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Abstract 

Recently, Buss & Spencer (2008) proposed a Dynamic Neural 
Field (DNF) model of the Dimensional Change Card Sort task 
(DCCS).  This model is able to not only capture the details of 
3- and 4-year-olds’ performance in the standard version, but 
also generalizes to account for performance in two other 
canonical variations. The distribution of features in space 
plays a central role in capturing these effects.  To show that 
the model can generalize beyond space-based effects, we 
present preliminary simulations of DCCS variations reported 
by Fisher (2008) that examine the role of automatic and 
voluntary shifts of attention and randomize the spatial 
location of the target cards. Results show that the DNF model 
captures performance in these conditions as well.   

Keywords: neural network models; dynamic systems theory; 
DCCS; attention; executive function; perseveration 

The DNF Model of the DCCS 
The Dimensional Change Card Sort task (DCCS) and other 
rule-based card sorting tasks provide an index of executive 
functioning both in early development and disordered 
populations (Zelazo et al., 2003). In the DCCS task, 
children sort cards by one dimension, for instance, the 
dimension of shape and are then instructed to switch and 
sort by another dimension such as color. Target cards are 
displayed on the trays where cards are sorted to show which 
features go where.  Importantly, the test cards that children 
sort typically match each target card along one dimension 
(see Figure 1).  Three-year-olds have little trouble using 
shape or color rules during the initial sorting phase; 
however, once these children are instructed to switch and 
sort by the other dimension, they typically perseverate and 
continue to use the first set of rules they were given.  This 
task, then, measures aspects of cognitive flexibility, and 
children’s behavior has been described in terms of rule-
representation, inhibitory or dis-inhibitory control (Zelazo et 
al., 2003), and attentional control (Kirkham, Cruess, & 
Diamond, 2003).    

 
Figure 1:  Example of cards used in the DCCS 

 
More recently there has been a growing interest in using 

such tasks as an index of neural functioning. Specifically, 
these tasks have been linked to developmental changes in 
the prefrontal cortex as well as other brain regions (Crone et 
al., 2006) and have been used to explore cognitive deficits 

in children with autism (Zelazo et al., 2002) and ADHD 
(Mulas et al., 2006).  Although this move toward neural 
functioning adds new critical information about the nature 
of performance in this task, current theories are not well 
grounded in neural dynamics and neurally plausible 
concepts.  A Dynamic Neural Field (DNF) model proposed 
by Buss & Spencer (2008) provides a critical bridge 
between the brain and behavior in this task. Using a 
neurally-grounded view of the processes that underlie the 
representations of shapes, colors, and space, the model 
provides a detailed account of children’s behavior and 
development.  This is not explicitly a rule-use model; rather, 
it is couched in a general framework originally proposed to 
capture the integration of ‘what’ (i.e., ventral stream) and 
‘where’ (i.e., dorsal stream) visual pathways in object 
representation.  The DNF model is able to not only capture 
the details of 3- and 4-year-olds’ performance in the 
standard task, but also generalizes to capture performance in 
other canonical versions of the DCCS.   

The effects modeled by Buss & Spencer (2008) revealed 
an important role for spatial information in rule-use in the 
DCCS.  Specifically, difficulty switching in the model stems 
from an inability to resolve spatial conflict between LTM 
traces accumulated from past decision and the current task 
inputs present when sorting a card. To provide a more 
comprehensive account of performance in this task and to 
show that the model captures phenomena that are not 
grounded in feature-space conflict, we present simulations 
of new versions of the DCCS reported by Fisher (2008).  
These versions distinguish automatic from voluntary shifts 
of attention by manipulating feature saliency and attentional 
weights for sets of features. To isolate these types of 
attentional switching, the spatial locations of the target cards 
were randomly assigned on each trial.  With space thus 
randomized, children’s errors cannot be a result of specific 
spatial habits or memories, eliminating space as a source of 
children’s perseverative errors.  These, then, seem like ideal 
conditions to provide a thorough test of the model.  Before 
describing the implementation of these versions in the DNF 
model, we first start with a brief summary of the dynamics 
of rule-use.   

Model Architecture 
DNF models use fields of neurons that are tuned to 
continuous feature dimensions (e.g., shape, space, or color).  
The fundamental unit of cognition within this framework is 
a peak of activation for a particular feature or set of features 
within these fields.  Thus, peaks of activation capture 
representations that underlie decisions or working-memory 
for different spatial locations or object features.  We utilize 
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a generic two-layered architecture initially explored by 
Amari (1977) to capture the dynamics of neural activity in 
visual cortex. To highlight the dynamics that lead to peak 
formation, Figure 2 shows a 1-dimensional spatial system 
(the same architecture and dynamics are present for the 2-
dimensional fields to be described below, except the 
interactions are along both dimensions).  For these 1-
dimensional fields, neurons tuned to a particular continuous 
feature dimension a lined up along the x-axis (in Figure 2, 
this is a spatial dimension), while each neuron’s activation 
is displayed along the y-axis.   

 
Figure 2:  Excitatory and inhibitory architecture in a 1-

dimensional system, along with an associated LTM layer. 
 

The architecture in Figure 2 consists of a layer of self-
excitatory working memory neurons (WM) arranged by 
functional topography (e.g., neurons that code for nearby 
spatial locations are neighbors in the network).  These 
neurons project activation (see green arrows in panel B) to a 
layer of inhibitory interneurons (Inhib) which project 
inhibition broadly back into WM (see red arrow).  
Activation within these fields is passed through a sigmoid 
function so that only neurons that are sufficiently close to or 
above a 0 activation threshold contribute to interaction. This 
gives the WM field a critical type of non-linearity: a local 
population of neurons can go from a stable resting state to a 
stable active or ‘on’ state, creating a ‘peak’ of activation 
(see blue Gaussian profile in panel B). An important 
parameter to mention here is ‘h’, or the resting-level of the 
field (h<0).  The closer a WM field is to 0 the quicker inputs 
will build to threshold, engage neural interactions, and build 
a peak.   

In addition to the WM and Inhib layers, we add a long-
term memory (LTM) layer (bottom layer in Figure 2) that is 
reciprocally coupled to the WM layer. The WM and LTM 
layers implement a form of Hebbian learning: peaks in WM 
leave traces of activity at associated sites in LTM which, in 
turn, influence the strength of activation in WM.  As can be 
seen in panel B of Figure 2, the peak in WM is building a 
LTM trace in the bottom LTM layer which is projecting 
activation back into WM.   

Object Representation 
The DNF model of the DCCS is an extension of an object 
representation model put forth by Johnson, Spencer, & 
Schöner (2008).  The basic architecture and the mapping to 
cortical pathways are displayed in Figure 3.  For simplicity, 

only the WM fields are shown; however, each WM field is 
coupled to its own inhibitory and LTM layer.  Research has 
revealed a dorsal/ventral dissociation in visual processing 
(Ungerleider & Mishkin, 1982).  Dorsal stream processes 
are primarily devoted to encoding spatial information and 
are captured in a 1-dimensional spatial working memory 
(SWM) field (see top layer in Figure 3A and 3B).  Ventral 
stream processes are primarily devoted to encoding object 
properties with different feature dimensions encoded by 
different populations of neurons.  Importantly, many of 
these ventral stream areas are precise in their representation 
of features, but also have broad spatial receptive fields 
(Desimone & Gross, 1979; see inputs to feature WM fields 
in Figure 3A). These processes are captured by 2-
dimensional feature-space working memory (FWM) fields 
which contain a continuous feature dimension (e.g., color or 
shape, depicted along the y-axis) and a spatial dimension 
(depicted along the x-axis; see middle and bottom fields in 
Figures 3A and 3B).  Relative levels of activation within 
these 2-dimensional fields are depicted by the color on the 
inset scale (red is high activation, blue is low activation). 

 
Figure 3:  Space, shape, and color WM fields representing a 
blue triangle and the mapping to different visual pathways. 

   
Given the broad spatial tuning of ventral stream neurons 

(see Figure 3A), how does our model solve the “binding” 
problem of vision (Treisman & Gelade, 1980)?  That is, 
how would the model know that a “blue” peak in the color-
space field should be matched with a “triangle” peak in a 
shape-space field in representing a blue triangle?  The 
answer is through spatial coupling; that is, the SWM and 
FWM fields contain a common spatial dimension and thus 
share spatial activation.  This achieves distributed but 
coupled peaks of activation across multiple cortical fields—
our implementation of an “integrated” object (for related 
ideas, see Treisman & Gelade, 1980).  Figure 3B shows the 
WM fields of the model representing a blue triangle at a 
location left of center in the task-space.  The inputs have 
built to threshold and excitatory/inhibitory interactions for 
each WM field have formed a peak of activation.  The 
shared spatial activation is now visible in the feature WM 
fields as ridges of sub-threshold activation running 
vertically at the location of the object (there is also spatial 
coupling going into the spatial WM field; however, it is not 
readily visible).  Thus, coupled spatial activation serves to 
anchor features together.   

The final aspect of the model architecture highlighted in 
Figure 3 is the contribution from frontal lobe areas.  As we 
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discuss below, we hypothesize that neural processes in the 
frontal lobe can selectively modulate the resting level of 
populations of neurons in SWM and FWM (e.g., boosting 
the excitability of color neurons). This serves as a 
mechanism to bias representations of objects based on 
different visual dimensions and is a neurally plausible 
mechanism underlying ‘rule’-like behavior (Egner & 
Hirsch, 2005).  This modulation of activity is putatively 
grounded in word-learning.  As the labels ‘shape’ and 
‘color’ are learned, stronger levels of resting-level boost can 
be applied to the populations of neurons coding for the 
respective type of information. Thus, developmental 
changes in rule-flexibility in the DCCS is hypothesized to 
be a product of a simple associative mechanism between the 
labels ‘shape’ and ‘color’ and the feature fields encoding 
these dimensions.   

Rule-use and the Role of Space 
Because space is a central component of the object 
representation model we are using to capture behavior in the 
DCCS, space is also an important component of rule-use. 
We highlight this in Figure 4 which shows how the model 
captures the sequence of events as the model sorts both test 
cards by color in the standard version of the DCCS task. 
Figure 4A shows the target inputs into the spatial and 
feature WM fields that capture the information on the target 
cards.  Note that the hot spots in Figure 4A are not peaks, 
but are sub-threshold boosts of activity.  This is apparent in 
the spatial WM field (top panel) which shows two sub-
threshold bumps of activity at the location of the trays.  
Within the feature WM fields, these are hotspots of activity 
for particular features at the left and right locations.  Here, 
the target cards are a red star on the left and a blue circle on 
the right.  Test inputs are presented without spatial 
information as a ridge for a particular feature value across 
all spatial locations (see horizontal ridges in Figures 4B and 
4D). The model, like children, must localize the features on 
the test cards to a spatial location.   

In order to get rule-like representations out of the model 
and to resolve the spatial conflict in the test cards (e.g., for a 
blue-star, blue feature input will overlap with a target input 
at the right location while the star feature input will overlap 
with a target input at the left location), we boost the resting-
level for the relevant population of neurons.  When ‘told’ to 
play the color game, for example, the resting level of the 
color field is given a slight boost.  Figure 4B shows the 
model sorting a blue-star.  With the color field boosted, 
spatial activation at the location of the blue target input is 
shared with the spatial WM and shape WM field.  This 
ultimately tips the balance of activation within the shape 
WM field and drives the binding of the star feature to the 
right sorting bin by building a peak at the rightward 
location. The model, then, binds the features together to 
represent the object at the location where it is to be placed.  
Figure 4C shows the accumulation of LTM as a result of 
making this decision.  LTM is overlapping with the target 
input in the color WM field.  However, LTM is at the 

opposite spatial location of the target input for that feature 
in the shape WM field (see white circle in Figure 4C); that 
is, the model is seeing a star at the left location in the task-
space but has a memory for placing a star to the right. 

 
Figure 4:  The sequence of events as the model sorts the 

two target cards. 
 
The same sequence of events plays out as the model sorts 

a red-circle by color in Figure 4D.  Figure 4E shows the 
accumulation of LTM after the pre-switch phase. Since the 
model consistently sorted by color, LTM is overlapping 
with the target inputs in the color field, while LTM is at 
conflicting locations with the inputs in the shape field. Thus, 
going into the post-switch phase, there is spatial conflict in 
the shape field. 

What happens when we switch the ‘rule’ in the post-
switch trials? To implement the rule switch in the model, we 
reset the resting level of the color field and boost the resting 
level of the shape field.  However, with weak levels of 
resting-level boost, the model perseverates and uses the 
incorrect feature dimension to sort the test cards. This 
occurs because activation in the color field builds quickly 
due to the strong activation from the overlap between the 
target inputs and the LTM traces accumulated during the 
pre-switch phase. By contrast, activation builds slowly in 
the shape field due to spatial conflict. If, however, we 
increase the resting-level boost for neurons within the post-
switch field, the model sorts correctly and overcomes the 
spatial conflict created from the pre-switch phase. Thus, 
models with weak levels of resting level boost (i.e., weak 
representations of color and shape dimensions) will be 
successful in the pre-switch, but only models with strong 
levels of resting level boost will be able to switch rules.  A 
model’s ability to switch rules, then, is a function of the 
inputs to the model, the LTM that accumulates in the pre-
switch phase, and the strength of resting-level boost that is 
supplied to the relevant feature WM field. 

This model not only captures the performance of 3- and 4-
year-olds in the standard task, but also generalizes to two 
other canonical versions (a Negative Priming and an 
Absolute Negative Priming version; see Buss & Spencer, 
2008).  The spatial conflict shown in Figure 4 plays a 
central role in capturing these effects. To show that this 
account is not only about space, it is necessary to 
demonstrate that the model can capture effects that 
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eliminate a role for spatial information.  We now turn to 
new variations of the DCCS which provide such a test. 

Automatic and Voluntary Shifts of Attention 
The nature of attentional shifting in the DCCS was explored 
by Fisher (2008) because of the implications the results 
would have for early word-learning.  Theories of early word 
learning either posit that developmental changes occur 
through automatic attention driven by bottom-up processing 
(Sloutsky & Fisher, 2005) or voluntary attention that is 
applied in a conscious and deliberate manner (Gelman & 
Medin, 1993).  Proponents of the former perspective argue 
that developmental changes in word-learning occur prior to 
the development of voluntary control of attention.  
Assuming that common attentional systems and processes 
are used for both rule-switching and word-learning, it 
should be possible to measure automatic and voluntary 
attention in other tasks.  If voluntary attention is not yet 
developed in 3-year-olds, then these children should only 
have trouble switching rules in the DCCS when a voluntary 
shift of attention is required.   

 
Figure 5:  Example of cards used in Fisher (2008) with low 
saliency along the color dimension but high saliency along 

the shape dimension (Panel A) and cards with 4 features per 
dimension (Panel B). 

 
In one comparison, Fisher (2008) examined the role of 

feature saliency.  Salient features have been shown to 
automatically capture attention (Treisman & Gelade, 1980); 
thus, when combined with a less salient set of features, 
high-saliency should facilitate automatic switching of 
attention while low-saliency should require a voluntary 
switch.  Fisher (2008) constructed the color features in the 
DCCS with low-saliency and the shape features with high-
saliency (see Figure 5).  Using a more complex task design 
in order to isolate automatic and voluntary attentional 
processes, any influence of spatial information was 
eliminated by randomizing the location (left/right) of the 
target cards trial by trial.  Thus, children’s difficulty could 
not stem from spatial habits or memories associated with the 
images on the test cards.  Further, half of the 8 trials during 
the pre- and post-switch phases were no-conflict (i.e., 
matched a target card along both dimensions). 

Under these conditions, 3-year-olds had significantly 
more difficulty switching to a less-salient set of features 
than to a more-salient set of features (i.e., more difficulty 
switching to color than switching to shape).  Thus, high-
saliency facilitates an automatic switch of attention, while 
low-saliency is more attentionally demanding and requires a 
voluntary switch.   

In another set of conditions, Fisher (2008) compared a 

high-attentional weights condition to a low-attentional 
weights condition (see Figure 5).  Features are considered to 
have high attentional weights when there are fewer overall 
features (thus, each feature has a greater allotment of 
attention; Nosofsky, 1986).  Again, randomizing the spatial 
location of the target cards trial-by-trial and using half no-
conflict cards during each phase, 3-year-olds had 
significantly more difficulty switching rules when 2 features 
per dimension were used compared to 4 features per 
dimension.  With lower attentional weights, attention for 
each feature essentially weighs less and is moved more 
easily to new features during the post-switch phase.  Lower 
weights thus facilitate an automatic switch of attention, 
while higher weights are more attentionally demanding and 
require a voluntary switch.   

Across these two variations in the DCCS, voluntary shifts 
of attention prove to be more difficult for 3-year-olds than 
automatic shifts of attention. This account leaves 
unanswered, however, what exactly makes a switch of 
attention automatic or voluntary and what makes voluntary 
shifts of attention difficult.  As we will show, the 
preliminary simulation results suggest that the DNF model 
can provide a way to ground these concepts.   

Simulation of Feature Saliency Conditions 
To implement different degrees of feature saliency in the 
model, the relative separation between the inputs along the 
feature dimension was manipulated.  As can be seen in 
Figure 6, the inputs to the color field are now closer along 
the feature dimension. Instead of a 31 neuron separation as 
in the shape field, the color inputs are now only 11 neurons 
apart.  Inputs to the model were implemented exactly as in 
Fisher (2008).  The spatial location of the target cards was 
randomized for each trial.  Eight cards were presented 
during each the pre- and post-switch phase, half of which 
were no-conflict.   

Figure 6 shows the post-switch results from 10 runs of the 
model with a weak resting-level boost for each post-switch 
dimension compared to the results from 3-year-olds in 
Fisher (2008). The model, like children, performed well 
when sorting by both shape and color during the pre-switch 
phase, sorting 100% and 92.5% correct, respectively.  As 
can be seen, the model shows the same trends in 
performance as that of 3-year-olds. Specifically, the model 
exhibited high rates of correct sorting for no-conflict cards 
for both shape and color rules.  Further, the model was able 
to successfully switch to the shape rules but had a poor level 
of performance switching to the color rules.   

To explore the source of difficulty with similar feature 
metrics, we examined the latency in peak-build time on 
correct trials within the shape and color fields when they 
were boosted and relevant for the pre-switch.  Since the 
model performed with a high level of success during the 
pre-switch, the boosted field is reliably driving the decision 
making process.  Thus, this gives a measure of how long it 
takes to build a representation of a relevant feature in order 
to make a decision based on either color or shape.  Average 
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peak latency within the color field with less-salient inputs 
was 547 time-steps, while this average latency was 425 
time-steps in the shape field with more-salient inputs.  Thus, 
activation builds more slowly with close feature metrics in 
the color field.  This is due to the partially overlapping 
representation of the color features.  The color field is more 
active overall when presented with a test card which 
requires more inhibition during peak formation.  Although 
this delay in peak build-time does not impact performance 
during the pre-switch trials, once LTM has been established 
and the model is switching to color rules, there is activation 
at each spatial location for each feature.  This induces 
additional conflict, requiring even more inhibition to resolve 
the conflict and select a choice along the color dimension. 
Thus, it is difficult to sort by color and shape wins the 
competition during peak formation.  

 
Figure 6:  Inputs to model for the feature saliency condition 

and preliminary fits of the model’s performance. 
 
The difference between automatic and voluntary shifting 

in this situation is the amount of resting-level boost required 
to sort by a given dimension’s inputs.  Switching to more 
salient features is ‘automatic’ in that distinct features win-
out by default given the overall slowing down of activation 
in the color field.  Thus, switching to distinct features is 
supported in a bottom-up manner by the inputs to the model.  
Conversely, switching to less-salient features is voluntary in 
that it requires extra resting-level boost (i.e., a stronger 
representation of shape and color dimensions within frontal 
areas) to correctly switch to these features.  This condition, 
then, highlights how these two types of attention can be 
conceptualized within the dynamic field framework and 
provides neural grounding for these concepts.        

Simulation of Attentional Weights Conditions 
In the second condition from Fisher (2008), the high-
attentional weights inputs have 2 different feature values for 
each dimension and 2 sorting locations, while the low-
attentional weights inputs have 4 different feature values 
and 4 sorting locations (see Figure 7).  Once again, we 
simulated this condition with no special modifications to the 
model; rather, we simply implemented Fisher’s procedure.  
The location of the target cards was randomized so that each 
target card occupied each location an equal number of 
times.  Eight trials were administered for each of the pre- 
and post-switch phases with half of the cards being no-
conflict.  The comparison of 10 runs of the model with each 

set of features and the 3-year-olds from Fisher (2008) is 
displayed in Figure 7 (the model showed a high level of 
performance during pre-switch for both the low- and high-
attentional weight versions, sorting 100% and 95% correct, 
respectively).  Again, both the model and children displayed 
a high rate of correct sorting with the no-conflict cards.  
Further, the model had a high rate of correct switching in 
the low-attentional weights condition but a low rate of 
switching in the high-attentional weights condition.   

 
Figure 7:  Inputs to the model for the low-attentional 
weights version with 4 features per dimension and 

preliminary fits of the model’s performance. 
 

What underlies this ‘attention’ related performance? In 
the model, LTM for visual features is specific to spatial 
locations within the 2-dimensional feature WM fields. With 
randomized space and 4 sorting locations, the LTM for the 
features involved in the task becomes distributed across the 
4 spatial locations. Further, with 4 features per dimension, 
the individual features are presented less often.  With 2 
features, by contrast, LTM accumulates at more consistent 
feature and spatial locations.  As a result, LTM with 2 
features becomes stronger and leads to more interference 
during the post-switch phase. This, in turn, requires a 
stronger resting-level boost to sort correctly. With 4 
features, however, LTM is weaker and, thus, does not create 
strong interference in the post-switch field. Indeed, the 
average strength of LTM with 2 features was 0.0242 units, 
while this average was only 0.0155 units with 4 features.  
Thus, switching with 4 features is more ‘automatic’ because 
a more distributed LTM facilitates switching even with 
weak levels of resting-level boost.  While different levels of 
resting-level boost (i.e., different strengths of dimensional 
attention) are required in order to switch with 2 versus 4 
features, this version seems less about attention and more 
about the distribution of features in space and the dynamics 
of LTM accumulation. 

Discussion 
Our object representation system coupled with a simple 
mechanism of resting-level modulation has proven to be a 
versatile framework for capturing children’s rule-use and 
the development of flexible rule-use.  This shows the power 
and utility of formalizing and grounding abstract concepts 
such as rule-use and rule-representation in a neural 
framework.  Within the same model, concepts such as 
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negative-priming, inhibition, and various attentional 
processes can all be united and understood.   

The previous simulations presented by Buss & Spencer 
(2008) highlighted the role of spatial information and 
showed that boosting the resting level of relevant feature 
fields is enough to capture developmental changes in 
flexible rule-use.  Here we showed that more subtle effects 
can emerge from the interactions of LTM, inputs, and 
resting-level modulation such that correct switching can be 
supported in a bottom-up and top-down fashion based on 
the nature of activation within the feature fields.   

Fisher (2008) found evidence that voluntary attention is 
not developed at 3-years of age, and children were only able 
to switch rules when automatic shifts of attention were 
supported by the task.  In the model, different inputs (i.e., 
salient features and low-attentional weights) support 
automatic switching earlier in development with weak 
levels of resting-level modulation; however, voluntary shifts 
of attention (i.e., with non-salient features and high-
attentional weights) only emerge later in development with 
stronger ‘shape’ and ‘color’ representations.   

However, the model also provides further clarity on the 
nature of attention: voluntary and automatic in this context 
operate simultaneously in the model.  That is, the model 
requires some resting-level boost, some level of voluntary 
attention, in order to sort correctly in the pre-switch.  As 
features are represented and LTM accumulates during the 
initial sorting phase, different amounts of competition are 
established.  At this point, the inputs can either facilitate 
switching or stronger resting-level boost will be needed in 
order to switch rules. Thus, automatic and voluntary are 
relative terms along a continuum in the balance between all 
these factors--space, feature-metrics, LTM, and the boost 
supplied to different feature field--when they are assembled 
in the task rather than a discrete developmental switch from 
one form of attention to another. This provides a picture of 
emergence and self-organization where both types of 
attention can exist at once as they are defined in the task and 
the nature of the inputs.       
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