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Abstract 
This study examines detection and recognition thresholds for 
environmental sounds in the presence of noise, with and 
without specific expectations about the targets. Human 
listeners were presented with a selection of everyday sounds 
masked by noise at initially increasing and later decreasing 
local signal-to-noise ratios. Participants had to indicate if they 
either detected or recognized the sound in the masking noise. 
The targets were selected from a database of environmental 
sounds. A previous perceptual similarity experiment on this 
database led to a separation in three classes that might be 
interpreted as predominantly tonal, pulsal, or noisy. We 
therefore separated the targets in these three groups. The 
resulting pattern of detection and recognition thresholds, with 
and without previous exposure to the target, suggest an 8 dB 
benefit for recognition and a 2dB benefit for detection. For 
repetitive sounds the detection benefit increased to 7 dB. The 
overall pattern of results provides support for the suggestion 
that sound recognition may be a combination of checking the 
presence of expected targets and a signal driven search in case 
of an unexpected target. The detection and recognition 
thresholds, suggest that human auditory perception might 
indeed employ different strategies for detecting tonal, pulsal, 
and noisy sounds. 
 
Keywords: Auditory perception; environmental sound; sound 
source recognition. 

Introduction 
Humans detect and recognize sound sources to interpret and 
act on events in their environment. However, surprisingly 
little research has been aimed at understanding 
environmental sound recognition. Some interesting studies 
in this field are Gaver (1993), Ballas (1993), Gygi, Kidd, & 
Watson (2007), and Guastavino (2007). Research on human 
everyday listening (defined conform Gaver, 1993) can 
provide a broader and more integrated understanding of 
auditory perception in the real world. One of the aims of this 
research is to discover which algorithms facilitate quick and 
adequate sound source recognition.  

Shinn-Cunningham (2008) argues that top-down attention 
influences auditory object (percept) formation and auditory 
object recognition. Therefore a theory of everyday sound 
recognition must not only explain environmental sound 
recognition, it must also include the effects of acoustic, 
contextual, or knowledge-based priming. Chiu (1995) 
concluded that priming of environmental sounds is 
predominantly perceptual and not influenced by only 
naming the source. This leads to the question of how 
previous exposure can influence priming.  

We can hypothesize that different attentional states 
correspond to different detection and recognition strategies. 

For example, when listeners know which sounds to expect 
they may use detailed expectations and check these. In 
contrast, a sound for which no useful a priori expectation 
exists might force a demanding memory search through all 
possible sound classes that can explain the input. Thresholds 
shifts are familiar to experimenters that are often exposed to 
stimuli masked by noise multiple times. They can detect 
these targets better than “naïve” listeners.  However there 
has been little research into this phenomenon, especially not 
for environmental sounds. 

Experimental Paradigm 
We describe an experimental paradigm for studying human 
(environmental) sound perception and recognition. It is 
designed to estimate detection and recognition thresholds 
with and without prior knowledge, so that it can be used to 
separate listening modes due to expectation differences.  

 
Figure 1 Overview of the experimental design. The 10 

different targets were presented in random alternating order. 
Each sound is first presented with a gradually increasing 
target-to-noise ratio. After presentation without noise, the 

target-to-noise ratio decreases again, until the target can no 
longer be recognized or detected.  

 
The experimental procedure is depicted in figure 1.  It 

involves the presentation of random alternating individual 
target sounds, referred to as the signal, masked by 
broadband noise. At every presentation in the first phase of 
the experiment the signal-to-noise ratio (SNR) of each target 
increases (detection becomes easier) while in phase two the 
SNR decreases (detection becomes more difficult). In the 
first phase the listener does not know the target so a mental 
search for a suitable class to explain the input is required. In 
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the second phase the participant has heard the target sound 
without any noise and the participant can use this 
information to check whether or not this specific target is 
present or not. For each experimental item the participant is 
asked whether or not a deviation from noise is detected and 
whether it is possible to recognize the deviation.  

This experimental paradigm can be used to identify robust 
and informative features for environmental sound 
recognition by measuring the detection and recognition 
thresholds for a wide variety of common sounds, and by 
analyzing the relation between unmasked signal content or 
signal type and associated thresholds. 

Environmental sounds 
The sounds used in the current experiment are a subset of 
those used in a recent perceptual similarity study by Gygi et 
al. (2007). The full set of 100 short sounds compiled by 
Gygi are of an unusual composition because they are 
selected to be both minimally controlled as well as 
representative for the typical environmental sound 
production processes described by Gaver (1993). Since they 
have been derived from a range of Internet sources little is 
known of the sounds. The only information is the general 
type of the sound source and the fact that they appear to be 
dominated by a single source, which is representative for 
many sounds in realistic environmental conditions.  

The study of Gygi et al. (2007) showed a division in three 
groups of sound sources, which Gygi described as harmonic 
sounds, discrete impact sounds, and continuous sounds. 
Although Gygi correlated the perceptual results to a large 
number of objective signal descriptors he could not identify 
definite acoustical features that determine the categorization 
of sounds in these three categories. However, Gygi’s results 
suggest that the composition in terms of tonal, pulse-like, 
and noise-like components determines much of the 
perceptual distance between sound sources.  

In a previous study we (Andringa 2008) used the energy 
fractions of tone, pulse, and aperiodic (noisy) energy to 
predict perceptual similarity between sounds from Gygi’s 
set. We hypothesized three different processing routes, 
because these three basic signal types each require a 
different combination of spectro-temporal evidence. A pulse 
is short and broadband and requires a combination of 
information over many frequency channels and a very short 
temporal integration interval. A tone requires a very narrow 
frequency range, but a longer temporal interval. Aperiodic 
noise requires both a range of frequency channels as well as 
a longer temporal interval. The qualitative differences 
between these three classes which leads to different 
integration strategies required to detect and track signal 
evidence might account for Gygi’s main results.  

Local SNR in Sound Recognition 
We use the SNR in dB to measure the detection and 
recognition thresholds in noise. Recognition thresholds have 
been studied extensively for speech recognition. Allen 
(1994) provides an overview of Harvey Fletcher's work at 

Bell labs (1920 – 1950), which shows that the probability of 
correct recognition of nonsense syllables depends 
exclusively on the local (in time and frequency) SNR, rather 
than the energy spectrum of the speech signal. We expect 
this to be true for environmental sounds too. Therefore, we 
constructed our stimuli with the maximum local SNR as a 
measure of the difficulty of the task. 

It is important to stress a fundamental problem with the 
determination of the local SNR for pulse-like signals. A 
local SNR is defined as the ratio between the instantaneous 
power per channel (or range of channels) for the target 
signal and the masking noise. The instantaneous power is a 
moving average of the instantaneous signal energy (the 
square of the excitation). For tonal components we can 
average over a number of periods to arrive at an 
instantaneous power-value that is independent of the 
individual oscillations and phase effects. For pulses the 
notion of instantaneous power cannot be defined in this 
manner, because there is no sensible integration time-
constant apart from an infinitely small one, which 
corresponds to no integration at all. As a consequence it is 
impossible to choose a single time-constant that is ideal for 
all types of sounds.  

Because no experimentally validated integration time-
constant for pulse-like signals has been estimated, we use a 
temporal integration strategy that is more suitable for tonal 
and noise-like signals. This integration strategy is likely to 
underestimate the actual SNR for pulse-like signals, which 
leads to lower thresholds. We use the integration method 
described in Andringa (2008) with a frequency-channel 
dependent integration time-constant equal to two times the 
channels best period, which is the inverse of the channel 
center-frequency, with a minimum of 5 ms for all center 
frequencies above 500 Hz. The diverse thresholds described 
in this paper can help to identify the strategies and 
associated parameters for (pulse-like) environmental 
sounds.  

The next section describes the stimuli and experimental 
procedure in more detail. The results and discussion sections 
address the relation between top-down processing and signal 
content in terms of noise-like, tonal, and pulse-like 
contributions.   

Method 

Participants 
Twenty-seven students of the University of Groningen, who 
reported to have no hearing problems, participated in the 
experiment. 

Stimuli 
We used a subset of the set used by Gygi et al. (2007) in 
their study of similarity and categorization of environmental 
sounds. A total of thirty sounds was selected from the set of 
100 sounds, ten from each of the three categories. Each set 
of ten was chosen so that half of the sounds was close to the 
center of the class in the MDS analysis and the other half is 
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evenly distributed over the areas towards the borders 
between the categories. The selection favored the more 
typical and familiar sounds in the database (conform Ballas 
1993). The resulting set is listed in table 1.  
  

Noise-like center Tonal center Pulsal center 
Airplane Baby (s) (Hand)clap (s) 
Car start (s) Cat Clock (s) 
Train Rooster  (s) Glass break (s) 
Waves (s) Siren (s) Ping pong (s) 
Wipers Whistle (s) Type writer (s) 
Noise-like periphery Tonal periphery Pulsal periphery 
Bubbles (s) Bells Bowling ball 
Electric saw Cows Cymbal (s) 
Horse running (s) Laugh (s) Footsteps (s) 
Sneeze Phone Icedrop  
Zipper Sheep (s) Keyboard (s) 

Table 1: Description of sounds from the three classes, 
separated by closeness to the cluster center. The indication 

(s) indicates the second example of Gygi’s sounds. 
 
The selected target sounds were mixed with pink noise to 

create the experimental stimuli. The average loudness of the 
masking noise was kept constant. Consequently the 
loudness of the target sound was adjusted to reach the 
desired maximum local SNR. This method was chosen to 
prevent the loudness of the noise from becoming a predictor 
for the target sound or sound type. Additionally, all stimuli 
were changed to a standard duration of four seconds to 
prevent signal duration as a predictor of the source. 
Likewise the point in time at which the target started varied 
per noise level. All stimuli were created with a different 
subset of pink noise, to avoid any local patterns in the noise 
from becoming a predictor for the target sound or sound 
type.  

The maximum local SNR was calculated as follows. For 
the noise segment as well as the target sound a cochleogram 
was generated (Andringa 2002, Andringa 2008), as can be 
seen in figure 2. The cochleogram has a (almost) 
logarithmic frequency axis and energy in dB. The time-
frequency matrix of cochleogram energy levels of the noise 
was subtracted from the energy matrix of the target signal, 
to result in a matrix of local SNR values for each time-
frequency point. The maximum value in this local SNR 
matrix is referred to as the maximum local SNR of the 
signal. Each target sound was amplified to achieve the 
desired maximum local SNR, subsequently the amplified 
target and noise signals were added to create the noisy 
stimuli.  

For each of the 30 target sounds, a set of 22 noisy stimuli 
was created, each with a different maximum local SNR. 
These 22 maximum local SNR values  were chosen per 
target sound by listening to each noise masked stimulus and 
guesstimating the detectability and recognizability to choose 
the scope of stimuli. As a result the target sounds vary in the 
set of SNR values. In a pilot experiment, the scope of SNR 
values for each target sound was adjusted where needed. 
The step in maximum local SNR between the noisy stimuli 

was not constant throughout the whole range of 22 noisy 
stimuli. Around the guesstimated detection and recognition 
thresholds for each of the target sounds the intervals in SNR 
between the noisy stimuli were 1dB, while in less 
interesting regions the intervals were 3 or even 5 dB.  

 
Figure 2 Cochleograms for cymbals. The frequency axis 

is logarithmic and ranges from 50 Hz to 6 kHz. The time 
axis spans 1 seconds.  

Equipment 
The stimuli were presented with closed-back headphones 
(Sennheiser HD 215) at comfortable listening levels well 
above the ambient noise level. The experiment was run on a 
laptop and presented to the participants using a customized 
Matlab graphical user interface. 

Procedure 
For each participant 17 sounds were selected randomly from 
the total set of 30 sounds. Ten were used as targets, six as 
filler sounds, and one was used as an example before the 
measurements started. At the start of the experiment, 
participants were presented with a short description 
detailing how to interact with the interface, followed by 
three example items. After these examples, the actual 
experiment started. The flow of the experiment is illustrated 
in figure 3. The participants needed on average 50 minutes 
to complete the experiment. 

Items in the experiment consisted of noisy stimulus of a 
four seconds followed by at least one question. The 
participants were always asked to indicate what they heard: 
nothing but noise, something unrecognizable, or something 
they might have recognized. In case the participant reported 
to have heard nothing but noise, the experiment proceeded 
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to the next item. When the participant reported to have 
heard something unrecognizable, the next question was to 
indicate whether the sound heard in the noise was noise-
like, tonal, pulse-like, or a combination. Examples of these 
were given in the introduction phase. When the participant 
thought to have recognized the target, he/she was asked to 
type the source and give it a confidence score ranging form 
1 (guess) to 3 (certain). After the questions, the participant 
could press 'next' to proceed to the following item. All 
answers were recorded.  

 

Each next sound was either a target (70% probability) or a 
filler (30% probability). In case of a target, one of the source 
types was selected randomly from the list of targets.  The 
resulting random sequence of target and fillers avoids the 
effect of participants searching for evidence of a specific 
target. This is expected if all stimuli for a target sound were 
to be presented consecutively. Filler sounds serve the same 
purpose. The fillers also ensure a more varied set of noise 
levels to avoid loss of attention, which may happen at stages 
of the experiment when the target sounds are initially 
undetectable. Filler stimuli were chosen randomly from the 
range of the available noisy filler stimuli, excluding those 
consisting of mostly noise, and the ones most easily 
recognizable. 

Although the order of the different target sound types was 
random, the noisy stimuli for each specific target sound 
were presented in a fixed order. The noisy stimuli were first 
presented with increasing maximum local SNR. After 
confident recognition by the participant, or after 
presentation of the noisy stimulus with the highest 
maximum local SNR, the stimuli were presented with 
decreasing maximum local SNR until the target sound was 
no longer detected. The order in which the noisy stimuli 
were presented for a single target sound is illustrated in 
figure 1. 

For each target sound the five noisy stimuli with the 
lowest maximum local SNR were skipped in phase 1 of the 
experiment to speed up the experiment. When a participant 

recognized a target sound with confidence rating 3 or had 
reached the version with the best SNR without a confident 
recognition, a popup dialog was displayed. This dialog 
stated the name of the sound source, allowed the participant 
to listen to a clean version of the target sound (without 
masking noise), and asked if the participant had recognized 
the sound correctly. This information was recorded and also 
verified afterwards. After the presentation of the clean 
signal one SNR level was skipped, the next noisy stimulus 
to be played was the one with the second-lower maximum 
local SNR. 

In the second phase of the experiment the time between 
presentations of each target is in the order of a minute and 
the memory for the targets must be at least be that long. In 
this phase a target sound was not immediately removed 
from the set when it was no longer detected at a particular 
maximum local SNR level,. Instead, the next time the target 
sound was chosen for presentation, the noisy stimulus with 
the same maximum local SNR level was presented to ensure 
that the participant consistently could not detect the target in 
the masking noise. If the sound was detected the second 
presentation, the target sound remained in the set and the 
next lower maximum local SNR would be presented the 
next time the target sound was selected. The second time a 
participant reported not to detect a particular target sound, 
whether at the same or a lower maximum local SNR, that 
target sound was removed from the set. The target sound 
was also removed when the lowest maximum local SNR in 
the set was reached. The experiment terminated when the 
last of the target sounds was removed from the set. 

Results 
The difficulties associated with the computation of a “true” 
local SNR, as outlined in the theoretical background, can be 
accounted for by normalizing the experimental results to the 
first detection threshold. The presentation of relative 
thresholds is followed by a discussion of the absolute 
thresholds, and their relation to the local SNR computation.  

Relative thresholds 
Figure 4 shows the average thresholds of each of the three 
sound categories according to Gygi (2007) over all subjects. 
The results are normalized to the threshold of first detection 
(FD) to discount absolute threshold differences.  

The three classes show the same pattern: the threshold of 
first recognition (FR) is highest; the threshold of first 
detection (FD), last recognition (LR), and last detection 
(LD) are similar, with the thresholds of LD a bit smaller 
than those of LR. This pattern proves the existence of a 
recognition threshold benefit between FR and LR of about 
8.0(mean)±5.0(SD) dB due to previous exposure to the 
target. The FR threshold is 9.0±4.0 dB above the FD 
threshold. The thresholds difference between LD and LR is 
on average 2.6±2.1 dB. The noisy and tonal sounds show a 
similar pattern of threshold mean and the associated 
standard deviation.  

Figure 3 Flow of the experiment 
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Figure 4 Relative thresholds (means with 1 SD error-bars) 

 
The pulsal sounds deviate from tonal and noisy sounds: 

while the spread in FD is smallest for pulsal sounds it 
becomes larger than the other classes for FR, LR, and LD. 
Furthermore, the pulsal thresholds for FR are a bit higher, 
while the thresholds for LR and LD are lower. However, the 
increased spread in FR is an artifact caused by the cymbal 
sound, which was not recognized with maximal certainty by 
a number of participants. This led both to a high FR 
threshold and an increased spread.  

The increased spread of LR and LD for pulsal sounds is 
associated with repetitive sounds like bells, a clock ticking, 
ice dropping in a glass, and keyboard and typewriter 
presses. For these sounds the threshold shift is -7.7±0.7 dB 
for LD and -4±3 dB for LR. The large threshold shift and 
the small spread in LD of repetitive sounds suggest a high 
and consistent benefit from previous exposure.  

This result is consistent with the hypothesis that previous 
exposure leads to the activation of specific detection 
processes that are able to utilize repetitions of (known) 
target constituents. This entails a combination of an active 
search and a check for the reoccurrence of recent stimuli. 
Since the target is repeated in decreasing SNR’s, only the 
unmasked signal constituents refresh the memory of the 
target. Note that the clock is the only repetitive sound that is 
perfectly regular, the other sounds are less regular or even 
irregular. The identical benefit suggests a bias toward 
known signal constituents instead of a bias toward specific 
rhythms.  

To conclude, both detection and recognition benefit from 
previous exposure. Recognition benefits in the order of 9 dB 
SNR, detection of not-repeating targets benefits marginally 
(less than 2 dB SNR), but consistently, from previous 
exposure. In case of repetitions the recognition benefit 
increases to more than 7 dB compared to FD. The additional 
benefit of repetition in LD is about 5 dB. 

 Absolute thresholds 
The absolute thresholds are meaningful although they 
should be interpreted with some care due to the difficulties 
in computing the local SNR. The ranking of the absolute 
thresholds between the three categories, as estimated with 
Friedmans test, is significant (p<0.001). 
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Figure 5 Absolute thresholds (means with 1 SD error-
bars), separated according to the division in table 1  

 
Figure 5 shows the absolute thresholds separated 

according to the division in table 1. The upper panel shows 
the results for the sounds near the threshold centers and the 
lower panels shows the results for sounds closer to the 
category borders. The upper panel shows a clear distinction 
between the three classes, while the lower panel shows a 
nearly identical response for all classes. Pulsal sounds have 
the lowest threshold, which is consistent with the use of 
temporal integration strategy that underestimates the SNR of 
pulses compared to tones by about 5±3 dB for FD. The 
difference between the tonal and the noisy thresholds in the 
upper panel may have a similar explanation. On the other 
hand the estimation of a noisy target in noise might also be 
more difficult than the estimation of qualitatively different 
target such as tones or pulses in noise.  

 Compared to the sounds in the cluster periphery, the 
cluster-center sounds show a larger standard deviation for 
all thresholds and especially for the tonal category center 
sounds. In combination with the minimal interclass 
difference of the class periphery sounds this supports the 
interpretation that class periphery sounds are a mixture of 
contributions of tones, pulses, and noises and as such shift 
to the mean of the detection thresholds of all classes.  
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Discussion 
The results show prominent threshold differences due to 
previous exposure and a relation between absolute threshold 
and signal content in terms of pulsal, tonal, and noisy 
contributions.  

The average first recognition threshold of the target 
sounds lies on average 9 dB above the first detection 
threshold and 8 dB above the last recognition threshold. 
This values corresponds to a factor 8 in energy and a factor 
of almost 3 in distance to the source when assuming a 
normal inverse square root decay of sound energy with 
distance. However this estimate presupposes a known but 
unexpected target sound. With a correct a priori hypothesis, 
like one based on recent exposure, the source can be 
recognized wherever it can be detected. The associated 
evolutionary benefit forms supporting evidence of the 
usefulness of the two strategy approach hypothesized in the 
introduction.  

The reason why the LD threshold is a bit lower than the 
FD threshold might be related to a low-level expectation, 
which leads to a threshold shift: expected sounds need less 
conclusive evidence than unexpected sounds if the 
expectation counts as part of the evidence.  

The qualitative differences between LD and LR, in the 
form of smaller threshold shift and much larger spread for 
LR then for LD, suggests a partial decoupling of detection 
and recognition; in a number of cases, information derived 
well above the LD threshold, and therefore useful for 
detection, could not be coupled to the correct recognition 
result.  

The high benefit of repetition may be a simple statistical 
process: even when most repetitions are masked by the 
noise, a few repetitions will be more detectable whenever 
the fluctuations in the noise mask less of the target. The 
depth of the noisy fluctuation in vivo are not known, but in 
the auditory model used to determine the local SNR, the 
fluctuations have a frequency (i.e. cochlea position) 
dependent standard deviation of 2 to 3 dB. The 5 dB 
repetition benefit corresponds therefore to about 2 standard 
deviations of the noisy fluctuations. Assuming a Gaussian 
distribution with a mean at the LD threshold without 
repetition, only 5% of the repetitions will be detectable at a 
SNR of LD – 2 std. This might nevertheless be sufficient to 
detect a target with enough repetitions. This can explain the 
value of the threshold shift. If the proposed mechanism is 
correct, the average LD value will be a function of the 
number of repetitions and the standard deviation of noise. 
This expectation can be checked by further experiments.  

The value of the absolute thresholds depends on the 
temporal integration time. The natural auditory system 
might rely on multiple time-constants, or on a single 
(possibly frequency dependent) integration strategy. The 
current experiment provided clear absolute threshold 
distinctions for tonal, noisy, and pulsal sources, which 
provides further evidence for the expectation that the 
auditory system uses a separate processing/detection route 
for each type. Although the local SNR estimation might not 

be perfect, it is much more informative than a global SNR. 
For example, a global SNR is sensitive to the amount of 
silence around the target. The local SNR measure used in 
this paper does not suffer from this effect. Furthermore, the 
use of a local SNR raises valid the question whether the 
local SNR must be defined differently for tones, noises, and 
pulses.   

Finally, the consequences for modeling auditory cognition 
can be profound. In the first place the threshold shifts 
suggests a double strategy involving both signal-based 
searching, with thresholds corresponding to first detection, 
and a checking mode, with a threshold corresponding to last 
detection. Secondly, the results provide further support for a 
perceptual separation in tonal, pulsal, and noisy 
components.  
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