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Abstract

The present paper examines the interplay between causal rea-
soning and decision making. We use a repeated decision mak-
ing paradigm to investigate how people adapt their choice be-
havior when being confronted with changes in the decision
environment. We argue that people are sensitive to the causal
texture of a decision problem and adjust their choice behavior
in accordance with their causal beliefs. In the first study we
examine how people adapt their decision making behavior
when new options whose consequences have not been ob-
served yet become available. In the second study the causal
system underlying the decision problem is modified to inves-
tigate how prior experiences with the choice task affect deci-
sion making. The results show that decision makers’ choice
behavior is strongly contingent on their causal beliefs and that
they exploit their causal knowledge to assess the conse-
quences of changes in the decision problem situation. A high
consistency between hypotheses about causal structure, ex-
pected values, and actual choices was observed.
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Introduction

How do decision makers assess the implications of changes
in the decision environment? And how do they adapt their
choice behavior to such changes? Previous research on
adaptive decision making (e.g., Payne, Bettman, & Johnson,
1993) has primarily focused on strategy selection. Going
beyond this research, we here focus on adaptivity in terms
of flexibly responding to changes of the causal underpin-
nings of the decision problem. Our main hypothesis is that
decision making is contingent on causal considerations and
that decision makers exploit their causal knowledge to adapt
to the respective structure of the choice situation.

For example, cancer is often treated by chemotherapy.
However, the potential benefits of this treatment strongly
depend on a number of factors, such as the constitution of
the patient. When the patient’s liver is working properly,
chemotherapy is often the most promising treatment. How-
ever, when a patient suffers from liver dysfunction it may be
necessary to switch to a different treatment, such as radia-
tion therapy. Thus, the potential benefits of the available
courses of action strongly depend on the specific properties
of the underlying causal system. Therefore, knowledge of
the causal system enables the decision maker to determine
which of the different options is most promising under the
prevailing circumstances. Importantly, it does so without
requiring any further learning experience.

Surprisingly, most theories of decision making still neg-
lect the importance of causal considerations. For example,

likelihood x value theories (e.g., expected utility theory)
distinguish between options, possible outcomes, and the
associated uncertainties, but causal learning and causal rea-
soning are not addressed by these theories. Rather, these
accounts implicitly assume that likelihood estimates correct-
ly mirror causal relations, although observable statistical
(“evidential”) relations may not necessarily reflect underly-
ing causal processes (Hagmayer & Sloman, 2009).

Other researchers, however, have emphasized the tight
connection between causal reasoning and decision making.
For example, Sloman and Hagmayer (2006) have argued
that people tend to construct a mental causal model (Wald-
mann, Hagmayer, & Blaisdell, 2006) of the choice situation.
A causal model of the decision problem encompasses the
causal influences between options, outcome events, and
payoffs. It therefore enables decision makers to mentally
simulate the consequences of the available courses of ac-
tions. In a number of studies Hagmayer and Sloman (2009)
demonstrated that peoples’ decisions are contingent on their
causal beliefs when making simple one-shot decisions in
hypothetical scenarios. These studies also showed that
people spontaneously activate their causal beliefs before
making a choice.

Repeated Decision Making:
Becoming Adapted and Being Adaptive

In the present paper, we focus on decision situations in
which people repeatedly face a binary choice task with the
goal of maximizing their payoff. Since no prior information
concerning the payoff distributions is provided, the out-
comes of the available options have to be assessed from the
experienced feedback. Erev and Barron (2005) referred to
this setting as minimal information paradigm. In such stu-
dies decision makers are presented with two options (e.g.,
two buttons 4 and B) between which participants can
choose. Each choice leads to a certain payoff drawn from an
unknown distribution. To describe the learning process dur-
ing such repeated decision making, Barron and Erev (2003)
put forward the value assessment model, a reinforcement
learning model that estimates the payoff distributions and
expected values (EV) of the available options from feed-
back. A similar approach underlies instrumental learning
theories, which describe how an organisms’ choice behavior
is shaped through reinforcement.

A characteristic feature of such reinforcement models is
that they entail that choice behavior gradually changes in
accordance with the experienced contingencies between
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actions and outcomes. Thus, the decision maker becomes
adapted to the decision problem. The underlying learning
mechanisms also entail that agents can adapt to changes in
the choice situation. For example, imagine the payoff struc-
ture is altered after a number of learning trials. Because such
a change results in different feedback, the decision maker
can adapt to the new situation. However, adaptation is rather
slow since re-learning is influenced by the previously ac-
quired knowledge (i.e., expected value estimates, associa-
tive weights). Moreover, new learning experiences are es-
sential — no feedback, no adaptation.

However, knowledge gained from previous experiences
with a particular choice situation can also enable the deci-
sion maker to flexibly respond to changes in the decision
context. This is the case when (i) the choices pertained to a
causal system, and (ii) the observed consequences allowed it
to infer the structure of the underlying causal system. Then,
people may acquire knowledge that reflects the causal influ-
ences in the environment. For example, endocrine therapy
has proved to be effective for treating breast cancer. The
benefit of this therapy is based on the fact that some types of
cancer cells possess hormone receptors which are responsi-
ble for the nutrition of the cells which, in turn, affects tumor
growth. Thus, blocking these receptors by a drug stops tu-
mor growth. However, when the tumor cells do not possess
these receptors, the therapy is ineffective. In this case,
knowing that one of the variables in the causal chain is
missing allows the agent to directly infer that taking this
action is not any longer sensible. As envisioned by Tolman
and Brunswik (1935), representations that mirror the causal
texture of the environment are highly adaptive.

To induce causal structure, people can capitalize on dif-
ferent cues, such as prior knowledge, spatio-temporal conti-
guity, and statistical information (Lagnado, Waldmann,
Hagmayer, & Sloman, 2007). The causal model theory of
choice (Sloman & Hagmayer, 2006; Hagmayer & Sloman,
2009) extends this idea to decision making by assuming that
people tend to induce a causal model of the decision prob-
lem and the choice situation. A causal model of a decision
problem comprises the causal influences between actions,
outcomes, and payoffs. Figure 1 shows some simple exam-
ples of causal models. These models detail the relations be-
tween the available options (L, ), the intermediate out-
come variables (4, B) that are causally affected by the avail-
able courses of action, and the payoffs associated with the
occurrence of the outcome variables. A characteristic fea-
ture of causal models is that they represent only causal rela-
tions, but not the statistical contingencies that are generated
by them (cf. Sloman, 2005). For example, the relation
among endocrine therapy, the blockade of receptors, and
tumor growth can be described by a causal chain like the
one shown in Figure 1 left hand side.

Goals and Hypotheses

In a previous study (Hagmayer & Meder, 2008) we ex-
amined how pre-existing causal beliefs about a domain
guide repeated decision making. To do so, we manipulated

decision makers’ beliefs about the causal structure underly-
ing the decision problem while keeping the observed conse-
quences constant. The results showed that, depending on
peoples’ initial causal beliefs, identical learning experiences
can lead to very different conclusions. These beliefs, in turn,
strongly affected participants’ reactions to changes of the
underlying causal system.

In the present set of studies we did not provide partici-
pants with an initial causal hypothesis. In fact, we did not
even point out that causal knowledge might be helpful. Par-
ticipants were not informed that the causal system they in-
itially acted upon might change. Also, instead of presenting
participants with deterministic causal systems like we did in
our previous studies we here examine decision making with
probabilistic causal systems. Thus, the available courses of
actions only probabilistically generated their outcomes. Fi-
nally, we used two different modifications of the decision
problem to assess whether participants are able to adapt to
changes. In the first experiment we surprisingly provided
participants with a novel option, whose consequences had
never been observed before but could be inferred from a
causal model representation of the decision situation. In the
second experiment participants were unexpectedly informed
that a causal variable had been removed from the system.
Again, causal knowledge would allow them to spontaneous-
ly and accurately adapt to the new situation.

Based on previous research into causal learning and causal
decision making we expected participants to acquire a caus-
al model representation of the decision problem (Hagmayer
& Meder, 2008; Hagmayer & Sloman, 2009). Following up
on research on causal learning, which has shown that people
can exploit causal knowledge to infer the outcomes of hypo-
thetical interventions from causal model representations
(Meder, Hagmayer, & Waldmann, 2008), we expected par-
ticipants to be able to assess the consequences of the novel
option in Experiment 1. We also expected them to capitalize
on their causal model representation when the causal system
underlying the decision problem is altered (Experiment 2).

Experiment 1

The goal of the first study was to examine whether people
would adapt to the causal texture of a repeated decision
making task and spontaneously induce a causal model re-
presentation. In particular, the question was how people
would react to changes of the decision problem, and wheth-
er they would be capable to adapt their choice behavior ac-
cordingly. The experiment consisted of two repeated deci-
sion making phases, with the second phase being the test
phase in which unexpectedly an additional option was intro-
duced. In both phases participants’ task was to maximize the
value of a certain payoff variable. However, feedback about
the outcomes of the decisions made was only provided in
the initial decision making phase, but not in the test phase.
Figure 1 shows the two causal structures used in this
study, causal chain (CH) and common cause (CC), and the
associated feedback structures (the relations between op-
tions, variables, and payoff were counterbalanced across
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participants). In the Causal Chain condition, option L influ-
enced variable B only by way of 4 (Do L—A—B), whereas
in the two common cause conditions Do L independently
affected 4 and B (A<—Do L—B). We employed two different
common cause conditions. In one condition (Common
Cause 1), the available options (L, W) had identical ex-
pected values as in the causal chain condition. This manipu-
lation, however, requires different probabilistic relations
than the ones in the chain condition (e.g., P(B | Do L)cpuin >
P(B | Do L)cc ;). We therefore designed a second common
cause condition (Common Cause 2) in which all causal rela-
tions had the same strengths as in the chain condition. As a
consequence, the expected value for Do L was higher than
in the chain condition. However, the rank order of the op-
tions’ expected values was the same as in the other two con-
ditions (i.e., EV(Do L) > EV(Do W)).

Causal Chain Common Cause 1 Common Cause 2

|DOL| |DOW| |DOL| |DOW|
.751 .75 .65 .65 .75
LA e ] [a]™e]
+100 +100 +100 +100
Chain Common Cause 1 Common Cause 2
Events ~ Prob  Payoff EV Prob  Payoff EV Prob  Payoff  EV
A&B 0.56 200 0.42 200 0.56 200
A 0.19 100 0.23 100 0.19 100
DoL 131 130 152
B 0.00 100 0.23 100 0.19 100
— 0.24 0 0.12 0 0.06 0
B 0.75 100 0.75 100 0.75 100
Do W 75 75 75
— 0.25 0 0.20 0 0.25 0
noint — 1.00 0 0 1.00 0 0 1.00 0 0

Figure 1. Causal structures and feedback of Experiment 1.

Participants and Design Sixty University of Gottingen
undergraduates took part for course credit or were paid 7€.
They were randomly assigned to one of the three conditions
(Causal Chain, Common Cause 1, Common Cause 2).

Materials and Procedure We used a biological scenario
according to which certain bacteria produce a vaccine
against diseases. Participants were told that the production
of the vaccine is regulated by two genes, 4 and B, which are
inactive by default. Then they were instructed to try to pro-
duce as much vaccine as possible by activating these genes
through applying two “trigger substances”, L and W. Partic-
ipants were not informed how exactly the trigger substances
relate to the activation of the genes, but it was pointed out
that the two genes may also be causally interrelated.

The initial Repeated Decision Making (RDM) Phase con-
sisted of 100 decision trials in which participants were re-
quested to maximize the amount of produced vaccine by
repeatedly choosing one of the three options (Do L, Do W,
no intervention). Each of the 100 decision trials referred to
bacteria whose genes were inactive prior to any interven-
tion. After making a decision, participants first observed
which genes became active and then received information
on the payoff (amount of produced vaccine). The temporal
order conformed to the underlying causal structure. Thus, in

the chain condition participants observed first that gene A
became activated and then, with a delay of Is, that gene B
also became active. In the common cause condition both
genes turned on simultaneously. As option L had a much
higher expected value than option W (cf. Figure 1) we ex-
pected participants to prefer option L regardless of condi-
tion.

After making 100 decisions the Test Phase began, which
consisted of 10 additional decision trials. In this phase a
novel option was introduced. Decision makers were told that
a new trigger substance had been developed, which reliably
activated gene A. Thus, in the test phase participants had to
choose among the known options Do L and Do W as well as
the new option Do A. In this phase, however, decision mak-
ers received no feedback regarding the state of the interme-
diate variables (4 and B) or the resulting payoff. Thus, par-
ticipants could not simply learn about the consequences of
the new option. As decision makers never experienced the
outcomes of this option, they would have to rely on their
causal knowledge to assess whether the new option would
be superior to the existing ones. In the chain condition, due
to the causal relation A—B the fact that P(4 | Do A)=1.0
implies that the new option has a higher expected value than
Do L (EV(Do A)cpain = 175 > EV(Do L)cpain = 131). By con-
trast, in the common cause conditions intervening on A
would not affect B. Therefore, EV(Do A)cc; = EV(Do A)ccs
=100, which is inferior to Do L. Thus, to maximize payoff
decision makers should opt for Do 4 when assuming that
there is a causal relation between 4 and B (i.e., in the chain
condition) but stick with Do L when there is no causal rela-
tion (i.e., in the common cause conditions).

Table 1. Mean number of choices (:SEM) and received
mean payoff (+SEM) in Experiment 1.

RDM Phase Test Phase
Do L Do W Do L Do W Do A
N Payoff N Payoff N Payoff N N N

no int

Chain 748 1324 218 728 35 00 22 01 78
(3.6) (2.3) (3.1) (2.7) (0.8) (0.0) (0.4) (0.6) (3.3)
ccy 777 1273 203 743 20 00 54 05 42
(2.6) (1.8) (24) (2.0) (0.4) (0.0) (0.8) (0.8) (0.8)
ccp T35 1514237 703 29 00 62 05 33
42) (1.6) (3.7) (3.2) (0.9 (0.0) (0.9) (0.7) (0.6)

Results and Discussion Table 1 (left hand side) shows the
results of the initial decision making phase. The obtained
choice pattern shows that, regardless of the underlying caus-
al model, decision makers had a clear preference for option
L. Accordingly, no difference was obtained between the
three conditions. Also, the experienced payoffs closely re-
semble the options’ actual values (cf. Figure 1). By contrast,
participants’ choices during the test phase revealed differen-
tial preferences. Decision makers in the chain condition ex-
hibited a strong preference for the new option ‘Do 4’°, which
indicates that they inferred that they would gain a higher
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payoff when switching from Do L to Do A. By contrast, a
very different pattern was obtained in the two common
cause conditions. In these conditions participants preferred
to stick with option L. Consequently, more Do A choices
were obtained in the chain than in the two common cause
conditions, #(38) = 3.50, p <.001 and #38) =5.23, p <.001,
respectively. The two common cause conditions did not
differ.

Subsequent to the test phase participants were asked to
provide estimates of the expected payoff for all three op-
tions (Do L, Do W, Do A). Estimates for options L and W
closely resembled the actual values (cf. Fig. 1), though par-
ticipants in the CC 2 condition slightly underestimated the
expected value of Do W. The crucial analyses concern deci-
sion makers estimates for option Do 4, whose actual conse-
quences they never observed. The obtained judgments re-
veal a strong sensitivity to the underlying causal structure:
Estimates in the chain condition were significantly higher
than in condition CC 1 [#40) =2.4, p=.02] and condition
CC 2 [#40)=2.3, p=.03]. Again, the two common cause
conditions did not differ from each other.

Table 2. Mean estimates (SEM) for payoffs and causal
model choices in Experiment 1.

Expected Value Estimates Model Choices
Do L Do W Do 4 Chain cC
qun BB W0
corMpom o
SR

The final dependent variable aimed to directly tap onto
decision makers’ causal beliefs about the decision problem.
Participants were presented with graphs of a causal chain
and a common cause model (similar to the ones shown in
Fig. 1, but without the numbers). Then they were asked to
indicate which of the two models would correctly describe
the causal relations between options, intermediate variables,
and the payoff. In all conditions a majority of participants
chose the correct model: 85% in the chain condition and
70% and 75%, respectively, in the two common cause con-
ditions (Table 2, right hand side).

Overall there was a strong concordance between the prefe-
rences decision makers revealed through their choices, their
expected value estimates, and their assumptions about the
causal structure of the decision problem. The kappa correla-
tion between these three measures was k =.71.

Taken together, the results provide strong evidence that
participants learned about the causal texture of the repeated
decision making task. Rather than merely encoding ex-
pected values, a majority of participants spontaneously in-
duced a causal representation of the decision problem,
though they were never requested to do so. The acquired
causal knowledge, in turn, allowed decision makers to pre-
dict the expected value of the novel option whose payoffs

they had not encountered previously. In consequence, 70%
of participants who were confronted with a causal chain
model preferred the new option, while only 33% who acted
on a common cause model did so.

Experiment 2

In this study we used a different test strategy to examine
whether decision makers spontaneously induce a causal
model, which would allow them to adapt to a change in the
decision problem. Again the experiment consisted of two
repeated decision making phases, with the second phase
being the test phase. In the test phase we modified the deci-
sion problem by removing one of the variables observed
during learning. Hence, we here used another procedure to
examine whether participants acquired causal models and
capitalized on this knowledge to adapt to a new situation.

Participants and Design Forty-eight University of Gottin-
gen undergraduates participated for course credit or were
paid 7€. The factor ‘causal model’ (causal chain vs. com-
mon cause) was manipulated between conditions.

Materials and Procedure We used the same materials and
procedure as in Experiment 1. The only difference was that
this time there were three genes (4, B, C) instead of two.
Participants first had to make 100 decisions with the goal of
maximizing their payoff, followed by a test phase compris-
ing 10 additional decisions. Again feedback was only pro-
vided in the initial decision making phase, but not in the test
phase.

Causal Chain Model Common Cause Model

Do L Do L
.8 .

Events Prob  Payoff EV
A&B 049 200

Events Prob  Payoff EV
A&B 0.60 200

A 020 100 A 021 100
DoL 5 900 100 'O Dol p 921 100 '
— 020 0 — 009 0
¢ 080 50 C 080 50
Do W _ 0.20 0 40 Do W _ 020 0 40
noint — 1.00 0 0 noint — 1.00 0 0

Figure 2. Causal structure and feedback of Experiment 2.

Figure 2 shows the two experimental conditions, causal
chain (CH) and common cause (CC) and the associated
feedback structures. Like in Experiment 1, in the causal
chain condition option L influences B only by way of 4
(Do L= A—B). In the common cause condition, by contrast,
L is directly related to both 4 and B (4<-Do L—B). Thus,
whereas in the chain condition the presence of 4 is a neces-
sary event for the occurrence of B (i.e., P(B|=4) = 0), this is
not the case in the common cause condition (i.e.,
P(B|—A4) > 0). However, despite this difference the expected
values (EV) of the available options were identical across
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conditions: EV(Do L) =140, EV(Do W)=40, and EV(no
int) = 0. Thus, to maximize the payoff one should choose
option L regardless of the underlying causal model.

The instruction to the test phase informed decision makers
that they now would be presented with bacteria that did not
possess gene A. Thus, variable 4 was suddenly removed
from the causal system. This removal has very different
implications for the two causal systems. In the causal chain
condition L affects B only by way of A4, therefore, the ex-
pected value of L decreases from 140 to zero. Accordingly,
Do W becomes the better option (EV(Do L| no A)=0 <
EV(Do W) no A) =40). In the common cause condition the
removal of 4 entails a decrease of EV(Do L), too. However,
due to the direct link L— B, opting for L remains the better
option (EV(Do L| no A)=70 vs. EV(Do W| no A) = 40).
Thus, in order to maximize participants in the chain condi-
tion should switch from Do L to Do W, whereas participants
in the common cause condition should stick with option L.
As before, no feedback was provided in the test phase.

Subsequent to making their ten decisions for the modified
causal system participants were also requested to estimate
the expected payoffs for all options for both decision mak-
ing phases. Finally, participants were presented with a fig-
ure similar to the one depicted in Figure 2, but without any
arrows (i.e., only the variables were depicted). Decision
makers’ task was to express their causal hypotheses by
drawing all causal relations they assumed to hold between
options, outcome variables, and payoff. Thus, the goal was
to elicit participants’ representations of the decision prob-
lem.

Table 3. Mean number of choices (+SEM) and received
mean payoff (+SEM) in Experiment 2.

RDM Phase Test Phase

Do L Do W no int DoL Do W

N Payoff N Payoff N Payoff N N

Chain 73.6 141.6 217 413 47 00 28 7.2
Model (3.4) (1.9) (2.8) (1.3) (1.2) (0.0) (0.7) (0.7)

CC- 7925 1436 179 426 28 00 55 45
Model (3.0) (1.4) (27) (98) (1.2) (0.0) (0.7) (0.7)

Results and Discussion Table 3 depicts participants’ choic-
es for the two decision making phases and the obtained
mean payoffs. As expected, participants exhibited a clear
preference for option L in the initial decision making phase
regardless of condition. Statistical analyses revealed no dif-
ferences between conditions for any of the options. Also, the
experienced values accurately mirrored the true values; here
also no difference between conditions was obtained. By
contrast, a clear difference between conditions was obtained
for the test phase in which variable 4 was removed from the
system. Participants chose Do W significantly more often in
the chain condition than in the common cause condition,
#(46) =2.83, p <.01. Conversely, the mean of Do L choices
was higher in the common cause condition than in the caus-
al chain condition, #46) =2.72, p <.01. The fact that partic-
ipants in the common cause condition exhibited only a slight

preference for L over W is probably due a trade-off between
mean and variance (i.e., opting for L gives 100 points with
p = 0.7 while option W results in 50 points with p = 0.8).

Participants' choice behavior was also consistent with
their expected value estimates (cf. Table 4, left hand side).
As with the choices, no differences resulted for the first
phase but only for the test phase. In both conditions partici-
pants realized that a removal of variable 4 would decrease
the expected value of option L. Most importantly, they were
very sensitive to the fact that the exact amount of decrease
depends on the underlying causal structure. In accordance
with the respective underlying causal model they gave lower
estimates for Do L in the causal chain than in the common
cause condition, #(46) = 2.69, p = .01.

Table 4. Expected payoffs (:tSEM) for the two decision
making phases and indicated causal models in Exp. 2.

Expected Value Estimates Model Hypotheses
RDM Phase Test Phase CH+
DoL DoW Dol DoW CH CC CC other

Chain 1494  45.6 376 40.6
Model (5.4)  (3.8) (74) (4.5)

CC- 1371 441 673 433
Model (5.9)  (2.5) (82) (2.8)

10 6 4 4

4 6 9 5

Finally, we analyzed the causal models drawn by the
participants (Table 4, right hand side). Unexpectedly, a
number of participants (27%) indicated that L is a common
cause (i.e., A—Do L—B) and that there is a direct relation
A—B. Since this is not completely inconsistent with the ob-
served statistical relations, participants probably went for
the “safe option” of causal overdetermination. The exactly
correct model was chosen by 33% of participants. Thus,
about 60% of the decision makers induced a causal model
that was consistent with the obtained feedback. The rest,
however, drew a model which was inconsistent with the
observations made. This finding indicates that not all partic-
ipants inferred the correct causal model underlying the deci-
sion problem. However, we also suspect that the free elicita-
tion procedure was more difficult for participants than the
forced choice task used in Experiment 1. Follow up analyses
revealed that there again was a substantial convergence be-
tween participants’ preferences revealed through their
choices, expected values and causal models. The kappa cor-
relation between choices and expected values was k =.73
and between expected values and model implications
k=.70.

Overall, the results demonstrate that participants were
remarkably sensitive to the causal texture of the decision
task. Again, many decision makers seemed to have sponta-
neously induced a causal model representation, which al-
lowed them to flexibly adapt their choice behavior to the
removal of a causal variable from the system. Replicating
the results from the previous experiment, 68% of partici-
pants encountering a causal chain switched their preferences
away from the previously favored option, while only 38%
dealing with a common cause system did.
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General Discussion

In the present experiments we studied the interplay between
causal induction and decision making. The results provide
strong evidence that human decision making is sensitive to
the causal texture of a given decision problem. First, in both
experiments a majority of the participants spontaneously
induced a causal model representation of the decision prob-
lem, although they were never asked to do so. Second, deci-
sion makers exploited their causal knowledge to adapt their
choice behavior to changes in the decision context. Partici-
pants switched to a novel option whose consequences had
not been observed when the causal model entailed that this
action would lead to a better outcome. They also gave up
the previously preferred option when the removal of a vari-
able from the causal system implied that this option would
no longer be the superior action.

Neither of these findings can be explained by a pure rein-
forcement learning model. Simple models which only en-
code the expected values of options must fail because the
intermediate variables that make the crucial difference be-
tween conditions are not represented at all. However, also
reinforcement learning models which represent the interme-
diate variables and their associations to options on the one
hand and payoffs on the other hand fail. Consider the first
experiment. Even if the agent encodes the payoff generated
by each intermediate variable separately, she would still fail
to differentiate between the two causal models since it is the
causal interrelatedness of the outcome variables that makes
the crucial difference (cf. Hagmayer & Meder, 2008).

However, spontaneous causal induction during repeated
decision making may also be limited by a number of factors.
First, the experienced feedback must enable the decision
maker to discover the underlying causal structure. Thus,
feedback on the state of the variables within the system and
cues to causal structure must be available (cf. Lagnado et
al., 2007). Impoverished outcome feedback pertaining only
to statistical relations among actions and outcomes is clearly
not sufficient to build up causal model representations that
go beyond action-outcome contingencies. Second, with an
increasing complexity of the decision problem the induction
of causal models becomes more difficult and data alone is
rarely sufficient. In these cases previous causal knowledge
about the domain becomes crucial. However, given a certain
amount of prior knowledge even sparse and noisy data may
be sufficient to determine the underlying causal structure
(e.g., Griffiths, Baraff, & Tenenbaum, 2004).

One may suspect that the use of causal knowledge in deci-
sion making is limited to the simple problems examined
here. However, there is a growing body of evidence indicat-
ing that this is not the case. For example, causal considera-
tions play an important role in psychodiagnostic decision
making, too (e.g., Kim & Ahn, 2002). Also, when experts
cannot identify the best solution immediately they tend to
construct simplified models of the domain to evaluate po-
tential courses of action (Klein, 1998). Thus, the flexibility
and adaptivity of causal model representations pays off in
naturalistic decision making contexts as well.
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