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Abstract words have been shown to make use of word order knowledge
in a comprehension task (Hirsh-Pasek & Golinkoff, 1996).
Inferring the mappings between words and their referents is This suggests that word order knowledge is acquired very
e o g 2211, BULL i not clear how 1 done.  Ahough learn
one of%he first grammatical IeaFr)ning tasks these sar%e I%arn- ing word order is a more limited problem than !earnlng t.he
ers must solve. We present a modeling framework which ad- referents of words, since there are fewer possible solsition
dresses simple versions of both of these problems by using th  to the problem, it is still a puzzle how it can be done so
joint information in each to bootstrap the other. We discove  quickly. Some have suggested that prosodic bootstrapping

that these two distinct learning tasks may be easier to solve 3y explain a related problem, the acquisition of head direc
jointly because of the way in which the inferences in one prob !

lem constrain the inferences in the other. tion (Christophe, Nespor, Guasti, & Ooyen, 2003). Although
K ds word | ina: word order B . dels: this requires the assumption of innate knowledge of the map-
e T aferancd: \Ilivr?g;ui(s)tricgr’ ayestan models, mu-— 4ing principles between prosodic cues and head directiwh, a

does not address the acquisition of word order itself, pi@so
bootstrapping may play an important role.

I ntroduction

The language-learning child is faced with two simultaneous In this paper we propose that both of these acquisition
acquisition problems: acquiring the (semantic) rulestii@p  problems can be made more tractable by addressing them
the words she hears onto the objects and actions she pgointly. On the one hand, if the learner believes that word or
ceives, and acquiring the (syntactic) rules that govern hovderings tend to be consistent, constraints are imposedeon th
those words should be combined to make grammatical sermanner in which words may be mapped onto entities in the
tences. Both are difficult learning problems in their owrtig  world. On the other hand, even knowing a few word mean-
and have been the topic of considerable research. ings is enough to provide a great deal of evidence about word
Determining the meaning of words on the basis of real-lifeorder. These intuitions suggest that viewing the problem as
observational evidence is quite difficult (Gillette, Ghaéin,  a joint acquisition problem can make both individual prob-
Gleitman, & Lederer, 1991), in part because of the inherlems easier. While in one sense the proposition may appear
ent ambiguity of words, in part because the number of pocounterintuitive — after all, there is in some sense ‘mooe’ t
tential meanings is logically underconstrained (Quin&@9 learn in the joint problem — to the extent that each problem
While it may be that the identification of a word’s referent is mutually constrains the other, the acquisition problenugiho
made easier by pre-existing biases (Markman, 1990), receie maddessdifficult, rather than more. This basic idea is
research has also suggested several methods by which chilet a new one: for instance, earlier work noted its poten-
dren could explicitly learn which objects or actions a marti  tial (Siskind, 1990, 1991). However, performing inferesice
lar word refers to. For instance, social cues such as pagintinabout both syntactic and semantic information was beyond
or gaze (Frank, Goodman, & Tenenbaum, 2007) can assist tithe computational capabilities of the time, and in pragtice
learner, as can a sensitivity to the statistics of crosssdnal  that work simply demonstrated that hardwired syntactic in-
word learning (Frank et al., 2007; Yu & Smith, 2008) and theformation could make the learning of semantics easier. Our
ability to form theories about the abstract rules that gover research goes beyond this work in two ways: first, because
the mapping of words onto categories (e.g., Kemp, Perforsye demonstrate that trujgint inference, in which both as-
& Tenenbaum, 2007). Experiments and computational modpects of the problem mutually bootstrap each other, can make
eling suggest that the difficulties and ambiguities inhemen the learning problem easier; and second, because the syntac
cross-situational word learning can be at least partidler a tic information is simpler and sparser (word order rathanth
viated by these techniques. X-bar theory or richer grammatical knowledge). Our study
Acquiring the rules of syntax is also a famously difficult presents two models that seek to establish word-refergmt ma
problem. Even if we restrict ourselves to more tractable subpings on the basis of cross-situational learning statistoe
problems — for instance, the acquisition of word order — themodel also seeks to acquire word order, and uses this to as-
empirical data present some difficult issues. Children maksaist word-referent mapping learning, and one does not. We
few mistakes in word order when they start combining wordsdemonstrate that solving the joint acquisition problenultss
(e.g., Brown, 1973), and even children who do not combinén more rapid learning of word reference.
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Figure 1. A simple example world, consisting of 7 objectsreor
sponding to common animals and 6 relations. The leftmogtqwor
of the figure shows representations of the relations. Théefope-
lation, which corresponds to the concepteafrs, is enlarged in the
rightmost portion of the figure for clarity. The object labéh this
portion are for the reader’s convenience: they are not étitgyrop-
erties of the objects and are not visible to our model.
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Figure 2: Naming distributions for two objects in our toy \ebr
demonstrating synonymy (both objects have more than ond wor
with non-zero naming probability) and polysemy (the worfddifie”
and “mammal” have non-zero naming probability for both otgg

A Simple Language & World Setup “peanut” or “indigo”. To make this scheme more explicit,
Our models consider a learner who exists in a physical worl igure 2 shows two examples of a naming distribution; it il-
of objects and inter-object relations. The learner is gbtem ustrates how this scheme permits both synonymy and poly-

) ; o semy, thus reproducing some of the factors which complicate
ing to acquire a language (consisting of word order knowI-WOrOI learning in the real world
edge and a lexicon of word-world mappings) through expo- In addition to the probabilistic lexicon, our simplified kan

sure to concurrent observations of the world and linguistic guage model includes the concept of word order. We con-

put. Th_ough heavily simpl!fi_e_d, iLis intended_ asa f_irst-mrde sider a set of six word orders corresponding to the six possi-
approximation to the acquisition problem facing children. ble ways of ordering subjects, verbs and objécEhe word
TheWorld order in our language is specified by a probability distiitout

. e . © over the set of these six possible word orders. As an illus-
Formally, our world is specified in terms ofa selr_’obbjects, tration, we might think of the English language as assigning
0 = {01,...,0m}, and a set of relations that exist between gnq, probability to the SVO ordering, 20% to the OV'S order,
those objectsg, = {rs,...,r}. Each relatlpp IS a function 504 04 to all other word orders. This distribution encodes a
defined for pairs of objects (i.ex;, C 0 x 0); if the relation 00y Hreference for active voice, allows the occasiosal u

holds for wo objects (01,02) is true. Not all true .thlngs of passive voice, and indicates that the other four wordrerde
are equally likely to be observed: giTES(01, 02) indicates ings are ungrammatical.

that object 1 is able to bite object 2, then the specific obser-
vationBITES(dog man) will be m.ade r_nuch_more freq_uer_ltly TheNature of the Input

thansITES(man dog). We formalize this notion by equipping . . ) .

the world with a probability distributio®(-) over observed In our simulations we generate a collection of observations
relationships. The learner’s physical observations anege from the world and corresponding data from the language,
ated fromd(-), and consist only of true statements about the2nd the learner's task is to use this input to infer the cor-
world, but some things are seen much more often than otherect underlying naming distributiohy for each object and
Figure 1 shows a diagrammatic representation of a simple ex¢lation — and perhaps, jointly, to infer the correct worel or
ample world involving 7 objects and 6 relations. The struc-der © for the language. Formally, the input available to the
ture of one of the relations, corresponding to the concept ofearner,2, consists of observations of relations and objects,

EATS(-,-) is magnified. z=r(01,02), which are drawn fromd(-), each of which is
paired with a three-word linguistic utteranag,= wyWoWs,
The Language which is generated by randomly selecting a word for each

pof 1,01 ando, from the appropriate naming distributions and
combining them to fornw using a word orde® drawn from
the language’s word order distributidd. For instance, if
the selected word order = SVO thenwy ~ Aq;, Wo ~ A;
andws ~ Ao,. Each data point irp corresponds to a cou-
pled observation-sentence pairing generated in this way, i
D ={d1 = (z1,w1),d2 = (z2,W),...}. Eachd; implicitly has
word order variabl®; associated with it, which is not ob-

The language component of the modeling involves a pro
abilistic lexicon with a vocabulary ofv words, v =
{w1,...,wy}. For every object or relatiow in the world,
there is anaming distributionAx over the vocabulary (i.e.,
Ax: v — [0,1]). We denote the set of all naming distribu-
tions byA. A naming distribution is essentially the map be-
tween items in the world and the words for those items; it
assigns higher probability to those words more likely to be?
used as names for the relevant object. For instance, iftheob———

jectx corresponds to the entitat, the distributiorh, should ;Lgltiltnhcailtjf/jvees dso\igt’ iSn?‘ZétVeSn(i&\jlgasﬁagfi\r{a’;nedfgﬁﬁc
assign the most probability to the word “cat’, a SlJbStam'alular word order — whether found in English or not — into the model.

amountto words such as “kitty” or “pet”, a small but non-zerowe merely allow the model to postulate that some orders wit t
amount to “feline” and no probability to the words “monkey”, out to be more common than others in the target language.
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Table 1: Example input data. Each row represents a single datum,

coupling a relational observati@with a linguistic onew. the objecto; or oz, and the same is true of; andws. This
forces the model to rely only upon the concurrence of rela-
Relational observatiorgl | Linguistic utterancew) tions or objects and words in attempting to estimate thefset o
EAT(cat, mousg “cat eat rodent” naming distributiong\.
cHasE(lion, antelopg “lion chase prey” The e§timates of the naming distributions, which we de-
EAT(Cow, grasg “cow consume grass” note by A, are calcula‘ged v_ia I_3ay_esian inference _ove_r_the
EAT(antelopegrasy “antelope eat grass” space of possible naming distributions; a symmetric Dirich

let distribution with parametex serves as our prior for each

of theAx. We perform the inference numerically using Gibbs
sampling, a common and convenient form of Markov Chain
servable by the learner. _ - _ Monte Carlé (Gilks, Richardson, & Spiegelhalter, 1996).
Note that our linguistic input differs from ‘real’ input in s involves iteratively assigning a word order variaBle
that we give no regard to functional words such as *a", “the”y, each data poirt; in 0. Each of these assignments is made
or “this™. Filtering complete sentences in this way seenas ré angomly using a probability distribution conditioned dh a
sonable given that young infants are capable of making thgye other assignments: this full conditional distributiamd
distinction between function and content words on the basi§iner technical details are available in the appendix. Bor n
of frequency and prosody (e.g., Jusczyk, 1997). We are alspyjj| suffice to say that the probability of assigning a pet
assuming that a language learner is able to unambiguously a§jar word order® to a given data point is proportional only
sociate each linguistic utterance with a relational obestgom, 4 jis consistency with other assignments; in other wotts, t
which may rely on the use of cues like gaze. (We discuss thigygge| prefers words to have few meanings and meanings to
oversimplification later in the paper). be associated with few words. Note that although the model
A brief example of the dat_a is given in Table 1. Note t_hatdoes learn word order assignmeftsit does not learn any
the learner does not have direct knowledge of the relationgleneral rules about word order that haldrossutterances.
structure shown in Figure 1, the correct naming distrimgio The g, values that it learns correspond only to the mapping
in Figure 2, or knowledge of which elements in the observasrom the particular words in the utteranegto the entities in
tion map onto yvhlch words in the Ilng_wstlc utterance: every the ohservatios;.
thing must be inferred from the datan The word-order learning modéyo is identical to the
baseline model except that is assumes that word order tends
Methodology to be consistent across all utterances. The learner thus aim
M odéds to estimate some explicit, non-uniform word order distfibu
{ion ©. Once again, we model this using Bayesian inference,
assuming that the learner places a symmetric Dirichletrprio
reference, and learning word order — could each be mad !str!but!on with pa_rameteB over the pos_slble worc_i OFdef
easier by attempting to solve them jointly. To that end, wedistributions. In this model, the probability of assigniag
compare two word learning models that differ in their ailit Fhagté%urlg{s\é\é%rgyoégﬁg \5\?0? dg\lf\vlgn dd:;asigﬂmtelﬁtg?gggegéon
to acquire word order information. Both models seek to in- ; ) ) 192
fer the correct naming distributioMsand are presented with VTV:élh?]?ctgle d%?gﬁésggp%%?g Vr‘r’]%rge?srd?nrgl‘g;ﬁcr?hses %"ﬁt%gr?('j?ts
datap. Each individual datapoird consists of coupled ob- tional distributi ilable i 'Eh gd'
servations and three-word utterancesw). The difference 10Na! distribution, are available in the appendix.
between the models is that the baseline model, which we cah ;i 5 ot
Mg, assumes that there is no consistent word order in the lan- )
guage; the word-order learning model, which we d&lo, Slmulated_ data sets are created based on the generative pro-
assumes that the language has a consistent distribution ov&ess detailed earlier. To explore how performance charges a
word orders®, and seeks to learn that as well as the naming? function of the quantity of data, we create a series of data
distribution. While it may seem cognitively implausibleath Se€ts? with varying numbers of observation-sentence pairs.
real language learners maintain some mental representati®®ata sets with more data points are generated by adding addi-
of a complete probability distribution over possible labfer  tional points to the smaller data sets. All results are gyeula
each object or concept they encounter, as both our modefver 10 different data sets at each size; each set was gederat
do, this idea has received some empirical credibility frem r Using different random values df andA.
cent experimental work (Mouloumanos, 2008); additionatlly
may not be necessary to have a precisely accurate prokiabili{:{‘:"’smtS
distribution in order to receive substantial benefit frorimjo The task of our learner was to make reasonable inferences
learning (although that is a topic for further research). aboutthe likely referents of each of the words in the languag
To elaborate on the difference between models, the basé@s well as, in the case bfw o, to determine the probable word
line modelMg implicitly assumes that the distributiéover  order in the language. Figure 3 depicts the rate of acqunsiti
word orderings is perfectly uniform. That is, given the cou-

pledz=r(o1,02) andw = wiwows, it does assume that each . . o lat
. . : ment Gibbs sampling or Bayesian inference. We use thesg #&sol
word refers to precisely one of the three relations or object |, ~1cis of “ideal learning” in order to explore whether mutcan-

but does not try to learn any consistent mappingsp#iori,  straint in this task is sufficient to make the joint learnimgtgem
wi is just as likely to refer to the relatianas it is to one of  substantially easier, and what could be learned in priacipl

The main motivation for our research was to explore to wha
extent two difficult acquisition problems — establishingradio

SWe donot suggest that child language learners literally imple-
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Figure 3: Inferred word order probabilities by modi&), for various  Figure 4: Accuracy of modelslg andMy o, approximated by pro-

sized data sets. The world has 20 objects, 10 relations and&3.  portion of inferred naming distributions with correct meabased
on data set size. The world has 20 objects, 10 relations and&.
Mw o is shown with gray diamonds amdg with black circles.

of word order byMy o as the quantity of data increases. The

correct word order distributio® for this data assigned prob-
ability 0.8 to the word order SVO and 0.2 to OVS, with all and “fiberglass” 40% of the time would count as correct,
other orderings receiving zero probabilftyt is evident that and one that predicted the reverse would not.
only a small amount of data is necessary before the model ac- I~
curately infers the correct word order — Figure 3 shows that N€S€ two measures were chosen to address the conflicting
the inferred probabilities are essentially perfect withatad ~C'itéria of intuitive interpretability (which is satisfiday cal-
set size of 30 or above, and are approximately correct with a§ulating the proportion of learned distributions with @t
small a data set size as 15. In a sense this is not surprisin@,c’d?s) and accuracy (which is better satisfied by calcgatin
given that there are only six possibilities to choose fromt, b KL divergence). Since we found no qualitative difference be
it is noteworthy in light of children’s early acquisitionwbrd ~ Ween the results depending on which measure was used, we
order. We note that for the simulations which produced thigPrésent all results here in the second, more intuitive forma
data, we used a Dirichlet distribution parametefef 1 for Figure 4 shows the accuracy Mg andMwo, as measured
the prior estimate 0®. Such a value provides no bias in the PY the proportion of naming distributions with correct mede
direction of sparsity or non-sparsity. The fact that wordesr ~ Or data set sizes ranging from 1 to 50. These datasets were
can be acquired quickly from so few ‘coupled’ data despitegengrated using a simple world consisting of 20 objects, 10
the lack of bias may suggest no need to hypothesize that chif€!ations and 50 words. For both models, accuracy increases
dren are born with strong innate constraints on word orgerin &S the quantity of data increases, and accuracy is oveil qu
to explain their rapid acquisitioh. high: after observing only 20 utterance-observation pé#ies

How well does the model acquire the correct word-worldWord-order learming modéfwo has found the correct refer-
mappings? We assess this by calculating the accuracy of t t for over 50% (i.e., over 15 of the 30) of the relations and
inferred naming distributions for each object in the world. Obiects. Even the baseline modép has acquired around
Because the learner induces entire nandiisibutionshy for 40%, which provides further evidence for_ the observation,
each objeck, rather than mappings to a single lexical item, suggested by other researchers, that learning of refeoamce

calculating this is not completely straightforward. We mea P€ greatly facilitated by the use of cross-situationalstiatl
sured accuracy in two ways: information (Frank et al., 2007; Yu & Smith, 2008).

More interestingly, we also observe ti\, o outperforms

1. By calculating the average Kullback-Leibler divergéhce the baselind/g; this is shown more clearly in Figure 5, which

between actual naming distributions and their correspondshows the difference in accuracy between the two models. It

ing inferred naming distributions. is clear that jointly learning word order offers a signifitan
advantage, especially when the amount of data is small. This
advantage decreases as the data set increases in size, which
s to be expected: in the limit, the high quantity of corretit
cross-situational information should suffice to overcomg a

4Each of our simulations were performed with two correct word amblgu_ltle_s In reference._ Importantly, smaller data See_s a
order distributions, one which placed all probability orirgte word ~ Of special interest to us, since they more closely approtéma
order and one which split the probability between two omigsiwith ~ the inference problem facing the child, who receives quite
probabilities 0.8 and 0.2. No qualitative differences im cesults  gparse data relative to the amount to be learned in the world,
were observed. All figures presented in this paper corr@bpon 5.4 shows rapid learning in that situation. Our result ssgge

data generated with the bimodal distribution. . h
5We also tested thg — 0.01 case, which encodes a strong bias that children may be able to use inferences about word order —

toward sparsity. This made little qualitative differenoetie results. ~ Which are supported quite early — to bootstrap their infeesn
6The KL divergence between two distributioRsandQ defined ~ about word reference.
on the seK is given byDk( (P]|Q) = Y xex P(X) In(P(X)/Q(x)). To what extent are these results due to the fact that our toy

2. By calculating the proportion of learned naming distribu
tions that have the correct modal mapping: a distributio
that predicted thatAT mapped onto “cat” 60% of the time
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Improvement in accuracy due to learning word order, small world case Improvement in accuracy due to learmning word order, large world case
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Size of dataset Size of dataset
Figure 5: Accuracy benefit to joint learning in a small wor@bom- Figure 6: Accuracy benefit to joint learning in a large wor@bm-
parison of the baseline modellg) with the word-order learning parison of Mg) with (My o) in terms of accuracy in a world with
model Mwo) in terms of accuracy of acquiring the correct word- 80 objects, 40 relations, and 200 words. Once again thernoiotel
world mappings in a small world with 20 objects, 10 relatiossd My o clearly outperforms the baselidg. In the larger world the
50 words. They axis shows the increase in accuracy that comes fronduration of the effect appears to be greater.
jointly learning word order as well as reference alone. Mddg o

clearly outperform#g, particularly when there is little data. . .
youlp B P Y learning of two complicated tasks can make both tasks eas-

) ) ) ) ier. We suggest that many types of inference — which classic
world is relatively small, with few objects, words, and rela |earnapility analysis would suggest are too difficult foilch
tions? While constructing a world of the same complexitygren to acquire as rapidly as they do — may be significantly
that the child faces is beyond our purview, we address thgasjer when conceptualized as a joint problem in language
issue of scalability by presenting the same models with datgnq higher-order cognition. Moreover, by constructing mod
from a substantially larger world (80 objects, 40 relati@r® g5 that explicitly handle the joint inference problem adlwe
200 words). Figure 6 depicts the same accuracy advantage g models for each of the individual ones, we can begin to
Mwo overMg as for smaller amounts of data, but that advan-qantify both the qualitative and quantitative featureshe
tage is retained for longer. This is sensible because irgatar speedup effect.
world, significantly more data is required before the infor- ;e bhroadly, this modeling framework can be expanded
mation conveyed by cross-situational correlation infdioT i, jnteresting ways to explore problems of more complexity
alone is sufficiently saturated to negate the advantagesof al and, thus, greater applicability to the situations facedild
cing a M&arners. The model currently assumes that all data cemsist
simplicity of our small world compared to the real vyo_rld has i5int utterances and observations of the world — yet ofteéln ch
not exaggerated the strength of the advantage of jointdearry e are in situations where they observe objects and events

ing; in fact, it may have underestimated it. In aworld aséarg oy nening but receive no linguistic input, or where theyrhea
and complicated as the real world, being able to rely on ingentences that have no apparent connection to the events in
®he world. What happens if the model is presented with data
sets consisting of all three kinds of data? Preliminarydasi
. . tions suggest that the advantage of joint learning stikbtsxi-
Discussion indeed, the learner is still able to leverage some inforomati
This work demonstrates that two distinct language acquisiout of the singleton data: for instance, observations ofiesve
tion problems — learning word reference and inducing wordwithout language still provide evidence about what kinds of
order — can be made easier by addressing them jointly. Whilevents are more or less likely. Future work will explore this
in some sense this is counter-intuitive, since in the joiobp  issue in more detail.
lem there is ‘more’ to be learned, we suggest that the joint Another shortcoming of the current modeling framework is
problem is in fact easier because each problem constrairthat it makes certain implicit assumptions about the natfire
the other. Knowing that verbs tend to be first can enable ahe knowledge the learner starts with. Our word-order learn
learner to map the word “glim” in the sentence “glim torg ing component assumes that the learner already has concepts
nim” onto the action in the world; conversely, knowing that for subjects, objects and verbs, and that languages may dif-
“glim” refers to a kind of biting action can enable a learnerfer in how those are ordered. While there is some evidence
to infer, upon hearing the same sentence, that words denotinthat notions of agency and objecthood form a core part of
actions may come first. This is sensible, but has not until noveognition from infancy (e.g., Spelke & Kinzler, 2007), an in
been supported by quantitative analysis. teresting extension to this analysis would be to present in-
Our world and the learning situation are in many waysput consisting of items with features, and explore whether t
vastly oversimplified versions of the task facing the childmodel could induce the notions of subject, object and verb,
learning language. Our goal here is not to argue that childrebased on a presumption that word order is consistent and that
approach the situation in precisely the way our models db, buvords map onto things in the world. This framework is also
rather to lend some empirical support to the notion thattjoin easily extendible to address the acquisition of more compli

words in the sentence may be of significant benefit.
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cated syntactic knowledge: for instance, the realizatimt t Spelke, E., & Kinzler, K. (2007). Core knowleddgeevelop-
in some languages it is permissible to optionally drop sub- mental Sciengel0(1), 89-96.

ject pronouns. In other languages, word order plays a muckiouloumanos, A. (2008). Fine-grained sensitivity to stati
less important role than it does in English: this informatio  tjca| information in adult word learningCognition 107,
is conveyed by other means, such as morphological inflec- 759_749

tion. This, too, could be added to our model, in addition tOvy ¢ & smith. L (2008)
a word-order learning component. One would expectthatan ™’ " . )
effective learner would learn to make use of whichever kind
of information was most informative, although further work
is necessary to explore whether this expectation is cqrrect )
and how much different types of information help with the Appendix

overall learning problem. !Bor all Qibbs gar}wpilgéz l_Jtsedt_in our r;ct)ﬁlels, we er][wploy_ an lnitia
i H urn In° perioa o Iterations an en generate oumese

. In ge”‘?ra" the ana_ly_SIS here_ p_rOVIdes a _frame_work forhistograrr?s using 500 samples, with an inter-gsample lag Ofitkd-

investigating how the joint acquisition of distinct piecas  41ions.

knowledge can make the acquisition of each individual piece

easier. Our results suggest that classic learnabilitylpros, Modée Mg

which often presume that information is acquired inisolati  The full conditional distribution for the word ordé (assigned to

may not always apply to the situation facing the child learne theith component ofp, d)), is given below, where we denote the
relational component af; by z = r(s,0), the linguistic component
Acknowledgements %yevr\llitsf wiwows, and by@_; the set of allotherword order assign-
DJN was supported by an Australian Research Fellowship
(ARC grant DP-0773794). We thank three anonymous re- "(8i(8-i,2)0 Fj(ei ‘efi)P(WilZ"ei) i
viewers for their comments. O Ar (RELg, (Wi))Ar (SUBg, (Wi ))A (OB, (Wi))

Infants rapidly learn word-
referent mappings via cross-situational statisti€ogni-
tion, 106, 1558-1568.
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