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Abstract

Dual systems accounts have dominated research into human
category learning. Despite this, there has been limited
investigation into how people switch between proposed
systems. We report an experiment which modified a popular
probabilistic categorisation task (the Weather Prediction
Task) in an attempt to demonstrate conditions under which
such a switch could occur. The results suggested that
increasing working memory load impaired categorisation
performance and reduced the flexibility with which
participants applied their knowledge. Importantly, no clear
evidence of a switch between learning systems was found
despite using a design intended to favour a shift from
declarative to procedural learning. These findings pose
questions for the expectation that the nature of a category
structure will determine which system is engaged.
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Categorisation is an important cognitive skill which helps
people process information about a range of stimuli in day
to day life. As such, how people learn to categorise has been
the focus of much interest. Research in this area falls into
two broad groups: those who argue for a single underlying
process (e.g., Lagnado, Newell, Kahan & Shanks, 2006;
Newell, Lagnado & Shanks, 2007; Nosofsky & Zaki, 1998;
Speekenbrink, Channon, & Shanks, 2008) and those who
argue for multiple (typically two) processes (e.g., Ashby &
Maddox, 2005; Gluck, Shohamy & Myers, 2002; Knowlton,
Mangels & Squire, 1996; Poldrack et al., 2001; Reber,
Knowlton, & Squire, 1996). The dual systems approach has
dominated research in this area and often rests on the claim
that it is the nature of the category structure itself which
determines how people will learn a categorisation task
(e.g., Ashby & Maddox, 2005).

The dual systems approach argues for a distinction
between two systems which underlie category learning. A
procedural (or implicit) system which can learn complex,
multi-cue category structures but lacks flexibility and is
outside of awareness; and a declarative (or explicit) system
which can learn simple category structures, produces
flexible knowledge and requires awareness. An example of
a dual systems model is the Competition Between Verbal
and Implicit Systems (COVIS) model (Ashby, Alfonso-
Reese, Turken & Waldron, 1998). COVIS has been
influential in understanding what might distinguish different
category learning systems from each other. Despite the
intense research focus on characteristics of the proposed
systems, one aspect of the dual systems accounts which

remains unclear is how people are able to switch between
these systems. The COVIS model claims that there is an
initial bias towards engagement of the explicit system, and
that the implicit system is engaged only for tasks which are
too complex for the explicit system. Although this sets out a
general explanation for why a switch might occur between
the two systems, the circumstances that predict a switch
occurring remain unclear. Understanding when and how
people switch between these systems is crucial to
reconciling contradictory findings coming from proponents
of single systems accounts and those who favour dual
systems accounts. In particular it addresses the question of
whether a failure to engage a procedural system is due to
inappropriate experimental designs, or the absence of a
separate procedural system.

To examine how multiple systems might interact with
each other, we will first focus on existing evidence which
illustrates the unique characteristics of the proposed
systems. One area which provides support for the existence
of distinct learning systems has been in probabilistic
categorisation, using the weather prediction task (WP task).
In this task, participants predict a binary outcome (rainy or
fine weather) based on four cues. The trial-by-trial learning
required to perform the WP task accurately is claimed to
recruit the procedural system since information across
multiple trials is more useful than information from a single
trial (Knowlton, Squire & Gluck, 1994; Knowlton et al.,
1996). Consistent with this interpretation is that while
participants can learn to correctly predict the outcome they
lack flexible knowledge of the cue-outcome associations
(Foerde, Knowlton & Poldrack, 2006; Reber et al, 1996).

Poldrack et al. (2001) used the WP task to demonstrate
that there are different brain region activations depending
on the version of the WP task. The original WP task
activated the basal ganglia but left the medial temporal
lobes (MTL) relatively deactivated; while a version thought
to engage the declarative system had the opposite effect.
These findings were interpreted as supporting the idea of
competing systems which were engaged based on the nature
of the task. This was further supported by Foerde et al’s
(2006) demonstration of a concurrent task modulating the
relative activations of these same areas. This modulation
resulted in less flexible cue-outcome knowledge when the
MTL was relatively deactivated (concurrent task was
present) but if the MTL was activated then participants
could demonstrate flexible knowledge. Whether learning
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was associated more with striatal or MTL activity had
limited impact on accuracy.

While these findings are consistent with a multiple
systems account, they also illustrate that young, healthy
participants will approach a task designed to engage the
procedural system in a way consistent with declarative
learning. Such findings could make it difficult to distinguish
between ‘systems’ based on behavioural data because a task
designed to engage procedural learning does not always
achieve its aim. Thus, findings which illustrate behavioural
patterns inconsistent with popular dual systems accounts
(e.g., impaired learning under concurrent task conditions
Newell et al., 2007) could be explained away by the
suggestion that the procedural system was simply not
engaged in the first place. How and why this failure to
engage might occur are important questions.

Evidence for competition between two systems in the WP
task is similar to the COVIS model proposed by Ashby and
colleagues. The hypothesised implicit system is reliant on
the basal ganglia, while the verbal system relies on the
prefrontal cortex. These differences at a neural level are
predicted to also be evident in category learning behaviour.
Under COVIS, a rule-based (RB) category is one which can
be learnt optimally via a simple, verbalisable rule. In
contrast, an integration-information (1) category is one
where optimal performance requires the accumulation of
knowledge about different cues and the application of a rule
which is difficult, if not impossible, to report verbally. So, a
RB category structure would engage the declarative (or
verbal) system and an Il structure would engage a
procedural (or implicit) system.

The WP task could be considered an Il category structure
since the optimal rule is difficult to verbalise and it requires
the accumulation of information over a number of trials.
However, the characterisation of the WP task as an 1l task is
not straightforward due to the different ways the task could
be learnt (e.g., Ashby & Maddox, 2005; Gluck, et al., 2002).
So although its intention is to be a task which can be best
solved using a non-verbalisable rule, it can also be solved to
an almost equivalent level of accuracy using a simple rule.

Using the WP task, Foerde et al (2006) illustrated that
switching task requirements during learning could elicit
results consistent with switching between systems. This
suggests that the systems are readily able to decide which
one needs to provide the answer on any trial and as such
both are possibly in operation at the same time. Consistent
with this is Foerde et al’s (2006) finding that activity in the
striatum remained the same regardless of the presence of the
concurrent task. The COVIS model addresses this switching
between systems to a certain degree. It claims that there is a
bias in favour of the verbal system and that the non-verbal
system will be engaged following some level of failure of
the verbal system. The competition between the verbal and
non-verbal systems is resolved when one delivers a
‘stronger’ response than the other, and thus that response is
used. Although their aim was not to test this exact claim,
Poldrack et al’s (2001) results using the WP task are

consistent with this general idea. They demonstrated greater
activation of the MTL initially and then a reduced level of
activation as the task proceeded.

Thus, it may be the case that failures to demonstrate
procedural learning with the WP task are due to participants
failing to ‘switch’ from a declarative to procedural system.
This could explain previous findings that show simple
strategies being used to solve the WP task (e.g., Gluck et al.,
2002). If these strategies are reinforced to a certain level,
participants may lack the necessary motivation to switch to
the procedural system. Similar logic has been applied to
explain the benefit of early training with difficult items for
Il categories (Spiering & Ashby, 2008). It was argued that
this benefit was due to participants quickly learning that
simple RB rules would not correctly categorise items and so
they adopted more successful 1l rules. Conversely, those
who were initially trained on easy Il items could achieve a
sufficient level of accuracy using a sub-optimal rule and so
had no need to adopt a more complex Il rule. These findings
provide another illustration of the effect different category
structures have on learning but they do not clearly define
the characteristics which necessitate a switch between
systems. Past research suggests that the presence of a
concurrent task is enough to encourage engagement of the
procedural system (e.g. Foerde et al.,, 2006). Yet the
inconsistencies in the literature (e.g. Newell et al., 2007)
suggest that this issue remains unresolved.

Most research examining the involvement of separate
systems has relied on between-subjects comparisons or the
same participants learning different category structures. Our
aim was to examine conditions under which healthy, young,
adults would switch from a declarative to a procedural
system. Would there be evidence for a ‘switch’ if a simple
rule-based approach was initially successful but then led to
poor accuracy as the task progressed? To further favour the
engagement of a procedural system, a concurrent task was
added as the experiment progressed to increase the load on
the declarative system. It was hypothesised that if a
procedural system was engaged during the task, accuracy
would not be impaired even as working memory load and
task difficulty increased. Flexibility of knowledge would be
poor regardless of the concurrent task if learning was driven
by a procedural system. In contrast, if a declarative system
is engaged then some cue outcome knowledge should be
acquired. However, the presence of a concurrent task will
cause a detriment in performance on these measures.

Experiment

Participants

Thirty-eight (30 female) students from the University of
New South Wales participated in the experiment in return
for course credit. The mean age was 19.9 (SD = 3.3).

Stimuli

The current categorisation task was based on the widely
used weather prediction task (WP) (e.g., Knowlton et al.,
1994; Newell et al., 2007; Reber et al., 1996). The WP task
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was adapted to address the criticism that the WP task can be
solved by simple rules which inhibits its ability to engage a
procedural system (e.g., Ashby & Waldron, 2005; Gluck et
al., 2002). To discourage participants from simply
memorising patterns which they may have been able to do
in the original WP task (4 cues, 14 unique patterns) the
number of cues were increased. There were 12 individual
cues arranged in sets of three (4 sets total) with 158 unique
patterns (see Figure 1). The sets and cues were associated
with the outcomes probabilistically (see Table 1). Each cue
was assigned a value from -3 to 3 to reflect these
probabilities. The outcomes (rain or fine weather) were
determined using an information integration rule used in
previous research (Price, 2005; Waldron & Ashby, 2001): If
S1(value) + S2(value) + S3(value) + S4(value) > 0 then:
Outcome = fine, otherwise, outcome = rain. For example, if
cue 9 (Set 3) had an assigned value of 1, and cue 12 (Set 4)
had an assigned value of 1, the outcome for a pattern made
up of these two cards would be: S1(0) + S2(0) + S3(1) +
S4(1) = 2. Since the value is greater than zero, the outcome
would be fine weather.

Although the outcomes for each pattern were fixed the
relationships between cues and outcomes were probabilistic
(see Table 1). That is, although a participant might learn
that C1 was unlikely to give an outcome of rain, there were
patterns where C1 was present and the outcome was rainy
weather. To maintain consistency with previous WP tasks,
patterns consisted of between 1 to 3 cues, all cues were
relevant and participants never saw cues from the same sets
on the same trial. Patterns which resulted in an outcome of
zero were excluded. The sets of cues were weakly
associated with the outcomes compared to WP tasks which
used 4 cues only (e.g. Newell et al., 2007; Reber et al.,
1996).

The category structure was arranged so that there were set
inconsistent (SI) and set consistent (SC) cues. SI cues were
those with an outcome-association inconsistent with the
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Figure 1: Stimuli used for categorisation task. Each row
represents a set of cues.

Table 1: Category structure, showing set probabilities, cue
probabilities and frequencies.

Set Set P(rain) Cue Type Frequency P(rain)
S1 .35
C1 45 0.13
C2 45 0.13
C3 50 0.78
S2 45
C4 53 0.31
C5 53 0.31
C6 49 0.76
S3 .55
C7 53 0.69
C8 53 0.69
C9 49 0.24
S4 .65
C10 45 0.87
Ci11 45 0.87
C12 50 0.22

overall set outcome association. For example, from Table 1
it can be seen that Set 4 is the most strongly associated with
the rainy outcome (P(rain) = .65). Within this set however,
only cues C10 and C11 are strongly associated with rain
(P(Rain) = .87). Cue C12 is inconsistent with this because it
is strongly associated with the fine outcome (P(Rain) = .22).
Such an arrangement increases the importance of focusing
on the multiple individual cues rather than applying a
simple

set-level rule, and thus should favour the engagement of a
procedural system.

Design and Procedure

Weather Prediction Task A two groups design was
used. A Load group completed the WP task as well as a
concurrent task. A No Load group completed the WP task
only. The WP task consisted of 40 trials which involved
patterns made up of Sl cues (10 unique patterns, 4 cues
only). This initial blocks of trials was aimed at encouraging
the use of simple rules. Then 234 trials were shown which
were made up of patterns using both Sl and SC cues (158
unique patterns, including the 10 already shown). In these
trials, participants would not be successful at predicting the
outcome if they tried to apply what they had learnt about the
Sl cues to similar looking SC cues. Rather, if there is a
procedural system tracking cue-outcomes it should start to
make the predictions because it would be more accurate.
Trials were shown in a random order that was fixed across
participants. There were 274 trials in total. The stimuli used
are shown in Figure 1 and were randomly assigned to the
different set values.

Participants were told that they would be predicting the
weather based on a set of tarot cards. They were told that
although they might need to guess at the start, they would
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eventually become better at predicting what the weather
would be based on the presented tarot cards. Participants in
both groups were also told that they might also be asked to
perform a numbers task while they were performing the
weather prediction task.

Numerical Load Task Participants in the Load group
completed a concurrent task at the same time as the WP
task. The concurrent task has been used previously to impair
the declarative system (e.g., Newell et al., 2007; Waldron &
Ashby, 2001). In this task, participants see two numbers
between 1 and 9 on either side of the WP task cues. These
are on-screen for 1 sec and one number is physically larger
than the other. On each trial participants are asked to report
which number was physically larger or which number had
the higher value. Participants see these numbers at the same
time as the cue presentations. The Load group performed
the concurrent task on trials 31 to 274. The concurrent task
was started towards the end of the Sl patterns rather than at
trial 41 (when SC cues were added) to ensure participants
had little reason to associate the presence of the concurrent
task with the appearance of additional patterns and cues.

Flexibility of Knowledge Participants were given two
measures of flexibility of knowledge (Reber et al., 1996).
The cue estimation task required participants to estimate
the likelihood of an outcome given a particular cue.
Participants saw all three cues from each set at the same
time and were asked to rate on a sliding scale what the
likely outcome was. The markers on the scale were
“Extremely likely to be fine”, “As likely rainy as fine” and
“Extremely likely to be rainy”. The order of the presentation
of the sets was randomised across participants. In the cue
selection measure participants were shown 4 individual cues
(1 from each set) and asked “If you knew it was going to be
fine (or rainy) and only one card was showing, which is the
most likely to be showing?” Participants were asked this
question for both outcomes (counterbalanced) and for SI
and SC cards (order randomised).

Results

Numerical Load Task Performance of 80% accuracy on
the numerical load task was applied as exclusion criteria
(consistent with Waldron & Ashby, 2001). Five participants
from the Load group were excluded and their data is not
included in subsequent analyses (Load n = 17). There was
no exclusion applied to the No Load group (n = 16). Mean
accuracy in the numerical load task was 90.1% (SD = 4.2)
which was significantly above chance (t(16) = 39.14, p <
.05).

Overall Learning Overall learning performance (Figure 2)
shows that both groups performed similarly and to quite a
high level during the initial two blocks. There was a drop in
performance at Block 3 which is consistent with the
additional cues being added to the task. Numerically the No
Load group were performing better than the Load group in
blocks 3-11, although both groups appeared to be improving
across training. A 2(condition) x (11)(block) repeated
measures ANOVA confirmed that there were significant
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Figure 2: Mean WP task performance for both groups
across blocks (error bars = 1 SEM). Blocks 1 and 2 = 20
trials each and consist of set inconsistent patterns only.
Blocks 3-11 = 26 trials each and consist of set inconsistent
and set consistent patterns.

linear and quadratic trends (ps < .05). These reflect the
expected learning patterns. However, there was no main
effect of condition (F(1,31) = 3.2, p = .084) which is
inconsistent with the prediction that the Load group would
be impaired by the presence of the concurrent task. No other
effects were significant.

The lack of group difference may be due to both groups
having equal opportunity to learn about the SI patterns
during the first 30 trials (concurrent task started at trial 31).
This may have helped the Load group for subsequent trials
involving Sl cues. To investigate this possibility, SI and SC
trials were analysed separately. Sl trials (Figure 3, panel A),
are those where the predicted outcome using set probability
was different to the outcome predicted using the
probabilities of individual cues. SC trials are those where
the group level and individual cue predictions are the same
(Figure 3, panel B). Separate repeated measure 2 x (9)
ANOVAs were carried out on the Sl trials and SC trials for
blocks 3-11. For SI trials there was a significant quadratic
trend (F(1,31) = 4.3, p < .05). The main effect of group and
interactions were not significant (Fs < 1). These results are
unsurprising given the mostly equivalent learning
conditions in the first two blocks of the WP task. For the SC
trials, there was a significant linear trend (F(1, 31) =50.11 p
< .05) and a main effect of group (F(1,31) = 4.85, p < .05).
No other results were significant. Results for the SC trials
suggest that increased load on the declarative system did
impair the Load group’s ability to learn about cues which
had not featured in the initial phase of the task. This is
consistent with a single system account but is inconsistent
with the engagement of a procedural system.

Flexibility of Knowledge In the cue estimation measure
accuracy of estimates was assessed by firstly calculating a
regression slope for each participant based on their
estimates for each cue. This slope was compared to the
slope of an ‘ideal’ participant whose cue estimates were the
same as the objective estimates (slope = 12.11). If
participants’ regression slopes did not differ significantly
from this it would be taken as evidence for good accuracy
on the cue estimate measure. Secondly, slopes for the No
Load ( M = 11.64, SD = 7.18) and Load (M = 1.00, SD =
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Figure 3: Mean WP task performance for both groups on set
inconsistent (Panel A) and set consistent (Panel B) trials.
Only data for blocks 3-11 are shown because there were no
SC trials in Blocks 1-2 (error bars = 1 SEM).

5.43) groups were compared to assess whether the
concurrent task impaired performance. Calculated slopes for
the Load group were significantly different from the ideal
participant (t(16) = 3.50, p < .05) while those for the No
Load group were not (t(15) = .34, p > .05). This indicates
that participants in the No Load group were more accurate
in their estimates. This impairment for the Load group is
consistent with procedural learning since they did not
achieve a basic level of cue estimation accuracy. Further to
this, the mean slopes for both groups were significantly
different from each other (t(31) = 2.53, p < .05) illustrating
that the concurrent task impaired the Load groups’
knowledge of cue-outcome associations. These two results
indicate that the Load group may have engaged a procedural
system and that there was an additional impairment caused
by the concurrent task. The No Load group showed
performance consistent with declarative learning.

Cue Selection data was scored using the method
described in Reber et al. (1996). Scores ranged from 1 (best)
to 4 (worst). The mean cue selection score for Sl cues was
1.69 (SD = .73) and 1.83 (SD = .86) for the No Load and
Load groups respectively. The mean cue selection score for
SC cues was 1.78 (SD =.98) and 1.88 (SD = 1.05) for the
No Load and Load groups respectively. These scores were
all better than chance (ts > 2.46) which is consistent with
declarative learning. If the concurrent task caused a
detriment in declarative learning then it would be expected
that the No Load group would perform better on SC cues
compared to the Load group. Although the No Load group
were numerically better, a 2(Load vs. No Load) x (2)(SC vs.

SI) ANOVA showed that there were no main effects (Fs <
1.11) and no significant interaction (F < 1).

Discussion

This experiment used a modified version of the weather
prediction task to test for a switch from a declarative to a
procedural system. Results indicate that while participants
under additional working memory load were not impaired
overall, their ability to learn about additional cues as task
difficulty increased was impaired. = Measures of cue
knowledge support the conclusion that the No Load group
were reliant on a declarative system to learn this task.
However, results were mixed for the Load group. The cue
estimation measure provided the best evidence for the
engagement of a procedural system, yet this was not
supported by the cue selection measure which demonstrated
that the Load group had acquired better than chance cue-
outcome knowledge. The contradictory results obtained
from two measures which are expected to index the same
type of knowledge needs to be further investigated to better
understand what is driving this difference. Potentially this
reflects the difficulties in getting accurate measures of
explicit knowledge (see e.g. Lagnado et al., 2006).
Alternatively, it may be indicative of a difference in
sensitivity within measures of cue knowledge which need to
be addressed to ascertain whether it is truly reflective of a
lack of declarative knowledge.

The lack of difference in overall learning accuracy
suggests that the impact of the working memory task was
limited. This is consistent with the dual systems account and
potentially indicative of a switch to procedural learning.
However, the modified version of the WP task allowed us to
examine these differences more closely. There was clearly
no difference between the two groups in patterns where
predictions ran counter to the predicted set relationship (Sl
trials). This is not surprising given that the two groups were
completing only the WP task during initial trials made up of
Sl cues. In contrast, when the task increased in difficulty the
Load group was impaired for patterns that were not shown
during the first two blocks. It was expected that increased
task difficulty combined with a simple rule that was no
longer effective, and increased working memory load,
would lead to learning consistent with the engagement of a
procedural system. However, this impairment (compared to
No Load) suggests that the Load group were continuing to
learn the WP task via a declarative system.

Foerde et al (2006) reported that healthy, young adults
were inclined to rely on the declarative system to learn the
WP task. Our results are consistent with that finding.
However, Foerde et al. also illustrated that a concurrent task
would result in a switch away from use of the declarative
system. Why participants would continue to rely on a
system which was failing in light of increased task difficulty
and increased working memory load in our task is unclear.
Under a dual systems account such as COVIS there should
have been a switch to procedural learning. As such, our
results are more consistent with single system accounts of
category learning (e.g., Newell et al., 2007). Despite
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conditions which are thought to favour procedural learning
and impair the declarative system, participants failed to
demonstrate a switch in systems. Findings such as these
illustrate that although dual systems accounts dominate
interpretations of category learning data there remain
important, unanswered questions and inconsistencies within
the literature (see also Lagnado et al., 2006; Nosofsky &
Zaki, 1998; Speekenbrink et al., 2008).

Our overall results provide evidence against the idea that
the detriment caused by the concurrent task is simply the
result of a failure to switch from declarative to procedural
learning. For such an interpretation to hold, there would
need to be a clear account for why a procedural system was
not engaged in the current categorisation task. Conditions
favoured the engagement of a procedural system, yet
participants continued to rely on their declarative system.
These results are consistent with single system accounts
which do not posit a unique role for procedural learning. In
contrast, for the current data to fit with a multiple systems
account a conception of category learning that places
individual characteristics as a key determiner of which
system is engaged would need to be developed. For
example, that in certain individuals (e.g., healthy adults) the
declarative system is so dominant or favoured that it needs
to be seriously compromised before the switch to a
procedural system will be made. If that is the case, there
needs to be further attention paid to identifying which
characteristics are the most crucial. For example, whether
accuracy has to be below a certain point or if individual
differences are influencing the switching between systems.
This interpretation does not reflect current multiple systems
accounts. At present, dual systems accounts argue that the
relative engagement of these systems depends on the
category structure (e.g. Ashby et al., 1998). Such a claim
does not satisfactorily account for the pattern of data found
in the current experiment.

One area for future research is examining whether
imposing a time-limit for responding would have an effect
in the modified WP task. Past research (e.g., Foerde et al.,
2006) used time limits but the current experiment did not.
Time limits are thought to favour the procedural system
because the declarative system does not have the time to
engage in the necessary hypothesis-testing (Ashby et al.,
1998). So although the current experiment aimed to favour
procedural system engagement through increased task
difficulty and increased memory load, this is a potential
shortcoming and worthy of future investigation.

In conclusion, a modified version of the WP task
illustrated that even in conditions favouring procedural
learning participants do not switch away from a declarative
system. There remain unanswered questions about the
interaction between systems in dual systems accounts.
These need to be addressed to more completely understand
what underlies category learning.
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