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Abstract 

For self-regulated learning to be effective, students need to be 
able to accurately monitor their performance while they are 
working on a task, use this as input for self-assessment of that 
performance after the task, and select an appropriate new 
learning task in response to that assessment. From a cognitive 
load perspective, monitoring can be seen as a secondary task 
that may become hard to maintain and may hamper 
performance on the primary task (i.e., learning) under high 
load conditions. Therefore, this study investigated the effects 
of concurrent performance monitoring on cognitive load and 
performance as a function of task complexity. Task 
complexity was varied as between-subjects factor and 
monitoring as within-subjects factor. It was hypothesized that 
monitoring would significantly increase cognitive load and 
decrease performance on complex, but not on simple tasks. 
Results from a pilot study based on data from 31 participants 
seem to confirm this hypothesis. 

Keywords: education; cognitive load; monitoring; task 
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Cognitive Demands of Self-regulated Learning 
 
A major aim of many contemporary educational programs is 
to foster students self-regulation skills. It is often assumed 
that this aim can be achieved in a ‘learning by doing’ 
manner (i.e., by providing learners with a high amount of 
control over their learning process). Unfortunately, 
however, studies that compared the effects of learner 
controlled vs. system controlled instruction, often show 
detrimental effects on learning outcomes of providing 
learners with control over what tasks they work on, in what 
order, and for how long (e.g., Niemic, Sikorski, & Walberg, 
1996). So even if learners would acquire self-regulation 
skills this way (which can also be questioned, considering 
the findings on learning by doing in acquiring problem 
solving skills; cf. Kirschner, Sweller, & Clark, 2006; 
Sweller, Van Merriënboer, & Paas, 1998), giving learners a 
high degree of control may have unwanted effects when it 
comes to learning outcomes. These effects, however, are not 
entirely surprising if we look at the cognitive demands 
imposed by self-regulated learning.  

For self-regulated learning to be effective, students need 
to be able to accurately monitor their performance while 
they are working on a task, use this as input for self-
assessment of that performance after the task, and select an 
appropriate new learning task (one that allows them to train 
the task aspects they do not yet master sufficiently) in 
response to that assessment (cf., Ertmer & Newby, 1996; 
Zimmerman, 1990). Research has shown, however, that 
accurate self-assessment is very difficult for learners. Not 
only are humans prone to several biases that make accurate 
self-assessment difficult (see Bjork, 1999), but accuracy of 
self-assessment also seems to be related to the amount of 
experience in a domain (Dunning, Johnson, Erlinger, & 
Kruger, 2003). Presumably, advanced learners are more 
accurate self-assessors because their experience not only 
provides them with more task knowledge, but also with 
more knowledge of the criteria and standards that good 
performance should meet (Dunning et al., 2003). 
Interestingly, it is also the case that when positive effects on 
learning outcomes are reported in studies on learner control, 
this tends to be for high prior knowledge learners (Lawless 
& Brown, 1997; Scheiter & Gerjets, 2007; Steinberg, 1989). 
This suggests that the accuracy of self-assessment indeed 
plays a very crucial role in the effectiveness of self-
regulated learning. 

However, as mentioned before, self-assessment of 
performance after task completion, also relies on accurate 
performance monitoring while working on the task. If 
learners do not have a good recollection of their 
performance, for example, of what actions they took and 
what the results of those actions were, they cannot 
accurately assess it. So, another possible explanation (which 
is not mutually exclusive with the other ones mentioned 
here) for why learners, and especially novice learners, are 
not accurate self-assessors, is that difficulties may already 
arise in the performance monitoring stage. 

Monitoring and Cognitive Load 
Many learning tasks are complex, that is, they impose a 

high intrinsic cognitive load (Sweller, 1988; Sweller et al., 
1998). Intrinsic cognitive load depends on task complexity, 
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because it is determined by the number of interacting 
information elements that have to be related, controlled, and 
kept active in working memory during task performance. It 
also depends on the expertise of the task performer: As a 
result of learning, elements are combined into cognitive 
schemata stored in long-term memory that can be retrieved 
and handled as a single element in working memory, 
thereby decreasing the intrinsic load of the task (Sweller et 
al., 1998). 

The need to monitor performance during self-regulated 
learning can be seen as a secondary task. Under dual-task 
conditions, accurate performance of the secondary task or of 
both the primary and the secondary task becomes hard to 
maintain under high load conditions (see e.g., Brünken, 
Plass, & Leutner, 2003). That is, under conditions of high 
task complexity, or high intrinsic load, little resources are 
available for processes that impose additional cognitive 
demands, such as concurrently monitoring performance. As 
a result, monitoring, task performance, or both, may be 
hampered. Under conditions of low task complexity, or low 
intrinsic cognitive load, on the other hand, additional 
cognitive demands can be easily accommodated as ample 
resources are available. In other words, under conditions of 
high intrinsic load, which is the case with many learning 
tasks, the need to monitor performance may: a) lead to low 
quality monitoring (secondary task), and therefore, a poor 
recollection of performance on which to base self-
assessment, and/or b) hamper performance of the learning 
task (primary task). This cognitive load perspective on the 
cognitive demands that are imposed by learner control may 
(at least partially) explain why self-regulated learning is 
often ineffective for learning compared to teacher- or 
system-controlled instruction. Moreover, given that intrinsic 
load is also determined by expertise, this cognitive load 
perspective would also (again, at least partially) explain 
why novices might be less able to accurately monitor their 
performance than individuals who have prior knowledge of 
the task. 

This pilot study seeks to establish the effects of 
concurrent performance monitoring on cognitive load as a 
function of task complexity, using Sudoku puzzles of 
different complexity levels. It is hypothesized that the 
instruction to monitor performance while working on the 
task will lead to a significant increase in cognitive load and 
a significant decrease in performance of the primary task on 
complex, but not on simple tasks. 

Method 

Participants and Design 
From a larger sample of 85 Dutch secondary education 

students who volunteered to participate in this study, those 
participants were selected who knew the rules of Sudoku 
and sometimes played Sudoku (once a week on average), 
resulting in 31 participants (11 males; age M = 15.42, SD = 
.56). Task complexity was used as between-subjects factor 

(Simple, n = 12; Complex, n = 19), whereas monitoring was 
applied as within-subjects factor. 

Materials 
Demographic questionnaire. This short questionnaire 
asked participants to indicate their age and gender as well as 
there familiarity with Sudoku rules and their experience 
with playing Sudoku. 
 
Tasks. The tasks consisted of two Sudoku puzzles at each 
level of complexity (Simple, Complex). Sudoku puzzles 
consist of a grid with several regions that has to be filled 
with numbers so that every row, column, and region contain 
only one instance of each number. The two simple Sudoku 
puzzles (low in intrinsic load) consisted of a 4x4 grid with 
four 2x2 regions (mini-grids). Four cells were already filled 
in. The complex Sudoku puzzles (high in intrinsic load) 
consisted of a 9x9 grid with nine 3x3 regions (mini-grids). 
In the first puzzle, 30 cells were already filled in, in the 
second puzzle 28 cells. Both were at a medium level of 
difficulty according to the source from which they were 
obtained.  
 
Mental effort rating scale. Invested mental effort was 
measured using the 9-point subjective rating scale 
developed by Paas (1992). The scale ranged from (1) very, 
very low mental effort, to (9) very, very high mental effort. 
This scale is a reliable measure of actual cognitive load (i.e., 
the cognitive capacity that is actually allocated to 
accommodate the demands imposed by the task) and is 
sensitive to variations in task complexity between and 
within tasks (for details see Paas, Tuovinen, Tabbers, & Van 
Gerven, 2003; Van Gog & Paas, 2008). 

Procedure 
In both conditions, participants first filled out the 

demographic questionnaire. Then, they worked on the two 
Sudoku puzzles, for maximally 2 minutes per puzzle. This 
was not enough time to solve the Complex puzzles, but 
participants were instructed to try and complete as much of 
the puzzle as possible. Time on task was held constant to 
cancel out potential interaction of this factor with mental 
effort measures. Start and stop times were indicated by the 
experimenter. Immediately after completing each puzzle, 
participants rated their invested mental effort on the 9-point 
rating scale. Monitoring was applied as a within-subjects 
factor, with participants first working on the task without 
monitoring (“Please try to complete as much of the puzzle 
as you can within the next two minutes”), then with the 
instruction to concurrently monitor their performance 
(“Please try to complete as much of the puzzle as you can 
within the next two minutes while simultaneously keeping 
track of what you are doing, in what order, and why”). The 
order of task performance with and without monitoring was 
not counterbalanced, as the instruction to monitor on the 
first task might influence later task performance even when 
this instruction would not be given with the second task. 
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Moreover, this order could not affect cognitive load to the 
advantage of the hypothesis: as mentioned before, 
experienced cognitive load tends to decline with increasing 
practice of a task (cf. Van Gog, Paas, & Van Merriënboer, 
2005; for a discussion of the relationship between 
performance and cognitive demands as a result of practice 
see e.g., Kanfer & Ackerman, 1989; Yeo & Neal, 2004). 
Here, it is expected to increase on the second task (at least 
on the complex tasks) as a result of the monitoring 
instruction.  

Data Analysis 
Participants’ performance was rated by counting the 

number of cells they correctly filled in. This resulted in a 
maximum score of 12 on both Simple Sudoku puzzles, and 
a maximum score of 51 and 53, respectively, on the 
Complex puzzles. 

Results 
The manipulation of intrinsic cognitive load (caused by the 
number of interacting information elements a task contains) 
was successful: mean mental effort invested in the Simple 
condition (n = 12) was 1.75 (SD = .81), whereas in the 
Complex condition (n = 19) this was 6.03 (SD = 1.75). This 
difference is highly significant t(29) = -7.90, p < .001. 

GLM repeated measures analysis showed that in line 
with our hypothesis, the instruction to monitor did not affect 
mental effort ratings in the Simple tasks condition (Mwithout = 
1.83, SD = 1.03; Mwith = 1.67, SD = .89), F(1,11) < 1, ns. 
Nor did it affect performance: All participants in the Simple 
task condition managed to correctly complete the entire 
puzzle both times (i.e., maximum score of 12 on both tasks).  

GLM repeated measures analysis showed that on 
Complex tasks, instruction to monitor resulted in a trend 
towards higher mental effort ratings (Mwithout = 5.68, SD = 
2.11; Mwith = 6.37, SD = 1.71), F(1,18) = 3.63, MSE = 1.23, 
p = .073, ηp

2 = .168, and had a significant negative effect on 
performance (Mwithout = 4.89, SD = 2.64; Mwith = 2.79, SD = 
1.51), F(1,18) = 10.84, MSE = 3.88, p = .004, ηp

2 = .376. 

Discussion 
Some caution is required in interpreting these data, because 
of several reasons. First of all, this pilot study had a small 
number of participants. Secondly, future studies need some 
adaptations to the design, such as counterbalancing the 
order of the tasks (even though they are at the same level of 
difficulty, the possibility that the findings are due to 
potential differences between the tasks should be ruled out). 
Follow-up experiments are planned from which data should 
be available at the time of the conference.  

Although definite conclusions cannot yet be drawn, these 
preliminary results seem to be in line with our hypothesis 
that monitoring can be seen as a secondary task that 
increased the total experienced cognitive load and decreased 
performance on complex tasks. On simple tasks, these 
effects did not arise, presumably because the task was so 

simple that any additional cognitive demands could be quite 
easily accommodated.  

These results may provide at least a partial explanation 
for why high prior knowledge learners seem better able to 
assess their own performance (cf. Dunning et al., 2003) and 
seem to do better than novices in learner-controlled 
instruction (cf. (Lawless & Brown, 1997) when they are 
working on the same tasks. Because these tasks are lower in 
intrinsic load for the advanced learners, they may have 
enough cognitive capacity available for performing the 
learning task and monitoring their task performance 
simultaneously.  

However, it is important to note that this advantage for 
high prior knowledge learners probably only arises when 
they indeed work on the same tasks as novices. In effective 
learning trajectories (whether self-regulated or regulated by 
a teacher or system), students ideally work on tasks that are 
at an appropriate level of difficulty for them, that is, on 
tasks that are appropriately challenging (cf. Vygotsky’s, 
1978, concept of ‘zone of proximal development’), not ones 
that they can already perform (unless the goal is to automate 
and/or speed up performance). In this sense, students at all 
levels of expertise ideally always work on tasks that are 
relatively high in intrinsic load for them.  

Next to the methodological issues mentioned earlier that 
need to be addressed in future studies, there are some other 
interesting questions to be investigated. First of all, in this 
study, effects on performance on the secondary task, that is, 
on the quality of monitoring, were not investigated. The 
data from this study suggests that for complex tasks, 
monitoring has a negative effect on performance on the 
primary task, but it would be interesting to investigate 
whether this negative effect is due to more resources being 
allocated to monitoring in order to perform that secondary 
task well, or whether performance on both tasks suffers. 
Therefore, future studies should also investigate the quality 
of students’ monitoring in relation to cognitive load and task 
complexity.  

In addition, this study used tasks that were either very 
simple or very complex; another interesting question we 
intend to address is what would happen with tasks of 
medium complexity (e.g., 6x6 Sudoku puzzles). It can be 
hypothesized that these would lead to an increase in 
cognitive load as evidenced by mental effort ratings, but 
without the detrimental effect on performance because the 
additional load might still be manageable.  

Finally, in the future, studies such as this one should be 
replicated with other types of tasks that rely more on 
conceptual knowledge rather than procedural knowledge 
and should take into account not only direct effects on task 
performance, but also effects on learning. 
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