk: NOT[=disk_id]

From_peg: =peg1
To_peg: =peg2

>>
 +manual

Type: disk_move

Disk: =disk_id
From_peg: =peg1

Not_to: =peg2

Prod maintain_proj_disk [P19]

 VisIn =disk_goal
Type: Disk

Disk: =disk_id
Display: Current_state

Peg: =peg1

Disks_above: 0
Real: Yes

 VisIn =projected_disk
Type: Disk

Disk: =disk_id

Display: Current_state
Peg: =peg2

>>
 VisIn =projected_disk

Activation: +1

 VisIn =disk_goal
Activation: -1

Prod init_planned_move [P20]

 manual =parent_move
Type: disk_move

Disk: =disk_id
From_peg: NOT[EMPTY]

To_peg: =peg1

 VisIn =projected_disk
Type: Disk

Disk: =disk_id
Display: Current_state

Peg: =peg1

Real: No
>>

 +manual
Type: disk_move

Parent: =parent_move

Activate: +1

Figure 3: Second three-disk Tower of London (TOL)

problem (correct solution: F to 3, C to 2, F to 2, X to 3, F to 3

3)

1856

is used to restart a plan when the activation of the next move

is not greater than the AET (it looks for moves with no

existing parents and increases their activation).
5

GLAM-PS Vs Human Behaviour on the TOL

The emphasis in the current paper is on providing a

detailed account of how GLAM-PS solves 3-disk TOL

problems, but it is important to note that this model has been

compared to human data taken from Miles (1998). The

human data was taken from 231 problem solving episodes

on five different 3-disk problems (involving 99 different

participants). GLAM-PS was able to provide a good match

for this data. Overall GLAM-PS was able to predict 209 of

231 observed move patterns (90.5%) without the need for

assuming random move choices (i.e. using P18). Fourteen

of the 22 unpredicted cases were on the problem shown in

Figure 3 (versus 75 that were predicted on this problem).

This was the hardest of the five problems used, and GLAM-

PS is much more inclined to resort to random moves (P18)

on this problem than on any of the other four problems,

reflecting the human data.

General Disucussion

In summary, GLAM-PS provides an insightful account

into problem solving in the TOL, using a draft cognitive

architecture based on modal-only represenatation. Space

constraints do not allow a full discussion of GLAM-PS and

its relationship with existing theories of cognition, however

it is important to highlight three key features within GLAM-

PS that suggest interesting future directions.

The Action Execution Threshold (AET) in GLAM-PS

allows actions to be represented and held, without

necessarily being executed. They can then be used to control

action (in a similar way to goal representations in other

architectures). There are several questions about the AET

that are only tentatively answered in GLAM-PS: Are there

different thresholds for different modules? Are there

individual differences in AET? What factors influence the

AET? However, the potential usefulness of the AET

construct is suggested by recent work on modelling

playfulness in young children by Howard & Miles (2008).

They modelled a child in a playful state as having a reduced

AET (Vs the same child when not playful), thus explaining

the increased behavioural fluency observed in play.

The System State Representation (SSR) used by GLAM-

PS to match productions has the potential to be used to

model consciousness. Intriguingly, the SSR proposal is

congruent with the idea that executive function emerges

from consciousness. Each module within GLAM-PS

functions independently of one another, except for the

influence of the SSR, which in essence binds the

independent sub-systems into a cohesive whole. This idea is

explored in more detail by Miles (2009).

5 The +5 activation in the action-side of P7 ensures that plans

that place disks in their goal positions will be much preferred to

plans consisting of guessed moves (i.e. using P16).

Finally, it is also important to note the important role

played by the speech-output buffer in GLAM-PS. There is

much evidence to show that inner speech / articulation plays

a role in goal-based behaviour (e.g. Saeki, 2007). In

GLAM-PS the speech output module provides a necessary

way of controlling complex sequences of action. In addition,

it would also appear to have a pivotal role to play in any

GLAM-PS based account of semantic memory.

The next stage for GLAM-PS is the modelling of human

performance on 4-disk and 5-disk TOL problems. Although

detailed matches to human behaviour haven’t been

established yet on these more complex problems, early

model runs indicate that the 3-disk model generalizes to

these more difficult problems. It is anticipated that GLAM-

PS will eventually be used to simulate performance as well

as competence in the TOL. There are also plans to extend

GLAM-PS to Tower of Hanoi problem solving, Episodic

Memory Recall, and Serial Recall.

Presently GLAM-PS is a work in progress. It has only

been used as a computational model in one domain, the

conflict resolution mechanism is underspecified, it does not

currently have a learning mechanism (though one has been

outlined on paper), and it is not yet suitable for comparison

to detailed performance data (e.g. RTs). It is hoped these,

and other, shortcomings will be addressed in future.

References

Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ:

Lawrence Erlbaum Associates.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,

Lebiere, C., & Qin, Y. (2004). An integrated theory of

mind. Psychological Review, 111, 1036-1060.

Barsalou, L. W. (2008). Grounded cognition. Annual

Review of Psychology, 59, 617-45.

Dennett, D. C., & Viger, C. D. (1999). ”Sort-of symbols?”.

Behavioural and Brain Sciences, 22, 613.

Harnad, S. (1990). The symbol grounding problem. Physica,

42, 335-346.

Howard, J. L., & Miles, G. E. (2008). A behavioural

threshold and fluency theory of play. BPS Education

Section Conference, Milton Keynes, UK.

Meyer, D. E., & Kieras, D. E. (1997). A computational

theory of executive cognitive processes and multiple-task

performance: Part 1. Basic mechanisms. Psychological

Review, 104, 3-65.

Moller, R., & Schenck, W. (2008). Bootstrapping cognition

from behaviour – A computational thought experiment.

Cognitive Science, 32, 504-542.

Miles, G. E. (1998). Reminding in a knowledge lean

domain. Unpublished PhD Thesis, Cardiff University.

Miles, G. E. (2009). How can executive function emerge

from consciousness? Evidence from a production system

model. Paper to be submitted to International Conference

on Cognitive Modeling 2009.

Saeki, E. (2007). Phonological loop and goal maintenance:

Effect of articulatory suppression in number size

consistency task. Psychologia, 50, 122-132.

1857

