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Abstract 

Dual systems accounts have dominated research into human 

category learning. Despite this, there has been limited 

investigation into how people switch between proposed 

systems. We report an experiment which modified a popular 

probabilistic categorisation task (the Weather Prediction 

Task) in an attempt to demonstrate conditions under which 

such a switch could occur. The results suggested that 

increasing working memory load impaired categorisation 

performance and reduced the flexibility with which 

participants applied their knowledge. Importantly, no clear 

evidence of a switch between learning systems was found 

despite using a design intended to favour a shift from 

declarative to procedural learning. These findings pose 

questions for the expectation that the nature of a category 

structure will determine which system is engaged.  
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Categorisation is an important cognitive skill which helps 

people process information about a range of stimuli in day 

to day life. As such, how people learn to categorise has been 

the focus of much interest. Research in this area falls into 

two broad groups: those who  argue for a single underlying 

process (e.g., Lagnado, Newell, Kahan & Shanks, 2006; 

Newell, Lagnado & Shanks, 2007; Nosofsky & Zaki, 1998; 

Speekenbrink, Channon, & Shanks, 2008) and those who 

argue for multiple (typically two) processes (e.g., Ashby & 

Maddox, 2005; Gluck, Shohamy & Myers, 2002; Knowlton, 

Mangels & Squire, 1996; Poldrack et al., 2001; Reber, 

Knowlton, & Squire, 1996). The dual systems approach has 

dominated research in this area and often rests on the claim 

that it is the nature of the category structure itself which 

determines how people will learn a categorisation task  

(e.g., Ashby & Maddox, 2005).   

 The dual systems approach argues for a distinction 

between two systems which underlie category learning. A 

procedural (or implicit) system which can learn complex, 

multi-cue category structures but lacks flexibility and is 

outside of awareness; and a declarative (or explicit) system 

which can learn simple category structures, produces 

flexible knowledge and requires awareness. An example of 

a dual systems model is the Competition Between Verbal 

and Implicit Systems (COVIS) model (Ashby, Alfonso-

Reese, Turken & Waldron, 1998). COVIS has been 

influential in understanding what might distinguish different 

category learning systems from each other. Despite the 

intense research focus on characteristics of the proposed 

systems, one aspect of the dual systems accounts which 

remains unclear is how people are able to switch between 

these systems. The COVIS model claims that there is an 

initial bias towards engagement of the explicit system, and 

that the implicit system is engaged only for tasks which are 

too complex for the explicit system. Although this sets out a 

general explanation for why a switch might occur between 

the two systems, the circumstances that predict a switch 

occurring remain unclear. Understanding when and how 

people switch between these systems is crucial to 

reconciling contradictory findings coming from proponents 

of single systems accounts and those who favour dual 

systems accounts. In particular it addresses the question of 

whether a failure to engage a procedural system is due to 

inappropriate experimental designs, or the absence of a 

separate procedural system.  

 To examine how multiple systems might interact with 

each other, we will first focus on existing evidence which 

illustrates the unique characteristics of the proposed 

systems. One area which provides support for the existence 

of distinct learning systems has been in probabilistic 

categorisation, using the weather prediction task (WP task). 

In this task, participants predict a binary outcome (rainy or 

fine weather) based on four cues. The trial-by-trial learning 

required to perform the WP task accurately is claimed to 

recruit the procedural system since information across 

multiple trials is more useful than information from a single 

trial (Knowlton, Squire & Gluck, 1994; Knowlton et al., 

1996). Consistent with this interpretation is that while 

participants can learn to correctly predict the outcome they 

lack flexible knowledge of the cue-outcome associations 

(Foerde, Knowlton & Poldrack, 2006; Reber et al, 1996).   

 Poldrack et al. (2001) used the WP task to demonstrate 

that there are different brain region activations depending 

on the version of the WP task. The original WP task 

activated the basal ganglia but left the medial temporal 

lobes (MTL) relatively deactivated; while a version thought 

to engage the declarative system had the opposite effect. 

These findings were interpreted as supporting the idea of 

competing systems which were engaged based on the nature 

of the task. This was further supported by Foerde et al‟s 

(2006) demonstration of a concurrent task modulating the 

relative activations of these same areas. This modulation 

resulted in less flexible cue-outcome knowledge when the 

MTL was relatively deactivated (concurrent task was 

present) but if the MTL was activated then participants 

could demonstrate flexible knowledge. Whether learning 
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was associated more with striatal or MTL activity had 

limited impact on accuracy.   

While these findings are consistent with a multiple 

systems account, they also illustrate that young, healthy 

participants will approach  a task designed to engage the 

procedural system in a way consistent with declarative 

learning. Such findings could make it difficult to distinguish 

between „systems‟ based on behavioural data because a task 

designed to engage procedural learning does not always 

achieve its aim. Thus, findings which illustrate behavioural 

patterns inconsistent with popular dual systems accounts 

(e.g., impaired learning under concurrent task conditions 

Newell et al., 2007) could be explained away by the 

suggestion that the procedural system was simply not 

engaged in the first place. How and why this failure to 

engage might occur are important questions.  

Evidence for competition between two systems in the WP 

task is similar to the COVIS model proposed by Ashby and 

colleagues. The hypothesised implicit system is reliant on 

the basal ganglia, while the verbal system relies on the 

prefrontal cortex. These differences at a neural level are 

predicted to also be evident in category learning behaviour.  

Under COVIS, a rule-based (RB) category is one which can 

be learnt optimally via a simple, verbalisable rule. In 

contrast, an integration-information (II) category is one 

where optimal performance requires the accumulation of 

knowledge about different cues and the application of a rule 

which is difficult, if not impossible, to report verbally. So, a 

RB category structure would engage the declarative (or 

verbal) system and an II structure would engage a 

procedural (or implicit) system.   

The WP task could be considered an II category structure 

since the optimal rule is difficult to verbalise and it requires 

the accumulation of information over a number of trials. 

However, the characterisation of the WP task as an II task is 

not straightforward due to the different ways the task could 

be learnt (e.g., Ashby & Maddox, 2005; Gluck, et al., 2002). 

So although its intention is to be a task which can be best 

solved using a non-verbalisable rule, it can also be solved to 

an almost equivalent level of accuracy using a simple rule.  

Using the WP task, Foerde et al (2006) illustrated that 

switching task requirements during learning could elicit 

results consistent with switching between systems. This 

suggests that the systems are readily able to decide which 

one needs to  provide the answer on any trial and as such 

both are possibly in operation at the same time.  Consistent 

with this is Foerde et al‟s (2006) finding that activity in the 

striatum remained the same regardless of the presence of the 

concurrent task. The COVIS model addresses this switching 

between systems to a certain degree. It claims that there is a 

bias in favour of the verbal system and that the non-verbal 

system will be engaged following some level of failure of 

the verbal system. The competition between the verbal and 

non-verbal systems is resolved when one delivers a 

„stronger‟ response than the other, and thus that response is 

used. Although their aim was not to test this exact claim, 

Poldrack et al‟s (2001) results using the WP task are 

consistent with this general idea. They demonstrated greater 

activation of the MTL initially and then a reduced level of 

activation as the task proceeded.   

Thus, it may be the case that failures to demonstrate 

procedural learning with the WP task are due to participants 

failing to „switch‟ from a declarative to procedural system. 

This could explain previous findings that show simple 

strategies being used to solve the WP task (e.g., Gluck et al., 

2002). If these strategies are reinforced to a certain level, 

participants may lack the necessary motivation to switch to 

the procedural system. Similar logic has been applied to 

explain the benefit of early training with difficult items for 

II categories (Spiering & Ashby, 2008). It was argued that 

this benefit was due to participants quickly learning that 

simple RB rules would not correctly categorise items and so 

they adopted more successful II rules. Conversely, those 

who were initially trained on easy II items could achieve a 

sufficient level of  accuracy using a sub-optimal rule and so 

had no need to adopt a more complex II rule. These findings 

provide another illustration of the effect  different category 

structures have on learning but they do not clearly define 

the characteristics which necessitate a switch between 

systems. Past research suggests that the presence of a 

concurrent task is enough to encourage engagement of the 

procedural system (e.g. Foerde et al., 2006). Yet the 

inconsistencies in the literature (e.g. Newell et al., 2007) 

suggest that this issue remains unresolved.  

Most research examining the involvement of separate 

systems has relied on between-subjects comparisons or the 

same participants learning different category structures. Our 

aim was to examine conditions under which healthy, young, 

adults would switch from a declarative to a procedural 

system. Would there be evidence for a „switch‟ if a simple 

rule-based approach was initially successful but then led to 

poor accuracy as the task progressed?  To further favour the 

engagement of a procedural system, a concurrent task was 

added as the experiment progressed to increase the load on 

the declarative system. It was hypothesised that if a 

procedural system was engaged during the task, accuracy 

would not be impaired even as working memory load and 

task difficulty increased. Flexibility of knowledge would be 

poor regardless of the concurrent task if learning was driven 

by a procedural system. In contrast, if a declarative system 

is engaged then some cue outcome knowledge should be 

acquired. However, the presence of a concurrent task will 

cause a detriment in performance on these measures.  

 

Experiment 

Participants 

Thirty-eight (30 female) students from the University of 

New South Wales participated in the experiment in return 

for course credit. The mean age was 19.9 (SD = 3.3). 

Stimuli  

The current categorisation task was based on the widely 

used weather prediction task (WP) (e.g., Knowlton et al., 

1994; Newell et al., 2007; Reber et al., 1996). The WP task 
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was adapted to address the criticism that the WP task can be 

solved by simple rules which inhibits its ability to engage a 

procedural system (e.g., Ashby & Waldron, 2005; Gluck et 

al., 2002). To discourage participants from simply 

memorising patterns which they may have been able to do 

in the original WP task (4 cues, 14 unique patterns) the 

number of cues were increased. There were 12 individual 

cues arranged in sets of three (4 sets total) with 158 unique 

patterns (see Figure 1). The sets and cues were associated 

with the outcomes probabilistically (see Table 1). Each cue 

was assigned a value from -3 to 3 to reflect these 

probabilities. The outcomes (rain or fine weather) were 

determined using an information integration rule used in 

previous research (Price, 2005; Waldron & Ashby, 2001): If 

S1(value) + S2(value) + S3(value) + S4(value) > 0 then: 

Outcome = fine, otherwise, outcome = rain. For example, if 

cue 9 (Set 3) had an assigned value of 1, and cue 12 (Set 4) 

had an assigned value of 1, the outcome for a pattern made 

up of these two cards would be: S1(0) + S2(0) + S3(1) + 

S4(1) = 2. Since the value is greater than zero, the outcome 

would be fine weather. 

 Although the outcomes for each pattern were fixed the 

relationships between cues and outcomes were probabilistic 

(see Table 1). That is, although a participant might learn 

that C1 was unlikely to give an outcome of rain, there were 

patterns where C1 was present and the outcome was rainy  

weather. To maintain consistency with previous WP tasks, 

patterns consisted of between 1 to 3 cues, all cues were 

relevant and participants never saw cues from the same sets 

on the same trial. Patterns which resulted in an outcome of 

zero were excluded. The sets of cues were weakly 

associated with the outcomes compared to WP tasks which 

used 4 cues only (e.g. Newell et al., 2007; Reber et al., 

1996).  

The category structure was arranged so that there were set 

inconsistent (SI) and set consistent (SC) cues. SI cues were 

those with an outcome-association inconsistent with the 

 

 
Figure 1: Stimuli used for categorisation task. Each row 

represents a set of cues.  

Table 1: Category structure, showing set probabilities, cue 

probabilities and frequencies. 

 

 Set  Set P(rain)  Cue Type Frequency  P(rain) 

S1 .35 

   

 

 C1 45 0.13  

   C2 45 0.13  

 

 C3 50 0.78 

S2 .45 

   

 

 C4 53 0.31  

   C5 53 0.31  

 

 C6 49 0.76  

S3 .55 

   

 

 C7 53 0.69  

   C8 53 0.69  

 

 C9 49 0.24  

S4 .65 

   

 

 C10 45 0.87  

   C11 45 0.87  

 

 C12 50 0.22 

 

overall set outcome association. For example, from Table 1 

it can be seen that Set 4 is the most strongly associated with 

the rainy outcome (P(rain) = .65). Within this set however, 

only cues C10 and C11 are strongly associated with rain 

(P(Rain) = .87). Cue C12 is inconsistent with this because it 

is strongly associated with the fine outcome (P(Rain) = .22). 

Such an arrangement increases the importance of focusing 

on the multiple individual cues rather than applying a 

simple 

set-level rule, and thus should favour the engagement of a 

procedural system.   

Design and Procedure 

Weather Prediction Task  A two groups design was 

used. A Load group completed the WP task as well as a 

concurrent task. A No Load group completed the WP task 

only. The WP task consisted of 40 trials which involved 

patterns made up of SI cues (10 unique patterns, 4 cues 

only). This initial blocks of trials was aimed at encouraging 

the use of simple rules. Then 234 trials were shown which 

were made up of patterns using both SI and SC cues (158 

unique patterns, including the 10 already shown). In these 

trials, participants would not be successful at predicting the 

outcome if they tried to apply what they had learnt about the 

SI cues to similar looking SC cues. Rather, if there is a 

procedural system tracking cue-outcomes it should start to 

make the predictions because it would be more accurate. 

Trials were shown in a random order that was fixed across 

participants. There were 274 trials in total. The stimuli used 

are shown in Figure 1 and were randomly assigned to the 

different set values. 

Participants were told that they would be predicting the 

weather based on a set of tarot cards. They were told that 

although they might need to guess at the start, they would 
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eventually become better at predicting what the weather 

would be based on the presented tarot cards. Participants in 

both groups were also told  that they might also be asked to 

perform a numbers task while they were performing the 

weather prediction task.  

Numerical Load Task   Participants in the Load group 

completed a concurrent task at the same time as the WP 

task. The concurrent task has been used previously to impair 

the declarative system (e.g., Newell et al., 2007; Waldron & 

Ashby, 2001). In this task, participants see two numbers 

between 1 and 9 on either side of the WP task cues. These 

are on-screen for 1 sec and one number is physically larger 

than the other. On each trial participants are asked to report 

which number was physically larger or which number had 

the higher value. Participants see these numbers at the same 

time as the cue presentations. The Load group performed 

the concurrent task on trials 31 to 274. The concurrent task 

was started towards the end of the SI patterns rather than at 

trial 41 (when SC cues were added) to ensure participants 

had little reason to associate the presence of the concurrent 

task with the appearance of additional patterns and cues.  

Flexibility of Knowledge Participants were given two 

measures of flexibility of knowledge (Reber et al., 1996). 

The cue estimation  task required participants to estimate 

the likelihood of an outcome given a particular cue. 

Participants saw all three cues from each set at the same 

time and were asked to rate on a sliding scale what the 

likely outcome was. The markers on the scale were 

“Extremely likely to be fine”, “As likely rainy as fine” and 

“Extremely likely to be rainy”. The order of the presentation 

of the sets was randomised across participants.  In the cue 

selection measure participants were shown 4 individual cues 

(1 from each set) and asked “If you knew it was going to be 

fine (or rainy) and only one card was showing, which is the 

most likely to be showing?” Participants were asked this 

question for both outcomes (counterbalanced) and for SI 

and SC cards (order randomised).  

Results 

Numerical Load Task  Performance of 80% accuracy on 

the numerical load task was applied as exclusion criteria 

(consistent with Waldron & Ashby, 2001). Five participants 

from the Load group were excluded and their data is not 

included in subsequent analyses (Load n = 17). There was 

no exclusion applied to the No Load group (n = 16).  Mean 

accuracy in the numerical load task was 90.1% (SD = 4.2) 

which was significantly above chance (t(16) = 39.14, p < 

.05). 

Overall Learning  Overall learning performance (Figure 2)  

shows that both groups performed similarly and to quite a 

high level during the initial two blocks. There was a drop in 

performance at Block 3 which is consistent with the 

additional cues being added to the task. Numerically the No 

Load group were performing better than the Load group in 

blocks 3-11, although both groups appeared to be improving 

across training. A 2(condition) x (11)(block) repeated 

measures ANOVA confirmed that there were significant  

 
Figure 2: Mean WP task performance  for both groups 

across blocks (error bars = 1 SEM). Blocks 1 and 2 = 20 

trials each and consist of set inconsistent patterns only. 

Blocks 3-11 = 26 trials each and consist of set inconsistent 

and set consistent patterns.  

 

linear and quadratic trends (ps < .05). These reflect the 

expected learning patterns. However, there was no main 

effect of condition (F(1,31) = 3.2,  p = .084) which is 

inconsistent with the prediction that the Load group would 

be impaired by the presence of the concurrent task. No other 

effects were significant.   

The lack of group difference may be due to both groups 

having equal opportunity to learn about the SI patterns 

during the first 30 trials (concurrent task started at trial 31). 

This may have helped the Load group for subsequent trials 

involving SI cues. To investigate this possibility, SI and SC 

trials were analysed separately. SI trials (Figure 3, panel A), 

are those where the predicted outcome using set probability 

was different to the outcome predicted using the 

probabilities of individual cues. SC trials are those where 

the group level and individual cue predictions are the same 

(Figure 3, panel B). Separate repeated measure 2 x (9) 

ANOVAs were carried out on the SI trials and SC trials for 

blocks 3-11. For SI trials there was a significant quadratic 

trend (F(1,31) = 4.3, p < .05). The main effect of group and 

interactions were not significant (Fs < 1). These results are 

unsurprising given the mostly equivalent learning 

conditions in the first two blocks of the WP task. For the SC 

trials, there was a significant linear trend (F(1, 31) = 50.11 p 

< .05) and a main effect of group (F(1,31) = 4.85, p < .05). 

No other results were significant. Results for the SC trials 

suggest that increased load on the declarative system did 

impair the Load group‟s ability to learn about cues which 

had not featured in the initial phase of the task. This is 

consistent with a single system account but is inconsistent 

with the engagement of a procedural system.  

Flexibility of Knowledge  In the cue estimation measure  

accuracy of estimates  was assessed by firstly calculating a 

regression slope for each participant based on their 

estimates for each cue. This slope was compared to the 

slope of an „ideal‟ participant whose cue estimates were the 

same as the objective estimates (slope = 12.11). If 

participants‟ regression slopes did not differ significantly 

from this it would be taken as evidence for good accuracy 

on the cue estimate measure. Secondly, slopes for the No 

Load ( M = 11.64, SD = 7.18) and Load (M = 1.00, SD = 
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Figure 3: Mean WP task performance for both groups on set 

inconsistent (Panel A) and set consistent (Panel B) trials. 

Only data for blocks 3-11 are shown because there were no 

SC trials in Blocks 1-2 (error bars = 1 SEM). 

 

5.43) groups were compared to assess whether the 

concurrent task impaired performance. Calculated slopes for 

the Load group were significantly different from the ideal 

participant (t(16) = 3.50, p < .05) while those for the No 

Load group were not (t(15) = .34, p > .05). This indicates 

that participants in the No Load group were more accurate 

in their estimates. This impairment for the Load group is 

consistent with procedural learning since they did not 

achieve a basic level of cue estimation accuracy. Further to 

this, the mean slopes for both groups were significantly 

different from each other (t(31) = 2.53, p < .05) illustrating 

that the concurrent task impaired the Load groups‟ 

knowledge of cue-outcome associations. These two results 

indicate that the Load group may have engaged a procedural 

system and that there was an additional impairment caused 

by the concurrent task. The No Load group showed 

performance consistent with declarative learning.  

Cue Selection data was scored using the method 

described in Reber et al. (1996). Scores ranged from 1 (best) 

to 4 (worst). The mean cue selection score for SI cues was 

1.69 (SD = .73) and 1.83 (SD = .86) for the No Load and 

Load groups respectively. The mean cue selection score for 

SC cues was 1.78 (SD  = .98) and 1.88 (SD = 1.05) for the 

No Load and Load groups respectively.  These scores were 

all better than chance (ts > 2.46) which is consistent with 

declarative learning.  If the concurrent task caused a 

detriment in declarative learning then it would be expected 

that the No Load group would perform better on SC cues 

compared to the Load group. Although the No Load group 

were numerically better, a 2(Load vs. No Load) x (2)(SC vs. 

SI) ANOVA showed that there were no main effects (Fs < 

1.11) and no significant interaction (F < 1).  

Discussion 

  This experiment used a modified version of the weather 

prediction task to test for a switch from a declarative to a 

procedural system. Results indicate that while participants 

under additional working memory load were not impaired 

overall, their ability to learn about additional cues as task 

difficulty increased was impaired.  Measures of cue 

knowledge support the conclusion that the No Load group 

were reliant on a declarative system to learn this task. 

However, results were mixed for the Load group. The cue 

estimation measure provided the best evidence for the 

engagement of a procedural system, yet this was not 

supported by the cue selection measure which demonstrated 

that the Load group had acquired better than chance cue-

outcome knowledge. The contradictory results obtained 

from two measures which are expected to index the same 

type of knowledge needs to be further investigated to better 

understand what is driving this difference. Potentially this 

reflects the difficulties in getting accurate measures of 

explicit knowledge (see e.g. Lagnado et al., 2006). 

Alternatively, it may be indicative of a difference in 

sensitivity within measures of cue knowledge which need to 

be addressed to ascertain whether it is truly reflective of a 

lack of declarative knowledge.    

The lack of difference in  overall learning accuracy 

suggests that the impact of the working memory task was 

limited. This is consistent with the dual systems account and 

potentially indicative of a switch to procedural learning. 

However, the modified version of the WP task allowed us to 

examine these differences more closely. There was clearly 

no difference between the two groups in patterns where 

predictions ran counter to the predicted set relationship (SI 

trials). This is not surprising given that the two groups were 

completing only the WP task during initial trials made up of 

SI cues. In contrast, when the task increased in difficulty the 

Load group was impaired for patterns that were not shown 

during the first two blocks. It was expected that increased 

task difficulty combined with a simple rule that was no 

longer effective, and increased working memory load, 

would lead to learning consistent with the engagement of a 

procedural system. However, this impairment (compared to 

No Load) suggests that the Load group were continuing to 

learn the WP task via a declarative system.  

Foerde et al (2006) reported that healthy, young adults 

were inclined to rely on the declarative system to learn the 

WP task. Our results are consistent with that finding. 

However, Foerde et al. also illustrated that a concurrent task 

would result in a switch away from use of the declarative 

system. Why participants would continue to rely on a 

system which was failing in light of increased task difficulty 

and increased working memory load in our task is unclear. 

Under a dual systems account such as COVIS there should 

have been a switch to procedural learning. As such, our 

results are more consistent with single system accounts of 

category learning (e.g., Newell et al., 2007). Despite 
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conditions which are thought to favour procedural learning 

and impair the declarative system, participants failed to 

demonstrate a switch in systems. Findings such as these 

illustrate that although dual systems accounts dominate 

interpretations of category learning data there remain 

important, unanswered questions and  inconsistencies within 

the literature (see also Lagnado et al., 2006; Nosofsky & 

Zaki, 1998; Speekenbrink et al., 2008).  

Our overall results provide evidence against the idea that 

the detriment caused by the concurrent task is simply the 

result of a failure to switch from declarative to procedural 

learning. For such an interpretation to hold, there would 

need to be a clear account for why a procedural system was 

not engaged in the current categorisation task. Conditions 

favoured the engagement of a procedural system, yet 

participants continued to rely on their declarative system. 

These results are consistent with single system accounts 

which do not posit a unique role for procedural learning. In 

contrast, for the current data to fit with a multiple systems 

account a conception of category learning that places  

individual characteristics as a key determiner of which 

system is engaged would need to be developed. For 

example, that in certain individuals (e.g., healthy adults) the 

declarative system is so dominant or favoured that it needs 

to be seriously compromised before the switch to a 

procedural system will be made. If that is the case, there 

needs to be further attention paid to identifying which 

characteristics are the most crucial. For example, whether 

accuracy has to be below a certain point or if individual 

differences are influencing the switching between systems.  

This interpretation does not reflect current multiple systems 

accounts. At present, dual systems accounts argue that the 

relative engagement of these systems depends on the 

category structure (e.g. Ashby et al., 1998). Such a claim 

does not satisfactorily account for the pattern of data found 

in the current experiment.  

One area for future research is examining whether 

imposing a time-limit for responding would have an effect 

in the modified WP task. Past research (e.g., Foerde et al., 

2006) used time limits but the current experiment did not. 

Time limits are thought to favour the procedural system 

because the declarative system does not have the time to 

engage in the necessary hypothesis-testing (Ashby et al., 

1998). So although the current experiment aimed to favour 

procedural system engagement through increased task 

difficulty and increased memory load, this is a potential 

shortcoming and worthy of future investigation.  

In conclusion, a modified version of the WP task 

illustrated that even in conditions favouring procedural 

learning participants do not switch away from a declarative 

system. There remain unanswered questions about the 

interaction between systems in dual systems accounts. 

These need to be addressed to more completely understand 

what underlies category learning. 
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