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Abstract 

The present paper examines the interplay between causal rea-
soning and decision making. We use a repeated decision mak-
ing paradigm to investigate how people adapt their choice be-
havior when being confronted with changes in the decision 
environment. We argue that people are sensitive to the causal 
texture of a decision problem and adjust their choice behavior 
in accordance with their causal beliefs. In the first study we 
examine how people adapt their decision making behavior 
when new options whose consequences have not been ob-
served yet become available. In the second study the causal 
system underlying the decision problem is modified to inves-
tigate how prior experiences with the choice task affect deci-
sion making. The results show that decision makers’ choice 
behavior is strongly contingent on their causal beliefs and that 
they exploit their causal knowledge to assess the conse-
quences of changes in the decision problem situation. A high 
consistency between hypotheses about causal structure, ex-
pected values, and actual choices was observed. 

Keywords: Decision making; Causal reasoning; Learning 

Introduction 

How do decision makers assess the implications of changes 

in the decision environment? And how do they adapt their 

choice behavior to such changes? Previous research on 

adaptive decision making (e.g., Payne, Bettman, & Johnson, 

1993) has primarily focused on strategy selection. Going 

beyond this research, we here focus on adaptivity in terms 

of flexibly responding to changes of the causal underpin-

nings of the decision problem. Our main hypothesis is that 

decision making is contingent on causal considerations and 

that decision makers exploit their causal knowledge to adapt 

to the respective structure of the choice situation.  

For example, cancer is often treated by chemotherapy. 

However, the potential benefits of this treatment strongly 

depend on a number of factors, such as the constitution of 

the patient. When the patient’s liver is working properly, 

chemotherapy is often the most promising treatment. How-

ever, when a patient suffers from liver dysfunction it may be 

necessary to switch to a different treatment, such as radia-

tion therapy. Thus, the potential benefits of the available 

courses of action strongly depend on the specific properties 

of the underlying causal system. Therefore, knowledge of 

the causal system enables the decision maker to determine 

which of the different options is most promising under the 

prevailing circumstances. Importantly, it does so without 

requiring any further learning experience. 

Surprisingly, most theories of decision making still neg-

lect the importance of causal considerations. For example, 

likelihood × value theories (e.g., expected utility theory) 

distinguish between options, possible outcomes, and the 

associated uncertainties, but causal learning and causal rea-

soning are not addressed by these theories. Rather, these 

accounts implicitly assume that likelihood estimates correct-

ly mirror causal relations, although observable statistical 

(“evidential”) relations may not necessarily reflect underly-

ing causal processes (Hagmayer & Sloman, 2009).  

Other researchers, however, have emphasized the tight 

connection between causal reasoning and decision making. 

For example, Sloman and Hagmayer (2006) have argued 

that people tend to construct a mental causal model (Wald-

mann, Hagmayer, & Blaisdell, 2006) of the choice situation. 

A causal model of the decision problem encompasses the 

causal influences between options, outcome events, and 

payoffs. It therefore enables decision makers to mentally 

simulate the consequences of the available courses of ac-

tions. In a number of studies Hagmayer and Sloman (2009) 

demonstrated that peoples’ decisions are contingent on their 

causal beliefs when making simple one-shot decisions in 

hypothetical scenarios. These studies also showed that 

people spontaneously activate their causal beliefs before 

making a choice. 

Repeated Decision Making: 

Becoming Adapted and Being Adaptive 

In the present paper, we focus on decision situations in 

which people repeatedly face a binary choice task with the 

goal of maximizing their payoff. Since no prior information 

concerning the payoff distributions is provided, the out-

comes of the available options have to be assessed from the 

experienced feedback. Erev and Barron (2005) referred to 

this setting as minimal information paradigm. In such stu-

dies decision makers are presented with two options (e.g., 

two buttons A and B) between which participants can 

choose. Each choice leads to a certain payoff drawn from an 

unknown distribution. To describe the learning process dur-

ing such repeated decision making, Barron and Erev (2003) 

put forward the value assessment model, a reinforcement 

learning model that estimates the payoff distributions and 

expected values (EV) of the available options from feed-

back. A similar approach underlies instrumental learning 

theories, which describe how an organisms’ choice behavior 

is shaped through reinforcement. 

A characteristic feature of such reinforcement models is 

that they entail that choice behavior gradually changes in 

accordance with the experienced contingencies between 
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actions and outcomes. Thus, the decision maker becomes 

adapted to the decision problem. The underlying learning 

mechanisms also entail that agents can adapt to changes in 

the choice situation. For example, imagine the payoff struc-

ture is altered after a number of learning trials. Because such 

a change results in different feedback, the decision maker 

can adapt to the new situation. However, adaptation is rather 

slow since re-learning is influenced by the previously ac-

quired knowledge (i.e., expected value estimates, associa-

tive weights). Moreover, new learning experiences are es-

sential – no feedback, no adaptation.  

However, knowledge gained from previous experiences 

with a particular choice situation can also enable the deci-

sion maker to flexibly respond to changes in the decision 

context. This is the case when (i) the choices pertained to a 

causal system, and (ii) the observed consequences allowed it 

to infer the structure of the underlying causal system. Then, 

people may acquire knowledge that reflects the causal influ-

ences in the environment. For example, endocrine therapy 

has proved to be effective for treating breast cancer. The 

benefit of this therapy is based on the fact that some types of 

cancer cells possess hormone receptors which are responsi-

ble for the nutrition of the cells which, in turn, affects tumor 

growth. Thus, blocking these receptors by a drug stops tu-

mor growth. However, when the tumor cells do not possess 

these receptors, the therapy is ineffective. In this case, 

knowing that one of the variables in the causal chain is 

missing allows the agent to directly infer that taking this 

action is not any longer sensible. As envisioned by Tolman 

and Brunswik (1935), representations that mirror the causal 

texture of the environment are highly adaptive. 

To induce causal structure, people can capitalize on dif-

ferent cues, such as prior knowledge, spatio-temporal conti-

guity, and statistical information (Lagnado, Waldmann, 

Hagmayer, & Sloman, 2007). The causal model theory of 

choice (Sloman & Hagmayer, 2006; Hagmayer & Sloman, 

2009) extends this idea to decision making by assuming that 

people tend to induce a causal model of the decision prob-

lem and the choice situation. A causal model of a decision 

problem comprises the causal influences between actions, 

outcomes, and payoffs. Figure 1 shows some simple exam-

ples of causal models. These models detail the relations be-

tween the available options (L, W), the intermediate out-

come variables (A, B) that are causally affected by the avail-

able courses of action, and the payoffs associated with the 

occurrence of the outcome variables. A characteristic fea-

ture of causal models is that they represent only causal rela-

tions, but not the statistical contingencies that are generated 

by them (cf. Sloman, 2005). For example, the relation 

among endocrine therapy, the blockade of receptors, and 

tumor growth can be described by a causal chain like the 

one shown in Figure 1 left hand side. 

Goals and Hypotheses 

In a previous study (Hagmayer & Meder, 2008) we ex-

amined how pre-existing causal beliefs about a domain 

guide repeated decision making. To do so, we manipulated 

decision makers’ beliefs about the causal structure underly-

ing the decision problem while keeping the observed conse-

quences constant. The results showed that, depending on 

peoples’ initial causal beliefs, identical learning experiences 

can lead to very different conclusions. These beliefs, in turn, 

strongly affected participants’ reactions to changes of the 

underlying causal system.  

In the present set of studies we did not provide partici-

pants with an initial causal hypothesis. In fact, we did not 

even point out that causal knowledge might be helpful. Par-

ticipants were not informed that the causal system they in-

itially acted upon might change. Also, instead of presenting 

participants with deterministic causal systems like we did in 

our previous studies we here examine decision making with 

probabilistic causal systems. Thus, the available courses of 

actions only probabilistically generated their outcomes. Fi-

nally, we used two different modifications of the decision 

problem to assess whether participants are able to adapt to 

changes. In the first experiment we surprisingly provided 

participants with a novel option, whose consequences had 

never been observed before but could be inferred from a 

causal model representation of the decision situation. In the 

second experiment participants were unexpectedly informed 

that a causal variable had been removed from the system. 

Again, causal knowledge would allow them to spontaneous-

ly and accurately adapt to the new situation.  

Based on previous research into causal learning and causal 

decision making we expected participants to acquire a caus-

al model representation of the decision problem (Hagmayer 

& Meder, 2008; Hagmayer & Sloman, 2009). Following up 

on research on causal learning, which has shown that people 

can exploit causal knowledge to infer the outcomes of hypo-

thetical interventions from causal model representations 

(Meder, Hagmayer, & Waldmann, 2008), we expected par-

ticipants to be able to assess the consequences of the novel 

option in Experiment 1. We also expected them to capitalize 

on their causal model representation when the causal system 

underlying the decision problem is altered (Experiment 2).  

Experiment 1 

The goal of the first study was to examine whether people 

would adapt to the causal texture of a repeated decision 

making task and spontaneously induce a causal model re-

presentation. In particular, the question was how people 

would react to changes of the decision problem, and wheth-

er they would be capable to adapt their choice behavior ac-

cordingly. The experiment consisted of two repeated deci-

sion making phases, with the second phase being the test 

phase in which unexpectedly an additional option was intro-

duced. In both phases participants’ task was to maximize the 

value of a certain payoff variable. However, feedback about 

the outcomes of the decisions made was only provided in 

the initial decision making phase, but not in the test phase. 

Figure 1 shows the two causal structures used in this 

study, causal chain (CH) and common cause (CC), and the 

associated feedback structures (the relations between op-

tions, variables, and payoff were counterbalanced across 

1652



participants).  In the Causal Chain condition, option L influ-

enced variable B only by way of A (Do  L�A�B), whereas 

in the two common cause conditions Do L independently 

affected A and B (ADo L�B). We employed two different 

common cause conditions. In one condition (Common 

Cause 1), the available options (L, W) had identical ex-

pected values as in the causal chain condition. This manipu-

lation, however, requires different probabilistic relations 

than the ones in the chain condition (e.g., P(B | Do L)Chain > 

P(B | Do L)CC 1). We therefore designed a second common 

cause condition (Common Cause 2) in which all causal rela-

tions had the same strengths as in the chain condition. As a 

consequence, the expected value for Do L was higher than 

in the chain condition. However, the rank order of the op-

tions’ expected values was the same as in the other two con-

ditions (i.e., EV(Do L) > EV(Do W)). 

Causal Chain

.75

BA

Payoff

Do WDo L

.75

.75

+100 +100

Common Cause 2

.75

BA

Payoff

Do WDo L

.75 .75

+100 +100

Chain Common Cause 1 Common Cause 2

Events Prob Payoff EV Prob Payoff EV Prob Payoff EV 

Do L 

A & B 0.56 200 

131

0.42 200 

130

0.56 200 

152
A 0.19 100 0.23 100 0.19 100 

B 0.00 100 0.23 100 0.19 100 

― 0.24 0 0.12 0 0.06 0 

Do W 
B 0.75 100 

75
0.75 100 

75
0.75 100 

75
― 0.25 0 0.20 0 0.25 0 

no int ― 1.00 0 0 1.00 0 0 1.00 0 0 

BA

Payoff

Do WDo L

.65 .65 .75

+100 +100

Common Cause 1

 

Figure 1. Causal structures and feedback of Experiment 1.  

Participants and Design Sixty University of Göttingen 

undergraduates took part for course credit or were paid 7€. 

They were randomly assigned to one of the three conditions 

(Causal Chain, Common Cause 1, Common Cause 2). 

Materials and Procedure We used a biological scenario 

according to which certain bacteria produce a vaccine 

against diseases. Participants were told that the production 

of the vaccine is regulated by two genes, A and B, which are 

inactive by default. Then they were instructed to try to pro-

duce as much vaccine as possible by activating these genes 

through applying two “trigger substances”, L and W. Partic-

ipants were not informed how exactly the trigger substances 

relate to the activation of the genes, but it was pointed out 

that the two genes may also be causally interrelated.  

The initial Repeated Decision Making (RDM) Phase con-

sisted of 100 decision trials in which participants were re-

quested to maximize the amount of produced vaccine by 

repeatedly choosing one of the three options (Do L, Do W, 

no intervention). Each of the 100 decision trials referred to 

bacteria whose genes were inactive prior to any interven-

tion. After making a decision, participants first observed 

which genes became active and then received information 

on the payoff (amount of produced vaccine). The temporal 

order conformed to the underlying causal structure. Thus, in 

the chain condition participants observed first that gene A 

became activated and then, with a delay of 1s, that gene B 

also became active. In the common cause condition both 

genes turned on simultaneously. As option L had a much 

higher expected value than option W (cf. Figure 1) we ex-

pected participants to prefer option L regardless of condi-

tion.  

After making 100 decisions the Test Phase began, which 

consisted of 10 additional decision trials. In this phase a 

novel option was introduced. Decision makers were told that 

a new trigger substance had been developed, which reliably 

activated gene A. Thus, in the test phase participants had to 

choose among the known options Do L and Do W as well as 

the new option Do A. In this phase, however, decision mak-

ers received no feedback regarding the state of the interme-

diate variables (A and B) or the resulting payoff. Thus, par-

ticipants could not simply learn about the consequences of 

the new option. As decision makers never experienced the 

outcomes of this option, they would have to rely on their 

causal knowledge to assess whether the new option would 

be superior to the existing ones. In the chain condition, due 

to the causal relation A�B the fact that P(A | Do A) = 1.0 

implies that the new option has a higher expected value than 

Do L (EV(Do A)Chain = 175 > EV(Do L)Chain = 131). By con-

trast, in the common cause conditions intervening on A 

would not affect B. Therefore, EV(Do A)CC1 = EV(Do A)CC2 

= 100, which is inferior to Do L.  Thus, to maximize payoff 

decision makers should opt for Do A when assuming that 

there is a causal relation between A and B (i.e., in the chain 

condition) but stick with Do L when there is no causal rela-

tion (i.e., in the common cause conditions).  

Table 1.  Mean number of choices (±SEM) and received 

mean payoff (±SEM) in Experiment 1. 

Results and Discussion Table 1 (left hand side) shows the 

results of the initial decision making phase. The obtained 

choice pattern shows that, regardless of the underlying caus-

al model, decision makers had a clear preference for option 

L. Accordingly, no difference was obtained between the 

three conditions. Also, the experienced payoffs closely re-

semble the options’ actual values (cf. Figure 1). By contrast, 

participants’ choices during the test phase revealed differen-

tial preferences. Decision makers in the chain condition ex-

hibited a strong preference for the new option ‘Do A’, which 

indicates that they inferred that they would gain a higher 

 RDM Phase   Test Phase 

 Do L Do W no int  - Do L Do W Do A 

 ) Payoff ) Payoff ) Payoff  - ) ) ) 

Chain  
74.8 

(3.6) 

132.4 

(2.3) 

21.8 

(3.1) 

72.8 

(2.7) 

3.5 

(0.8) 

0.0 

(0.0) 
  

2.2 

(0.4) 

0.1 

(0.6) 

7.8 

(3.3) 

CC 1 
77.7 

(2.6) 

127.3 

(1.8) 

20.3 

(2.4) 

74.3 

(2.0) 

2.0 

(0.4) 

0.0 

(0.0) 
  

5.4 

(0.8) 

0.5 

(0.8) 

4.2 

(0.8) 

CC 2 
73.5 

(4.2) 

151.4 

(1.6) 

23.7 

(3.7) 

70.3 

(3.2) 

2.9 

(0.9) 

0.0 

(0.0) 
  

6.2 

(0.9) 

0.5 

(0.7) 

3.3 

(0.6) 
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payoff when switching from Do L to Do A. By contrast, a 

very different pattern was obtained in the two common 

cause conditions. In these conditions participants preferred 

to stick with option L. Consequently, more Do A choices 

were obtained in the chain than in the two common cause 

conditions, t(38) = 3.50, p < .001 and t(38) = 5.23, p < .001, 

respectively. The two common cause conditions did not 

differ.  

Subsequent to the test phase participants were asked to 

provide estimates of the expected payoff for all three op-

tions (Do L, Do W, Do A). Estimates for options L and W 

closely resembled the actual values (cf. Fig. 1), though par-

ticipants in the CC 2 condition slightly underestimated the 

expected value of Do W. The crucial analyses concern deci-

sion makers estimates for option Do A, whose actual conse-

quences they never observed. The obtained judgments re-

veal a strong sensitivity to the underlying causal structure: 

Estimates in the chain condition were significantly higher 

than in condition CC 1 [t(40) = 2.4, p = .02] and condition 

CC 2 [t(40) = 2.3, p = .03]. Again, the two common cause 

conditions did not differ from each other.  

Table 2. Mean estimates (±SEM) for payoffs and causal 

model choices in Experiment 1. 

The final dependent variable aimed to directly tap onto 

decision makers’ causal beliefs about the decision problem. 

Participants were presented with graphs of a causal chain 

and a common cause model (similar to the ones shown in 

Fig. 1, but without the numbers). Then they were asked to 

indicate which of the two models would correctly describe 

the causal relations between options, intermediate variables, 

and the payoff. In all conditions a majority of participants 

chose the correct model: 85% in the chain condition and 

70% and 75%, respectively, in the two common cause con-

ditions (Table 2, right hand side). 

Overall there was a strong concordance between the prefe-

rences decision makers revealed through their choices, their 

expected value estimates, and their assumptions about the 

causal structure of the decision problem. The kappa correla-

tion between these three measures was κ = .71.  

Taken together, the results provide strong evidence that 

participants learned about the causal texture of the repeated 

decision making task. Rather than merely encoding ex-

pected values, a majority of participants spontaneously in-

duced a causal representation of the decision problem, 

though they were never requested to do so. The acquired 

causal knowledge, in turn, allowed decision makers to pre-

dict the expected value of the novel option whose payoffs 

they had not encountered previously. In consequence, 70% 

of participants who were confronted with a causal chain 

model preferred the new option, while only 33% who acted 

on a common cause model did so.  

Experiment 2 

In this study we used a different test strategy to examine 

whether decision makers spontaneously induce a causal 

model, which would allow them to adapt to a change in the 

decision problem. Again the experiment consisted of two 

repeated decision making phases, with the second phase 

being the test phase. In the test phase we modified the deci-

sion problem by removing one of the variables observed 

during learning. Hence, we here used another procedure to 

examine whether participants acquired causal models and 

capitalized on this knowledge to adapt to a new situation. 

Participants and Design Forty-eight University of Göttin-

gen undergraduates participated for course credit or were 

paid 7€. The factor ‘causal model’ (causal chain vs. com-

mon cause) was manipulated between conditions.  

Materials and Procedure We used the same materials and 

procedure as in Experiment 1. The only difference was that 

this time there were three genes (A, B, C) instead of two. 

Participants first had to make 100 decisions with the goal of 

maximizing their payoff, followed by a test phase compris-

ing 10 additional decisions. Again feedback was only pro-

vided in the initial decision making phase, but not in the test 

phase. 

Causal Chain Model Common Cause Model

Events Prob Payoff EV

Do L

A & B 0.60 200

140
A 0.20 100

B 0.00 100

― 0.20 0

Do W
C 0.80 50

40
― 0.20 0

no int ― 1.00 0 0

Events Prob Payoff EV

Do L

A & B 0.49 200

140
A 0.21 100

B 0.21 100

― 0.09 0

Do W
C 0.80 50

40
― 0.20 0

no int ― 1.00 0 0

BA

Payoff

.75

Do WDo L

.8 .8

+100 +100

C

+50

BA

Payoff

.7

Do WDo L

.7 .8

+100 +100

C

+50

 

Figure 2. Causal structure and feedback of Experiment 2. 

Figure 2 shows the two experimental conditions, causal 

chain (CH) and common cause (CC) and the associated 

feedback structures. Like in Experiment 1, in the causal 

chain condition option L influences B only by way of A 

(Do L�A�B). In the common cause condition, by contrast, 

L is directly related to both A and B (ADo L�B). Thus, 

whereas in the chain condition the presence of A is a neces-

sary event for the occurrence of B (i.e., P(B|¬A) = 0), this is 

not the case in the common cause condition (i.e., 

P(B|¬A) > 0). However, despite this difference the expected 

values (EV) of the available options were identical across 

 Expected Value Estimates  Model Choices 

 Do L Do W Do A  Chain CC 

Chain  
134.8 

(8.0) 

75.0 

(4.0) 

140.0 

(8.8) 
 17 3 

CC 1 
141.3 

(6.4) 

68.8 

(4.8) 

112.0 

(7.8) 
 6 14 

CC 2 
157.0 

(10.1) 

59.6 

(7.3) 

113.5 

(7.5) 
 5 15 
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conditions: EV(Do L) = 140, EV(Do W) = 40, and EV(no 

int) = 0. Thus, to maximize the payoff one should choose 

option L regardless of the underlying causal model. 

The instruction to the test phase informed decision makers 

that they now would be presented with bacteria that did not 

possess gene A. Thus, variable A was suddenly removed 

from the causal system. This removal has very different 

implications for the two causal systems. In the causal chain 

condition L affects B only by way of A, therefore, the ex-

pected value of L decreases from 140 to zero. Accordingly, 

Do W becomes the better option (EV(Do L| no A) = 0 < 

EV(Do W| no A) = 40). In the common cause condition the 

removal of A entails a decrease of EV(Do L), too. However, 

due to the direct link L�B, opting for L remains the better 

option (EV(Do L| no A) = 70 vs. EV(Do W| no A) = 40). 

Thus, in order to maximize participants in the chain condi-

tion should switch from Do L to Do W, whereas participants 

in the common cause condition should stick with option L. 

As before, no feedback was provided in the test phase.  

Subsequent to making their ten decisions for the modified 

causal system participants were also requested to estimate 

the expected payoffs for all options for both decision mak-

ing phases. Finally, participants were presented with a fig-

ure similar to the one depicted in Figure 2, but without any 

arrows (i.e., only the variables were depicted). Decision 

makers’ task was to express their causal hypotheses by 

drawing all causal relations they assumed to hold between 

options, outcome variables, and payoff. Thus, the goal was 

to elicit participants’ representations of the decision prob-

lem. 

Table 3. Mean number of choices (±SEM) and received 

mean payoff (±SEM) in Experiment 2. 

Results and Discussion Table 3 depicts participants’ choic-

es for the two decision making phases and the obtained 

mean payoffs. As expected, participants exhibited a clear 

preference for option L in the initial decision making phase 

regardless of condition. Statistical analyses revealed no dif-

ferences between conditions for any of the options. Also, the 

experienced values accurately mirrored the true values; here 

also no difference between conditions was obtained. By 

contrast, a clear difference between conditions was obtained 

for the test phase in which variable A was removed from the 

system. Participants chose Do W significantly more often in 

the chain condition than in the common cause condition, 

t(46) = 2.83, p < .01.  Conversely, the mean of Do L choices 

was higher in the common cause condition than in the caus-

al chain condition, t(46) = 2.72, p < .01. The fact that partic-

ipants in the common cause condition exhibited only a slight 

preference for L over W is probably due a trade-off between 

mean and variance (i.e., opting for L gives 100 points with 

p = 0.7 while option W results in 50 points with p = 0.8).  

Participants' choice behavior was also consistent with 

their expected value estimates (cf. Table 4, left hand side). 

As with the choices, no differences resulted for the first 

phase but only for the test phase. In both conditions partici-

pants realized that a removal of variable A would decrease 

the expected value of option L. Most importantly, they were 

very sensitive to the fact that the exact amount of decrease 

depends on the underlying causal structure. In accordance 

with the respective underlying causal model they gave lower 

estimates for Do L in the causal chain than in the common 

cause condition, t(46) = 2.69, p = .01.  

Table 4. Expected payoffs (±SEM) for the two decision 

making phases and indicated causal models in Exp. 2. 

Finally, we analyzed the causal models drawn by the 

participants (Table 4, right hand side). Unexpectedly, a 

number of participants (27%) indicated that L is a common 

cause (i.e., ADo L�B) and that there is a direct relation 

A�B. Since this is not completely inconsistent with the ob-

served statistical relations, participants probably went for 

the “safe option” of causal overdetermination. The exactly 

correct model was chosen by 33% of participants. Thus, 

about 60% of the decision makers induced a causal model 

that was consistent with the obtained feedback. The rest, 

however, drew a model which was inconsistent with the 

observations made. This finding indicates that not all partic-

ipants inferred the correct causal model underlying the deci-

sion problem. However, we also suspect that the free elicita-

tion procedure was more difficult for participants than the 

forced choice task used in Experiment 1. Follow up analyses 

revealed that there again was a substantial convergence be-

tween participants’ preferences revealed through their 

choices, expected values and causal models. The kappa cor-

relation between choices and expected values was κ = .73 

and between expected values and model implications 

κ = .70.  

Overall, the results demonstrate that participants were 

remarkably sensitive to the causal texture of the decision 

task. Again, many decision makers seemed to have sponta-

neously induced a causal model representation, which al-

lowed them to flexibly adapt their choice behavior to the 

removal of a causal variable from the system. Replicating 

the results from the previous experiment, 68% of partici-

pants encountering a causal chain switched their preferences 

away from the previously favored option, while only 38% 

dealing with a common cause system did.  

 RDM Phase   Test Phase 

 Do L Do W no int  - Do L Do W 

 ) Payoff ) Payoff ) Payoff  - ) ) 

Chain  

Model 

73.6  

(3.4) 

141.6 

(1.9) 

21.7 

(2.8) 

41.3 

(1.3) 

4.7 

(1.2) 

0.0 

(0.0) 
  

2.8 

(0.7) 

7.2 

(0.7) 

CC-

Model 

79.25 

(3.0) 

143.6 

(1.4) 

17.9 

(2.7) 

42.6 

(.98) 

2.8 

(1.2) 

0.0 

(0.0) 
  

5.5 

(0.7) 

4.5 

(0.7) 

 Expected Value Estimates  Model Hypotheses 

 RDM Phase  Test Phase  

CH CC 

CH+ 

CC- other  Do L Do W -- Do L Do W  

Chain 

Model

149.4 

(5.4) 

45.6 

(3.8) 
 

37.6 

(7.4) 

40.6 

(4.5) 

-
10 6 4 4 

CC-

Model

137.1 

(5.9) 

44.1 

(2.5) 
 

67.3 

(8.2) 

43.3 

(2.8) 

 
4 6 9 5 
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General Discussion 

In the present experiments we studied the interplay between 

causal induction and decision making. The results provide 

strong evidence that human decision making is sensitive to 

the causal texture of a given decision problem. First, in both 

experiments a majority of the participants spontaneously 

induced a causal model representation of the decision prob-

lem, although they were never asked to do so. Second, deci-

sion makers exploited their causal knowledge to adapt their 

choice behavior to changes in the decision context. Partici-

pants switched to a novel option whose consequences had 

not been observed when the causal model entailed that this 

action would lead to a better outcome. They also gave up 

the previously preferred option when the removal of a vari-

able from the causal system implied that this option would 

no longer be the superior action.  

Neither of these findings can be explained by a pure rein-

forcement learning model. Simple models which only en-

code the expected values of options must fail because the 

intermediate variables that make the crucial difference be-

tween conditions are not represented at all. However, also 

reinforcement learning models which represent the interme-

diate variables and their associations to options on the one 

hand and payoffs on the other hand fail. Consider the first 

experiment. Even if the agent encodes the payoff generated 

by each intermediate variable separately, she would still fail 

to differentiate between the two causal models since it is the 

causal interrelatedness of the outcome variables that makes 

the crucial difference (cf. Hagmayer & Meder, 2008). 

However, spontaneous causal induction during repeated 

decision making may also be limited by a number of factors. 

First, the experienced feedback must enable the decision 

maker to discover the underlying causal structure. Thus, 

feedback on the state of the variables within the system and 

cues to causal structure must be available (cf. Lagnado et 

al., 2007). Impoverished outcome feedback pertaining only 

to statistical relations among actions and outcomes is clearly 

not sufficient to build up causal model representations that 

go beyond action-outcome contingencies. Second, with an 

increasing complexity of the decision problem the induction 

of causal models becomes more difficult and data alone is 

rarely sufficient. In these cases previous causal knowledge 

about the domain becomes crucial. However, given a certain 

amount of prior knowledge even sparse and noisy data may 

be sufficient to determine the underlying causal structure 

(e.g., Griffiths, Baraff, & Tenenbaum, 2004).  

One may suspect that the use of causal knowledge in deci-

sion making is limited to the simple problems examined 

here. However, there is a growing body of evidence indicat-

ing that this is not the case.  For example, causal considera-

tions play an important role in psychodiagnostic decision 

making, too (e.g., Kim & Ahn, 2002). Also, when experts 

cannot identify the best solution immediately they tend to 

construct simplified models of the domain to evaluate po-

tential courses of action (Klein, 1998). Thus, the flexibility 

and adaptivity of causal model representations pays off in 

naturalistic decision making contexts as well. 
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