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Abstract

This study examines detection and recognition thresholds for
environmental sounds in the presence of noise, with and
without specific expectations about the targets. Human
listeners were presented with a selection of everyday sounds
masked by noise at initially increasing and later decreasing
local signal-to-noise ratios. Participants had to indicate if they
either detected or recognized the sound in the masking noise.
The targets were selected from a database of environmental
sounds. A previous perceptual similarity experiment on this
database led to a separation in three classes that might be
interpreted as predominantly tonal, pulsal, or noisy. We
therefore separated the targets in these three groups. The
resulting pattern of detection and recognition thresholds, with
and without previous exposure to the target, suggest an 8 dB
benefit for recognition and a 2dB benefit for detection. For
repetitive sounds the detection benefit increased to 7 dB. The
overall pattern of results provides support for the suggestion
that sound recognition may be a combination of checking the
presence of expected targets and a signal driven search in case
of an unexpected target. The detection and recognition
thresholds, suggest that human auditory perception might
indeed employ different strategies for detecting tonal, pulsal,
and noisy sounds.

Keywords: Auditory perception; environmental sound; sound
source recognition.

Introduction

Humans detect and recognize sound sources to interpret and
act on events in their environment. However, surprisingly
little research has been aimed at understanding
environmental sound recognition. Some interesting studies
in this field are Gaver (1993), Ballas (1993), Gygi, Kidd, &
Watson (2007), and Guastavino (2007). Research on human
everyday listening (defined conform Gaver, 1993) can
provide a broader and more integrated understanding of
auditory perception in the real world. One of the aims of this
research is to discover which algorithms facilitate quick and
adequate sound source recognition.

Shinn-Cunningham (2008) argues that top-down attention
influences auditory object (percept) formation and auditory
object recognition. Therefore a theory of everyday sound
recognition must not only explain environmental sound
recognition, it must also include the effects of acoustic,
contextual, or knowledge-based priming. Chiu (1995)
concluded that priming of environmental sounds is
predominantly perceptual and not influenced by only
naming the source. This leads to the question of how
previous exposure can influence priming.

We can hypothesize that different attentional states
correspond to different detection and recognition strategies.

For example, when listeners know which sounds to expect
they may use detailed expectations and check these. In
contrast, a sound for which no useful a priori expectation
exists might force a demanding memory search through all
possible sound classes that can explain the input. Thresholds
shifts are familiar to experimenters that are often exposed to
stimuli masked by noise multiple times. They can detect
these targets better than “naive” listeners. However there
has been little research into this phenomenon, especially not
for environmental sounds.

Experimental Paradigm

We describe an experimental paradigm for studying human
(environmental) sound perception and recognition. It is
designed to estimate detection and recognition thresholds
with and without prior knowledge, so that it can be used to
separate listening modes due to expectation differences.
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Figure 1 Overview of the experimental design. The 10
different targets were presented in random alternating order.
Each sound is first presented with a gradually increasing
target-to-noise ratio. After presentation without noise, the
target-to-noise ratio decreases again, until the target can no
longer be recognized or detected.

The experimental procedure is depicted in figure 1. It
involves the presentation of random alternating individual
target sounds, referred to as the signal, masked by
broadband noise. At every presentation in the first phase of
the experiment the signal-to-noise ratio (SNR) of each target
increases (detection becomes easier) while in phase two the
SNR decreases (detection becomes more difficult). In the
first phase the listener does not know the target so a mental
search for a suitable class to explain the input is required. In
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the second phase the participant has heard the target sound
without any noise and the participant can use this
information to check whether or not this specific target is
present or not. For each experimental item the participant is
asked whether or not a deviation from noise is detected and
whether it is possible to recognize the deviation.

This experimental paradigm can be used to identify robust
and informative features for environmental sound
recognition by measuring the detection and recognition
thresholds for a wide variety of common sounds, and by
analyzing the relation between unmasked signal content or
signal type and associated thresholds.

Environmental sounds

The sounds used in the current experiment are a subset of
those used in a recent perceptual similarity study by Gygi et
al. (2007). The full set of 100 short sounds compiled by
Gygi are of an unusual composition because they are
selected to be both minimally controlled as well as
representative for the typical environmental sound
production processes described by Gaver (1993). Since they
have been derived from a range of Internet sources little is
known of the sounds. The only information is the general
type of the sound source and the fact that they appear to be
dominated by a single source, which is representative for
many sounds in realistic environmental conditions.

The study of Gygi et al. (2007) showed a division in three
groups of sound sources, which Gygi described as harmonic
sounds, discrete impact sounds, and continuous sounds.
Although Gygi correlated the perceptual results to a large
number of objective signal descriptors he could not identify
definite acoustical features that determine the categorization
of sounds in these three categories. However, Gygi’s results
suggest that the composition in terms of tonal, pulse-like,
and noise-like components determines much of the
perceptual distance between sound sources.

In a previous study we (Andringa 2008) used the energy
fractions of tone, pulse, and aperiodic (noisy) energy to
predict perceptual similarity between sounds from Gygi’s
set. We hypothesized three different processing routes,
because these three basic signal types each require a
different combination of spectro-temporal evidence. A pulse
is short and broadband and requires a combination of
information over many frequency channels and a very short
temporal integration interval. A tone requires a very narrow
frequency range, but a longer temporal interval. Aperiodic
noise requires both a range of frequency channels as well as
a longer temporal interval. The qualitative differences
between these three classes which leads to different
integration strategies required to detect and track signal
evidence might account for Gygi’s main results.

Local SNR in Sound Recognition

We use the SNR in dB to measure the detection and
recognition thresholds in noise. Recognition thresholds have
been studied extensively for speech recognition. Allen
(1994) provides an overview of Harvey Fletcher's work at

Bell labs (1920 — 1950), which shows that the probability of
correct recognition of nonsense syllables depends
exclusively on the local (in time and frequency) SNR, rather
than the energy spectrum of the speech signal. We expect
this to be true for environmental sounds too. Therefore, we
constructed our stimuli with the maximum local SNR as a
measure of the difficulty of the task.

It is important to stress a fundamental problem with the
determination of the local SNR for pulse-like signals. A
local SNR is defined as the ratio between the instantaneous
power per channel (or range of channels) for the target
signal and the masking noise. The instantaneous power is a
moving average of the instantaneous signal energy (the
square of the excitation). For tonal components we can
average over a number of periods to arrive at an
instantaneous power-value that is independent of the
individual oscillations and phase effects. For pulses the
notion of instantaneous power cannot be defined in this
manner, because there is no sensible integration time-
constant apart from an infinitely small one, which
corresponds to no integration at all. As a consequence it is
impossible to choose a single time-constant that is ideal for
all types of sounds.

Because no experimentally validated integration time-
constant for pulse-like signals has been estimated, we use a
temporal integration strategy that is more suitable for tonal
and noise-like signals. This integration strategy is likely to
underestimate the actual SNR for pulse-like signals, which
leads to lower thresholds. We use the integration method
described in Andringa (2008) with a frequency-channel
dependent integration time-constant equal to two times the
channels best period, which is the inverse of the channel
center-frequency, with a minimum of 5 ms for all center
frequencies above 500 Hz. The diverse thresholds described
in this paper can help to identify the strategies and
associated parameters for (pulse-like) environmental
sounds.

The next section describes the stimuli and experimental
procedure in more detail. The results and discussion sections
address the relation between top-down processing and signal
content in terms of noise-like, tonal, and pulse-like
contributions.

Method

Participants

Twenty-seven students of the University of Groningen, who
reported to have no hearing problems, participated in the
experiment.

Stimuli

We used a subset of the set used by Gygi et al. (2007) in
their study of similarity and categorization of environmental
sounds. A total of thirty sounds was selected from the set of
100 sounds, ten from each of the three categories. Each set
of ten was chosen so that half of the sounds was close to the
center of the class in the MDS analysis and the other half is

1799



evenly distributed over the areas towards the borders
between the categories. The selection favored the more
typical and familiar sounds in the database (conform Ballas

1993). The resulting set is listed in table 1.

Noise-like center Tonal center Pulsal center
Airplane Baby (s) (Hand)clap (s)
Car start (s) Cat Clock (s)

Train Rooster (s) Glass break (s)
Waves (s) Siren (s) Ping pong (s)
Wipers Whistle (s) Type writer (s)
Noise-like periphery Tonal periphery Pulsal periphery
Bubbles (s) Bells Bowling ball
Electric saw Cows Cymbal (s)

Horse running (s) Laugh (s) Footsteps (s)
Sneeze Phone Icedrop

Zipper Sheep (s) Keyboard (s)

Table 1: Description of sounds from the three classes,
separated by closeness to the cluster center. The indication
(s) indicates the second example of Gygi’s sounds.

The selected target sounds were mixed with pink noise to
create the experimental stimuli. The average loudness of the
masking noise was kept constant. Consequently the
loudness of the target sound was adjusted to reach the
desired maximum local SNR. This method was chosen to
prevent the loudness of the noise from becoming a predictor
for the target sound or sound type. Additionally, all stimuli
were changed to a standard duration of four seconds to
prevent signal duration as a predictor of the source.
Likewise the point in time at which the target started varied
per noise level. All stimuli were created with a different
subset of pink noise, to avoid any local patterns in the noise
from becoming a predictor for the target sound or sound
type.

The maximum local SNR was calculated as follows. For
the noise segment as well as the target sound a cochleogram
was generated (Andringa 2002, Andringa 2008), as can be
seen in figure2. The cochleogram has a (almost)
logarithmic frequency axis and energy in dB. The time-
frequency matrix of cochleogram energy levels of the noise
was subtracted from the energy matrix of the target signal,
to result in a matrix of local SNR values for each time-
frequency point. The maximum value in this local SNR
matrix is referred to as the maximum local SNR of the
signal. Each target sound was amplified to achieve the
desired maximum local SNR, subsequently the amplified
target and noise signals were added to create the noisy
stimuli.

For each of the 30 target sounds, a set of 22 noisy stimuli
was created, each with a different maximum local SNR.
These 22 maximum local SNR values were chosen per
target sound by listening to each noise masked stimulus and
guesstimating the detectability and recognizability to choose
the scope of stimuli. As a result the target sounds vary in the
set of SNR values. In a pilot experiment, the scope of SNR
values for each target sound was adjusted where needed.
The step in maximum local SNR between the noisy stimuli

was not constant throughout the whole range of 22 noisy
stimuli. Around the guesstimated detection and recognition
thresholds for each of the target sounds the intervals in SNR
between the noisy stimuli were 1dB, while in less
interesting regions the intervals were 3 or even 5 dB.

Clean Signal

SNR [only positive)
[maxdtum local SNR = 30dB, Global SNR: 4.3157dB)

i -
’

Noisy Signal

Figure 2 Cochleograms for cymbals. The frequency axis
is logarithmic and ranges from 50 Hz to 6 kHz. The time
axis spans | seconds.

Equipment

The stimuli were presented with closed-back headphones
(Sennheiser HD 215) at comfortable listening levels well
above the ambient noise level. The experiment was run on a
laptop and presented to the participants using a customized
Matlab graphical user interface.

Procedure

For each participant 17 sounds were selected randomly from
the total set of 30 sounds. Ten were used as targets, six as
filler sounds, and one was used as an example before the
measurements started. At the start of the experiment,
participants were presented with a short description
detailing how to interact with the interface, followed by
three example items. After these examples, the actual
experiment started. The flow of the experiment is illustrated
in figure 3. The participants needed on average 50 minutes
to complete the experiment.

Items in the experiment consisted of noisy stimulus of a
four seconds followed by at least one question. The
participants were always asked to indicate what they heard:
nothing but noise, something unrecognizable, or something
they might have recognized. In case the participant reported
to have heard nothing but noise, the experiment proceeded
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to the next item. When the participant reported to have
heard something unrecognizable, the next question was to
indicate whether the sound heard in the noise was noise-
like, tonal, pulse-like, or a combination. Examples of these
were given in the introduction phase. When the participant
thought to have recognized the target, he/she was asked to
type the source and give it a confidence score ranging form
1 (guess) to 3 (certain). After the questions, the participant
could press mext' to proceed to the following item. All
answers were recorded.

-

Q: What do you hear?

Next sound
(until none remain)

possible removal
of sound from set

Q: Wasiit...
- noise-like?
- pulse-like?
- tone-like?

A: Only noise

A: Unidentified sound

Q: What did you hear?
- short answer in text field
-(guess) 1/ 2 / 3 (confident)

rl

[possible turnaround dialogli

Figure 3 Flow of the experiment

A: |dentified sound

Each next sound was either a target (70% probability) or a
filler (30% probability). In case of a target, one of the source
types was selected randomly from the list of targets. The
resulting random sequence of target and fillers avoids the
effect of participants searching for evidence of a specific
target. This is expected if all stimuli for a target sound were
to be presented consecutively. Filler sounds serve the same
purpose. The fillers also ensure a more varied set of noise
levels to avoid loss of attention, which may happen at stages
of the experiment when the target sounds are initially
undetectable. Filler stimuli were chosen randomly from the
range of the available noisy filler stimuli, excluding those
consisting of mostly noise, and the ones most easily
recognizable.

Although the order of the different target sound types was
random, the noisy stimuli for each specific target sound
were presented in a fixed order. The noisy stimuli were first
presented with increasing maximum local SNR. After
confident recognition by the participant, or after
presentation of the noisy stimulus with the highest
maximum local SNR, the stimuli were presented with
decreasing maximum local SNR until the target sound was
no longer detected. The order in which the noisy stimuli
were presented for a single target sound is illustrated in
figure 1.

For each target sound the five noisy stimuli with the
lowest maximum local SNR were skipped in phase 1 of the
experiment to speed up the experiment. When a participant

recognized a target sound with confidence rating 3 or had
reached the version with the best SNR without a confident
recognition, a popup dialog was displayed. This dialog
stated the name of the sound source, allowed the participant
to listen to a clean version of the target sound (without
masking noise), and asked if the participant had recognized
the sound correctly. This information was recorded and also
verified afterwards. After the presentation of the clean
signal one SNR level was skipped, the next noisy stimulus
to be played was the one with the second-lower maximum
local SNR.

In the second phase of the experiment the time between
presentations of each target is in the order of a minute and
the memory for the targets must be at least be that long. In
this phase a target sound was not immediately removed
from the set when it was no longer detected at a particular
maximum local SNR level,. Instead, the next time the target
sound was chosen for presentation, the noisy stimulus with
the same maximum local SNR level was presented to ensure
that the participant consistently could not detect the target in
the masking noise. If the sound was detected the second
presentation, the target sound remained in the set and the
next lower maximum local SNR would be presented the
next time the target sound was selected. The second time a
participant reported not to detect a particular target sound,
whether at the same or a lower maximum local SNR, that
target sound was removed from the set. The target sound
was also removed when the lowest maximum local SNR in
the set was reached. The experiment terminated when the
last of the target sounds was removed from the set.

Results

The difficulties associated with the computation of a “true”
local SNR, as outlined in the theoretical background, can be
accounted for by normalizing the experimental results to the
first detection threshold. The presentation of relative
thresholds is followed by a discussion of the absolute
thresholds, and their relation to the local SNR computation.

Relative thresholds

Figure 4 shows the average thresholds of each of the three
sound categories according to Gygi (2007) over all subjects.
The results are normalized to the threshold of first detection
(FD) to discount absolute threshold differences.

The three classes show the same pattern: the threshold of
first recognition (FR) is highest; the threshold of first
detection (FD), last recognition (LR), and last detection
(LD) are similar, with the thresholds of LD a bit smaller
than those of LR. This pattern proves the existence of a
recognition threshold benefit between FR and LR of about
8.0(mean)+5.0(SD) dB due to previous exposure to the
target. The FR threshold is 9.0+4.0 dB above the FD
threshold. The thresholds difference between LD and LR is
on average 2.6+2.1 dB. The noisy and tonal sounds show a
similar pattern of threshold mean and the associated
standard deviation.
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Figure 4 Relative thresholds (means with 1 SD error-bars)

The pulsal sounds deviate from tonal and noisy sounds:
while the spread in FD is smallest for pulsal sounds it
becomes larger than the other classes for FR, LR, and LD.
Furthermore, the pulsal thresholds for FR are a bit higher,
while the thresholds for LR and LD are lower. However, the
increased spread in FR is an artifact caused by the cymbal
sound, which was not recognized with maximal certainty by
a number of participants. This led both to a high FR
threshold and an increased spread.

The increased spread of LR and LD for pulsal sounds is
associated with repetitive sounds like bells, a clock ticking,
ice dropping in a glass, and keyboard and typewriter
presses. For these sounds the threshold shift is -7.7£0.7 dB
for LD and -4+3 dB for LR. The large threshold shift and
the small spread in LD of repetitive sounds suggest a high
and consistent benefit from previous exposure.

This result is consistent with the hypothesis that previous
exposure leads to the activation of specific detection
processes that are able to utilize repetitions of (known)
target constituents. This entails a combination of an active
search and a check for the reoccurrence of recent stimuli.
Since the target is repeated in decreasing SNR’s, only the
unmasked signal constituents refresh the memory of the
target. Note that the clock is the only repetitive sound that is
perfectly regular, the other sounds are less regular or even
irregular. The identical benefit suggests a bias toward
known signal constituents instead of a bias toward specific
rhythms.

To conclude, both detection and recognition benefit from
previous exposure. Recognition benefits in the order of 9 dB
SNR, detection of not-repeating targets benefits marginally
(less than 2 dB SNR), but consistently, from previous
exposure. In case of repetitions the recognition benefit
increases to more than 7 dB compared to FD. The additional
benefit of repetition in LD is about 5 dB.

Absolute thresholds

The absolute thresholds are meaningful although they
should be interpreted with some care due to the difficulties
in computing the local SNR. The ranking of the absolute
thresholds between the three categories, as estimated with
Friedmans test, is significant (p<0.001).
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Figure 5 Absolute thresholds (means with 1 SD error-
bars), separated according to the division in table 1

Figure 5 shows the absolute thresholds separated
according to the division in table 1. The upper panel shows
the results for the sounds near the threshold centers and the
lower panels shows the results for sounds closer to the
category borders. The upper panel shows a clear distinction
between the three classes, while the lower panel shows a
nearly identical response for all classes. Pulsal sounds have
the lowest threshold, which is consistent with the use of
temporal integration strategy that underestimates the SNR of
pulses compared to tones by about 5+3 dB for FD. The
difference between the tonal and the noisy thresholds in the
upper panel may have a similar explanation. On the other
hand the estimation of a noisy target in noise might also be
more difficult than the estimation of qualitatively different
target such as tones or pulses in noise.

Compared to the sounds in the cluster periphery, the
cluster-center sounds show a larger standard deviation for
all thresholds and especially for the tonal category center
sounds. In combination with the minimal interclass
difference of the class periphery sounds this supports the
interpretation that class periphery sounds are a mixture of
contributions of tones, pulses, and noises and as such shift
to the mean of the detection thresholds of all classes.
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Discussion

The results show prominent threshold differences due to
previous exposure and a relation between absolute threshold
and signal content in terms of pulsal, tonal, and noisy
contributions.

The average first recognition threshold of the target
sounds lies on average 9 dB above the first detection
threshold and 8 dB above the last recognition threshold.
This values corresponds to a factor 8 in energy and a factor
of almost 3 in distance to the source when assuming a
normal inverse square root decay of sound energy with
distance. However this estimate presupposes a known but
unexpected target sound. With a correct a priori hypothesis,
like one based on recent exposure, the source can be
recognized wherever it can be detected. The associated
evolutionary benefit forms supporting evidence of the
usefulness of the two strategy approach hypothesized in the
introduction.

The reason why the LD threshold is a bit lower than the
FD threshold might be related to a low-level expectation,
which leads to a threshold shift: expected sounds need less
conclusive evidence than unexpected sounds if the
expectation counts as part of the evidence.

The qualitative differences between LD and LR, in the
form of smaller threshold shift and much larger spread for
LR then for LD, suggests a partial decoupling of detection
and recognition; in a number of cases, information derived
well above the LD threshold, and therefore useful for
detection, could not be coupled to the correct recognition
result.

The high benefit of repetition may be a simple statistical
process: even when most repetitions are masked by the
noise, a few repetitions will be more detectable whenever
the fluctuations in the noise mask less of the target. The
depth of the noisy fluctuation in vivo are not known, but in
the auditory model used to determine the local SNR, the
fluctuations have a frequency (i.e. cochlea position)
dependent standard deviation of 2 to 3 dB. The 5 dB
repetition benefit corresponds therefore to about 2 standard
deviations of the noisy fluctuations. Assuming a Gaussian
distribution with a mean at the LD threshold without
repetition, only 5% of the repetitions will be detectable at a
SNR of LD — 2 std. This might nevertheless be sufficient to
detect a target with enough repetitions. This can explain the
value of the threshold shift. If the proposed mechanism is
correct, the average LD value will be a function of the
number of repetitions and the standard deviation of noise.
This expectation can be checked by further experiments.

The value of the absolute thresholds depends on the
temporal integration time. The natural auditory system
might rely on multiple time-constants, or on a single
(possibly frequency dependent) integration strategy. The
current experiment provided clear absolute threshold
distinctions for tonal, noisy, and pulsal sources, which
provides further evidence for the expectation that the
auditory system uses a separate processing/detection route
for each type. Although the local SNR estimation might not

be perfect, it is much more informative than a global SNR.
For example, a global SNR is sensitive to the amount of
silence around the target. The local SNR measure used in
this paper does not suffer from this effect. Furthermore, the
use of a local SNR raises valid the question whether the
local SNR must be defined differently for tones, noises, and
pulses.

Finally, the consequences for modeling auditory cognition
can be profound. In the first place the threshold shifts
suggests a double strategy involving both signal-based
searching, with thresholds corresponding to first detection,
and a checking mode, with a threshold corresponding to last
detection. Secondly, the results provide further support for a
perceptual separation in tonal, pulsal, and noisy
components.
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