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Abstract

We explore the coevolution of punishment and prosociality in
a population of learning agents. Across three models, we find
that the capacity to learn from punishment can allow both pun-
ishment and prosocial behavior to evolve by natural selection.
In order to model the effects of innate behavioral dispositions
(such as prosociality) combined with the effects of learning
(such as a response to contingent punishment), we adopt a
Bayesian framework. Agents choose actions by considering
their probable outcomes, calculated from an innate, heritable
prior distribution and agents’ experience of actual outcomes.
We explore models in which an agent learns about the disposi-
tions of each individual agent independently, as well as models
in which an agent combines individual-level and group-level
learning. Our results illustrate how the integration of Bayesian
cognitive models into agent-based simulations of natural selec-
tion can reveal evolutionary dynamics in the optimal balance
between innate knowledge and learning.

Keywords: costly punishment; hierarchical Bayesian models;
prosociality; evolution; societal modeling.

Introduction

Why isn’t theft more common? To respect others’ property
is nice, but pilfering is more profitable. One family of ex-
planations posits a key role for punishment (e.g. Boyd &
Richerson, 1992). In brief, when people can learn from pun-
ishment, it pays to punish theft. And, when people punish
theft, it pays not to steal. Thus, the coevolution of punish-
ment and prosociality depends critically upon the manner in
which perpetrators learn from punishment. Here, we compare
the evolutionary dynamics that result under several different
learning models, demonstrating sometimes dramatically dif-
ferent outcomes. These findings have implications for our
understanding of the evolution of social behavior in particu-
lar, but also provide a case study of a more general problem:
how can cognitive models of learned behavior and evolution-
ary models of innate behavior be integrated?

We model agents equipped with Bayesian learning mech-
anisms. One key advantage of a Bayesian approach is that it
provides a natural means of combining heritable, innate dis-
positions with experience to determine an agent’s behavior
(see also Kirby, Dowman, & Griffiths, 2007). In our model,
an agent decides whether or not to steal from a potential vic-
tim by considering the probability that it will be punished for
theft, and then using this probability to calculate the expected
value of theft (the antisocial choice) versus abstaining from
theft (the prosocial choice). Agents’ guesses about the prob-
ability of punishment are generated by a Bayesian updating

mechanism: their innate belief about the probability of pun-
ishment (i.e., a prior distribution over hypotheses) along with
their experience of past punishment (i.e., data) is used to as-
sess the probability of future punishment (i.e. the probability
of a new datum given the posterior distribution over hypothe-
ses). Thus, it should be clear how we can use prior proba-
bilities to model innate prosociality versus antisociality. A
prior expectation of punishment will translate into an innate
prosocial tendency not to steal. Conversely, a prior expec-
tation against punishment will translate into an innate anti-
social tendency to steal. Critically, we allow heritable prior
probabilities to mutate in a system of replicating agents—
thereby changing innate contributions to prosocial vs. anti-
social behavior—and explore the resultant evolutionary dy-
namics.

Modeling innate behavioral tendencies as prior probabil-
ities allows for these tendencies to vary in strength and
persistance—in biological terms, innate tendencies can vary
in their degree of canalization versus plasticity. For instance,
an agent could have an innate belief that it will not be pun-
ished that is very strong (highly canalized), in which case it
will continue to steal in the face of consistently experienced
punishment for theft. Or, an agent could have an innate be-
lief that it will be punished that is very weak (highly plas-
tic), in which case it will cease stealing after experiencing
a small amount of consistent punishment. This feature of the
Bayesian approach provides an important advantage over past
attempts to model the coevolution of punishment and proso-
ciality. Other studies have considered a restricted set of spe-
cialized behavioral responses to punishment: for instance,
adopting pure prosocial behavior after a single instance of
punishment, (e.g. Sigmund, Hauert, & Nowak, 2001; Brandt,
Hauert, & Sigmund, 2003). This corresponds to a high degree
of plasticity—but in the model we present, rather than stipu-
lating a high degree of plasticity we explore the evolutionary
dynamics that lead to plasticity versus canalization.

A second key advantage of a Bayesian approach is the ease
with which so-called “hierarchical” learning can be modeled
(Griffiths, Kemp, & Tenenbaum, 2008; Tenenbaum, Griffiths,
& Kemp, 2006). For instance, in our model a potential thief
might guess whether a victim is likely to punish by consid-
ering not only that specific victim’s prior record of punish-
ment, but also the prior record of punishment from other vic-
tims. Thus, inferences about individual-level behavior might
be hierarchically embedded in inferences about group-level
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behavior. Experimental evidence suggests that people do, in-
deed, adopt more prosocial behavior with novel group mem-
bers when past group members have punished antisocial be-
havior (Fehr & Gachter, 2002). We directly compare learn-
ing models operating exclusively at the individual level with
learning models that operate across the individual and group
levels, demonstrating notably different evolutionary dynam-
ics. Specifically, when everybody else punishes, and peo-
ple predict that you will do what everybody else does, there
is no need to pay the costs of punishment. Thus, a non-
punitive strategy can invade a population dominated by costly
punishment when inferences from group-level behavior to
individual-level behavior are strong.

Throughout this paper we model an agent’s innate behav-
ior in terms of its innate beliefs. We do not choose this ap-
proach because we believe that all innate behaviors are a con-
sequence of innate beliefs, as such. Rather, we choose this
approach because Bayes’ rule provides a framework in which
innate and experienced factors can be formally combined, and
in which innate factors can vary both in their consequences
(i.e. degree of prosociality) and strength (i.e. degree of canal-
ization). Thus, a formal model of beliefs can yield a useful
functional model of behavior. We will consider both the ben-
efits and drawbacks of this approach.

Methods

We explored evolutionary dynamics for three different cog-
nitive models through computer simulation. Each simulation
involved a population size of 25 agents over 4000 genera-
tions. In every generation, each agent interacts with each
other agent 50 times: 25 times in the “perpetrator” role (de-
ciding whether or not to steal) and 25 times in the “victim”
role (deciding whether or not to respond to theft with punish-
ment).

Each time a perpetrator decides whether to steal, it has per-
fect knowledge of the value of the theft (always 1 fitness unit)
as well as the value of some behavioral alternative to theft,
V.1, randomly chosen from (—2,2) fitness units at the outset
of each interaction. It also has perfect knowledge of the cost
of being punished (always 2 fitness units), but must estimate
the probability of being punished for theft, P(pun|theft). It
estimates this probability by one of three Bayesian methods,
described below. It then calculates the expected value of theft,
Epese = 1 - 2P(pun|theft). Finally, the agent chooses whether
to steal by applying a softmax function with temperature pa-
rameter A = 3 to the expected value of theft and known value
of the behavioral alternative (Daw & Doya, 2006):

eXEthe ft

P(theft) = (M)

e(XEﬂwff) -+ e(M/alt)

If the perpetrator choses not to steal, no social interaction
takes place and therefore the victim does not punish. If the
perpetrator chooses to steal, the victim punishes with prob-
ability 0. An agent’s 0 is fixed over the course of its life-

time, and inherited by that agent’s “children” subject to a 1%
chance of mutation; mutant 0s are drawn uniformly from the

interval (0,1). Punishment carries a cost of 0.5 fitness units
to the punisher.

At the end of each generation all agents die are and re-
placed using a modified version of the pairwise comparison
process for natural selection (Traulsen, Pacheco, & Nowak,
2007). In this process, each agent’s fitness, Fy, is compared
with the fitness of another agent selected randomly, F, and
the agent passes its heritable traits to the replacement with
probability:

1
14 efv—Fa

P(self replacement) = (2)

Otherwise, the randomly selected other passes its heritable
traits to the replacement.

Model 1: Uniform prior

In the uniform prior model, perpetrators estimate the proba-
bility of being punished for theft P(pun|theft) for each vic-
tim independently, given its history of interactions with that
victim. This is calculated from a posterior probability dis-
tribution over the interval of possible 8 values [0, 1] that vic-
tim might possess, given a uniform prior probability for all
0 values and a binomial distribution parameterized by the
victim-specific history of punishment: the number of times
N,., that the agent has been punished by the victim for theft,
and the total number of thefts N, from the victim. The pos-
terior predictive distribution of punishment given theft—that
is, the agent’s best guess as to whether it’s next theft will be
punished by that individual—has a simple analytic solution
(Griffiths et al., 2008):

]Vpun + 1

P(pun|theft) = N2
theft

3)
Thus, a perpetrator estimates P(pun|theft) at .5 in its first in-
teraction with that agent, and will tend to make more accurate
predictions over the course of subsequent interactions.

Model 2: One-level

A simple extension of the uniform prior model allows the
evolution of non-uniform prior probability distributions over
0, so that individual perpetrators apply an inherited prior to
each individual victim and calculate a victim-specific poste-
rior distribution over 0 given that victim’s history of punitive
responses. We define the prior distribution over 6 using a
beta distribution parameterized Bera(a, ), o, > 0. Here,
again, the posterior predictive distribution (agent’s estimate
P(pun|theft) has an analytic solution (Griffiths et al., 2008):

N,
( pun+(x) (4)

The agent’s initial estimate P(pun|theft) is given by O%-B'
When this initial estimate is large, the agent exhibits an in-
nate bias towards prosociality; when this initial estimate is
small, the agent exhibits an innate bias towards antisocial-
ity. Additionally, large values of o and 3 make an agent’s es-
timated P(pun|theft) resistant to experiential modification—
that is, large values of a and B dominate N,,,, and N, ;. Thus,
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canalization is captured by (ct+ ) >> 0, and plasticity by
(+P)~0.

In this one-level model, an agent’s o and B parameters are
heritable traits. During replacement, o and 3 parameters are
each subject to a 1% rate of mutation, with new values se-
lected from exponential distributions with mean 2. In the first
generation of each simulation, all individuals were initialized
with parameters o = 1, = 1, that is, a uniform prior over .

Model 3: Hierarchical

Finally, we consider a hierarchical Bayesian learning model
that combines inferences across the individual and group lev-
els. In essence, a hierarchical model tests whether indi-
viduals’ O values are consistent or inconsistent across the
group, and makes inferences about individuals’ future behav-
ior based on that decision. Thus, an agent’s prior history of
punishment with one victim can exert an influence on its pre-
dictions about another victim’s punitive behavior. In order to
perform this inference, each perpetrator calculates the poste-
rior probability of several different probability distributions
over 0 (hereafter, “hypotheses”). For instance, consider three
particular hypotheses: (1): Beta(100,1), (2): Beta(1,100) and
(3): Beta(1,0.01). If an agent consistently experiences pun-
ishment from all victims of theft, it will select (1) as the most
likely hypothesis; conversely, if it never experiences punish-
ment, it will select (2). However, if an agent experiences
a mixed population where some victims consistently punish
and others consistently do not, it will select (3) as the most
likely hypothesis, because (3) allows the posterior probabil-
ity of 0 to be strongly determined by the unique history of
punishment with each individual victim.

In a hierarchical model, an individual’s behavior is char-
acterized by high levels of prosociality when it favors hy-
potheses with values of aiﬂs ~ 1 and an individual’s behav-
ior is characterized by strong “group bias” (i.e., tendency to
infer from group behavior to individual behavior) when it fa-
vors hypotheses with values of (o.+ ) >> 0. Agents inherit
an innate probability distribution over hypotheses, subject to
mutation. If this probability distribution is even across all hy-
potheses, prosociality and group bias are highly plastic traits.
As this innate probability distribution is increasingly skewed
across hypotheses, either prosociality, group bias, or both be-
come increasingly canalized.

In the hierarchical model we implemented, each agent
considers 45 different probability distributions over 6:
a full crossing of nine levels of prosociality (ﬁﬁ €
{.1,.2,....9}) with five levels of group bias (o + P €
{0.2, 2, 20, 200, 2000}). An estimate of P(pun|theft) is ob-
tained by applying equation 4 to each of the 45 hypotheses,
and then taking the average estimate weighted by the poste-
rior probability of each hypotheses, P(h;|history). For a given
prior distribution over the 45 hypotheses P(%), and a history
of punitive responses, the posterior probability of each hy-
pothesis can be calculated:

P(history|h;)P(h;)
P(history)

Where P(history|h;) is the likelihood of each victim’s re-
sponses under a given hypothesis as calculated by equation 4,
and P(history) is the average P(history|h;) for all 45 hypothe-
ses, weighted by their prior probabilities.

We allowed replication and mutation in the prior proba-
bilities assigned to the 45 hypotheses that each hierarchical
learner considered. In order to simplify the evolution of prior
probabilities over this hypothesis space, we calculated each
agent’s prior probabilities with two heritable parameters: a
“prosociality” parameter Y and a “group bias” parameter .
All 45 hypotheses were classified according to nine levels of
O%B ranked from -5 to 5 (R,,) and five levels of (a.+ B) ranked
from -2 to 2 (R.). The probabilistic weighting of each hypoth-
esis was calculated:

P(h;|history) =

®)

Sp; = e¥Rriete (6)

Scores were then normalized to sum to 1 in order to derive
the prior probability of each hypothesis. In the first genera-
tion of each simulation, all individuals were initialized with a
uniform prior over the 45 hypotheses.

Non-learning control models

As a control, we also tested three corresponding non-learning
models: a uniform prior non-learning model, a one-level non-
learning model, and a hierarchical non-learning model. Each
of these models was constructed by eliminating the calcula-
tion of posterior probability distributions given a history of
punishment. Thus, in the uniform-prior non-learning model,
all agents always estimated the probability of punishment at
exactly .5. In the one-level and hierarchical non-learning
models, agents always estimated the probability of punish-
ment according to their inherited prior distribution. The latter
two cases test whether punishment and prosociality can co-
evolve in the absence of learning.

Results

Uniform prior model

8

o 0.5 i
one-level
0 uniform
1000 2000 3000 2000

Generations

Figure 1: Average population 0 values for 50 simulations over
generations 1000-4000 (following the introduction of 6 > 0
as an evolvable strategy in generation 1000) for the uniform
prior model and the one-level model.

Following the introduction of mutations in punishment
strategies, population levels of punishment rapidly climbed
towards the maximum level in the uniform prior model. That
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is, once 6 was heritable and could mutate towards values > 0,
population 0 values approached 1 within a few hundred gen-
erations (Figure 1). In the final, 4000th generation of each
simulation, the average population 6 across 50 independent
simulations was .98 (SE < .01).

Throughout the results section, we describe “population
parameters” (e.g., “population 0”’) meaning the average value
of the parameter over the 25 individuals comprising the pop-
ulation of a single simulation. Often, we discuss the “average
population parameter” across 50 simulations, referring to in-
dependent simulations of 50 different populations, each com-
prising 25 individuals. That is, we assess whether multiple
independent simulations are characterized by similar average
values of the parameters of interest.

One-level model

As in the uniform prior model, in the one-level model pop-
ulation levels of punishment climbed towards the maximum
level (6 ~ 1) within a few hundred generations, and the strat-
egy 0 ~ 1 typically continued to dominate the population
for the remainder of the simulation (Figure 1). In the final,
4000th generation of each simulation, the average population
0 across 50 independent simulations was .98 (SE < .01).

Unlike the uniform prior model, the one-level model al-
lowed prior probabilities of punishment to mutate and evolve.
At the end of the initial 1000 generations of each simulation,
during which 0 values were fixed at 0, the average popula-
tion ﬁﬁ across 50 distinct simulated populations was .05
(SE < .01), indicating a behavioral bias towards antisocial
behavior. The average population o+ B was 2.23 (SE .17),
indicating low levels of canalization of this innate antisocial
bias.

By the 2000th generation, however—following 1000 gen-
erations during which population 0 values climbed towards
1—this innate behavioral tendency had reversed. The average
population ﬁﬁ was .91 (SE .01), indicating a behavioral bias
towards prosocial behavior. The average population o + 3
was 3.2 (SE .25), indicating low levels of canalization of this
innate prosocial bias. For the remaining 2000 generations of
each simulation, population levels of prosociality and canal-
ization remained largely stable.

1 r"'—' o o
o _
0
prosociality
4000

3000
Generations

0 .

1000 2000
Figure 2: Average population levels of o%ﬁ and 8 for 50 sim-
ulations over generations 1000-4000 (following the introduc-
tion of 6 > 0 as an evolvable strategy in generation 1000) for
the one-level model.

As Figure 2 reflects, population values of % (innate esti-
mate of others’ punishment levels) typically tracked popula-

tion values of 6 (innate punishment level) closely.

Hierarchical model

Unlike the one-level models, in which population levels of
both punishment and prosociality climbed rapidly towards 1
(always punish theft, always expect theft to be punished) and
then remained relatively constant, simulations using a hierar-
chical model typically exhibited large, synchronized fluctua-
tions of punishment and prosociality. A representative exam-
ple of a single simulation is plotted in Figure 3a. (Because av-
eraging across distinct simulations masks these fluctuations,
we have chosen to present graphical data from only a sin-
gle simulation. We selected an example with slightly more
fluctuations than typical, in order to provide several viewable
instances for the reader. However, the degrees of synchro-
nization exhibited in Figures 3a and 3b were chosen from the
median).

Figure 3a exhibits the relationship between population lev-
els of 0 and population levels of the prior P(pun|theft), which
reflects an innate bias towards prosociality or antisociality.
At the end of the initial 1000 generations of each simulation,
during which 0 values were fixed at O, the average popula-
tion prior P(pun|theft) across 50 simulated populations was
.12 (SE < .01), indicating a behavioral bias towards antiso-
cial behavior. Over the course of the remaining 3000 simula-
tions, population levels of 0 fluctuated between O and 1. And,
the population prior P(pun|theft) typically tracked these fluc-
tuating Os with a slight delay. Thus, innate expectations of
punishment tended to track actual punishment levels.

Figure 3b exhibits the relationship between population lev-
els of “group bias” and population levels of 8. The bright
blue underlay indicates generations during where the herita-
ble group bias parameter y exceeded a value of 1.5. During
these periods, individuals tended to draw strong inferences
about the behavior of an individual based on their experience
with others in the group. High levels of group bias were typ-
ically followed by a drop in population levels of 8, while low
levels of group bias were typically followed by an increase in
population levels of 6. Thus, punishment was favored most
strongly when levels of group bias were low.

A possible explanation for the relationship between group
bias and punishment, discussed further below, can be suc-
cinctly stated: when most people punish, and potential per-
petrators infer that you’ll do what most people do, you can
get away with not punishing and avoid its associated fitness
costs.

If this explanation is correct then, given enough interac-
tions, it should be possible for perpetrators to learn who does
and who does not punish (overcoming a strong innate group
bias). In order to test this prediction, we ran 10 independent
simulations of the hierarchical model where each agent con-
siders stealing from each other agent 100 times, rather than
the standard 25 times used above. At the final, 4000th gen-
eration, average population Os were significantly higher for
100 meeting simulations (M = .99, SE < .01) than for 25
meeting simulations (M = .86, SE = .04, Mann-Whitney U
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(a) Population levels of prior P(pun|theft) and 0 for a representative simulation over generations 1000-4000 (following
1000) for the hierarchical model.
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(b) Population levels of 6 (dark blue line) overlaid on a representation of generations with a population y > 1.5 (light
blue bars), for the same representative simulation over generations 1000-4000.

Figure 3: Median hierarchical simulation demonstrating cyclic behavior.

test: Z = —3.06, p < .01). Inspection of the individual simu-
lations revealed that fluctuations of punishment, prosociality
and group bias were substantially less frequent in 100 meet-
ing simulations, compared to 25 meeting simulations; how-
ever, some fluctuations did occur even with 100 meetings.

Non-learning control models

All three of the non-learning control models tested yielded
similar results: punitive strategies failed to emerge, and in-
nate prior probabilities of punishment tended towards canal-
ized antisociality. The average population thetas on the
4000th generation for the uniform prior model was .01 (SE
< .01), for the one-level model was .01 (SE < .01), and for
the hierarchical model was .01 (SE < .01). For the one-level
model, on the 4000th generation the average population %ﬁ
was .01 (SE < .01) and the average population (o + ) was
1.09 (SE 1.3). For the hierarchical model, on the 4000th gen-
eration the average population y was -10.45 (SE 0.73), and
the average population Yy was 1.09 (SE 1.31).

Discussion

Our findings suggest that costly punishment of antisocial be-
havior is adaptively favored when it causes others to act
prosocially in future interactions—that is, when agents learn
to avoid punishment. This was evident in evolutionary sim-
ulations using three cognitive learning models: learning with
a fixed uniform prior, a one-level model with evolvable pri-
ors, and a hierarchical model with evolvable priors. The evo-
lution of costly punishment was not observed in any of the
corresponding non-learning models. It is particularly notable
that punishment readily invaded in the uniform prior model,
which plausibly approximates the operation of a domain-
general learning mechanism (Courville, Daw, & Touretzky,
2006; Tenenbaum et al., 2006). Thus, widely-shared psy-
chological learning mechanisms may be sufficient to render

a selective advantage to the strategy of punishing antisocial
behavior.

Additionally, our findings demonstrate that innate behav-
ioral tendencies towards prosocial behavior are adaptively fa-
vored in an environment where antisocial behavior is pun-
ished. This was evident both in simulations implementing
one-level and hierarchical learning models. As population
levels of Os changed, innate levels of prosociality changed in
response to closely track the true P(pun|theft). These models
provide a case-study in the use of Bayesian priors to model
innate behavioral dispositions. This approach has attractive
characteristics: with a ready set of formal methods for com-
bining innate factors with experienced data, it allows innate
factors to vary in their behavioral consequences as well as in
their developmental persistence (see also Kirby et al., 2007).

Our findings confirm previous models suggesting that
costly punishment and contingent prosociality can coevolve,
(e.g. Boyd & Richerson, 1992; Gardner & West, 2004). In-
deed, behavioral studies show that people will pay a cost to
punish antisocial behavior, which can stabilizes prosocial be-
havior (Fehr & Fischbacher, 2004). However, this same ex-
perimental evidence demonstrates that punishment of anti-
social behavior by one individual will reliably induce more
prosocial behavior when the perpetrator interacts with a dif-
ferent individual. In the most extreme case of such a group-
level bias, in which the perpetrator does not differentiate be-
tween the punishment rates of individual victims at all, pun-
ishment by any individual becomes a public good and should
not be selectively favored.

Consequently, we explored the coevolution of punishment
and prosociality using a hierarchical Bayesian model of learn-
ing in which inferences about an individual’s likelihood of
punishing depends jointly on the prior history of punishment
by that individual and the prior history of punishment by oth-
ers. Critically, we allowed for mutation and natural selection
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in the degree of group bias exhibited by learning agents—that
is, their propensity to infer one individual’s punitive response
from past experience with others.

The specific set of parameters we tested revealed a strik-
ing cyclical dynamic involving innate levels of group bias,
punishment, and prosociality. Inspection of the timing of
this cyclical dynamic suggests a simple course of events.
First, population levels of punishment increase in the popula-
tion due to the benefits of teaching social partners contingent
prosociality. Next, population levels of prosociality increase,
reflecting an innate bias towards prosociality that is benefi-
cial in an environment where antisocial behavior is reliably
punished. In this environment a strong innate group bias can
also emerge, perhaps reflecting the homogeneity of punitive
strategies when 0 ~ 1 dominates the population. But when
this innate group bias emerges in a population dominated by
punishment, it establishes a selective pressure favoring non-
punitive strategies (i.e. 0 =~ 0). When individuals expect in-
dividual punishment because it is frequent at the group level,
there is a selective advantage to not punishing, thereby avoid-
ing its costs. Thus, the emergence of a strong group bias in a
population dominated by punitive strategies frequently leads
to a rapid invasion by the strategy 6 ~ 0. Following such a
shift, population levels of prosociality fall, and then the cycle
stands ready to be repeated anew.

The cyclical dynamic revealed in our hierarchical learning
model depends on several features of a Bayesian approach to
modeling the evolution of social behavior: the ability to cap-
ture prosocial behavioral tendencies in terms of innate prior
probabilities; the ability to model group bias in the form of
a hierarchical learning model; and the ability to flexibly bal-
ance innate and learned factors along the dimensions of canal-
ization and prosociality.

However, the choice of a Bayesian framework to repre-
sent innate behavioral tendencies carries a definite cost. It
has been repeatedly demonstrated in experimental settings
that individuals engage in prosocial behavior even when they
have no expectation—at least explicitly—of contingent re-
ward or punishment (reviewed in Gintis, Bowles, Boyd, &
Fehr, 2005). A standard inference from these findings is that
some prosocial behaviors have intrinsic utility (innate or oth-
erwise) beyond the expected value of contingent reward or
punishment. Thus, it is unlikely that prosocial behavior can
be understood at a mechanistic level just in terms of poste-
rior probabilities of punishment and reward. Nevertheless,
the Bayesian framework we adopt here has apparent value in
modeling innate behavioral tendencies at a functional level.

Moreover, beyond the specific case of prosocial behavior, it
appears that humans are equipped with certain forms of innate
knowledge and constraints on knowledge acquisition (Spelke,
2000). The ease with which innate knowledge and constraints
can be combined with experience is among the principle ben-
efits of a Bayesian framework. We suggest that a fruitful di-
rection for future research in social cognition will be to in-
troduce these Bayesian models into agent-based simulations

of evolutionary processes, exploring how adaptive pressures
shape the boundary between the innate and the learned.
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