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Abstract 

We present a new model of development of children’s 
performance on the balance-scale task, one of the most 
common benchmarks for computational modeling of 
development. Knowledge-based cascade-correlation (KBCC) 
networks progress through all four stages seen in children, 
ending with a genuine torque rule that can solve problems 
only solvable by comparing torques. A key element in the 
model is injection of a neurally-implemented torque rule into 
the recruitment pool of KBCC networks, mimicking the 
explicit teaching of torque in secondary-school science 
classrooms.  

Keywords: Cognitive development; balance scale; neural 
networks; knowledge-based learning; KBCC; SDCC. 

Introduction 
The ongoing competition between symbolic and neural-
network models of cognition often focuses on development 
of children’s performance on balance-scale problems, one of 
the most modeled tasks in developmental psychology. The 
symbolic view is that knowledge is represented in rules 
containing propositions referring to things in the world, that 
processing occurs as rules are selected and fired thus 
generating new propositions, and that knowledge is acquired 
by learning such rules. In neural-network accounts, active 
knowledge is represented in rapidly changing unit 
activations and long-term knowledge by excitatory and 
inhibitory connections between units, processing involves 
activations being passed from one layer of units to another, 
and knowledge acquisition results from adjustment of 
connection weights and occasional recruitment of new units 
into the network. The symbolic approach is sometimes 
referred to as rule use, and the neural-network approach as 
rule following (Shultz & Takane, 2007). 

At first glance this may seem to be a rather subtle 
distinction, but there are important differences between the 
two viewpoints that have consistently guided research over 
the last few decades. The rule-use approach assumes that 
people literally have and use rules to guide their reasoning 
and behavior, often affording the perfect generalization that 
symbolic rules sometimes allow. Rule-use is consistent with 
the idea that human cognition is often quite regular. In 
contrast, the rule-following approach assumes that such 
regularities may be approximated by neural networks that 
adapt to regularities in the environment. This affords graded 
generalizations whose regularity approximates the extent to 

which the environment is consistently regular, with the 
advantage that both regularities and exceptions, which are 
quite common in the complex phenomena that humans 
encounter, can be handled within the same neural network. 
In rule-use approaches, exceptions are instead typically 
memorized by a separate system from the rules themselves. 
Such differences are highlighted as researchers build precise 
computational models of psychological theories (Shultz, 
2003). Computational models with artificial neural networks 
are quite different from those that represent and use 
symbolic rules. 

One of the most frequently modeled domains in 
developmental psychology focuses on the balance-scale 
task, used by Siegler (1976) and several other 
developmental researchers. The balance-scale is considered 
to be representative of the many tasks requiring integration 
of information across two separate quantitative dimensions. 
Results have been consistently replicated and include an 
interesting stage progression.  

Here we report an extended computational model of 
balance-scale development that addresses a recent criticism 
affecting most of the computational models – namely 
ensuring that the final stage consists of a genuine, 
multiplicative torque rule and not a simpler rule based on 
addition (Quinlan, van der Maas, Jansen, Booij, & Rendell, 
2007). We first describe the basic balance-scale task and its 
stages before presenting our new computational model.  

The Balance-scale Task 
In this task, a participant is presented with a rigid beam 
balanced on a fulcrum (Siegler, 1976). There are several 
pegs positioned on the beam at regular distances to the left 
and right of the fulcrum. An experimenter places some 
identical weights on a peg on the left side and some other 
identical weights on a peg on the right side of the scale. The 
participant is asked which side of the scale will drop, or 
whether the scale will remain balanced, when the beam is 
released from its supports, often consisting of a block placed 
under each end of the beam. Archimedes’ (c. 287-212 BC) 
principle of the lever describes a rule that yields a correct 
answer to balance-scale problems: multiply the weight and 
distance from the fulcrum on each side and predict the side 
with the larger product (torque) to drop.  

A neural-network simulation using the cascade-
correlation (CC) algorithm (Shultz, Mareschal, & Schmidt, 
1994) captured the four stages seen in children (Siegler, 
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1976): 1) predicting the side with more weights to descend; 
2) when the weights are equal on both sides, also predicting 
the side with greater distance to descend; 3) predicting 
correctly when weight and distance cues both forecast the 
same result and performing at chance when these cues 
conflict, as in the problems shown in Figure 1; and 4) being 
correct on at least 80% of balance-scale problems.  

Diagnosing Stage 4 
If performance at Stage 4 is diagnosed as being correct on 
80% of balance-scale problems, many of which are difficult 
problems in which weight and distance cues conflict with 
each other, then at least some computational models, both 
symbolic (Schmidt & Ling, 1996) and connectionist 
cascade-correlation networks (Shultz et al., 1994), succeed 
in reaching Stage 4. But if Stage 4 is defined by possession 
of a genuine torque rule, as opposed to a mere addition rule, 
then the modeling challenge is still open. Because many 
conflict problems can be solved by adding (rather than 
multiplying) weight and distance, documentation of a torque 
rule needs to be supported by success on problems that 
cannot also be solved by an addition rule (Boom, Hoijtink, 
& Kunnen, 2001; Quinlan et al., 2007).  

With five pegs and five weights, the problem size often 
used in simulations of the balance scale (Shultz et al., 1994), 
there are 625 total problems, of which just 200 are relatively 
difficult conflict problems in which weight and distance 
information, used alone, lead to different answers. Only 52 
of these conflict problems are torque problems that cannot 
be solved by mere addition; the other 148 conflict problems 
are addition problems that can be solved correctly by adding 
distance and weight on each side and comparing these sums.  

The torque problems, an example of which is shown in 
Figure 1a, require comparison of left and right torques. In 
example 1a, a torque of 6 on the left side is greater than a 
torque of 4 on the right side. Comparing sums instead 
predicts this scale will balance because the sum of weight 
and distance on each side is 5. Most conflict balance-scale 
problems, such as the one in Figure 1b, can be solved by a 
simpler addition rule: predict that the side with the larger 
sum of weight plus distance values will descend. In 1b, the 
sum on the right side (6) is greater than the sum on the left 
side (5). Likewise, the torque on the right side (8) is greater 
than the torque on the left side (6).  

 
 a    b 

 
 

 
Figure 1: Example of a torque problem (a) that can be 

solved by comparing torques but not by comparing sums, 
and an example of an addition problem (b) that can be 

solved by comparing either sums or torques. 
 

Until recently, addition was routinely ignored in 
computational models of balance-scale development, 
whether symbolic (Schmidt & Ling, 1996) or connectionist 

(McClelland, 1989; Shultz et al., 1994), just as it had been 
ignored in many older psychology experiments. But with 
recent evidence that at least some people use or follow a 
genuine torque rule, solving balance-scale problems that 
addition cannot solve (Boom et al., 2001; Quinlan et al., 
2007), it is important to test computational models on their 
ability to acquire a genuine torque rule. Some researchers 
(Quinlan et al., 2007) argued that neural-network models 
may not be able to learn a genuine torque rule.  

However, we showed that constructive neural networks 
could learn a torque rule in either of two ways: by 
prolonged training with sufficient numbers of torque 
problems, or by being taught an explicit torque rule as often 
happens with adolescents in secondary-school science 
courses (Shultz, Rivest, Egri, Thivierge, & Dandurand, 
2007). The former method was implemented in ordinary CC 
networks that recruit single hidden units having a sigmoid 
activation function; the latter with KBCC, permitting 
recruitment of previously learned networks or injected 
functions as well as single hidden units (Shultz & Rivest, 
2001; Thivierge, Dandurand, & Shultz, 2004).  

Our experience teaching university students about 
psychological development on the balance scale suggests 
that those few students who spontaneously use the torque 
rule to solve balance problems admit that they learned this 
method in science classes, either in secondary school or 
college. When the remaining students are informed that 
balance-scale problems can be solved by computing and 
comparing torques, they too begin to sometimes use this 
torque rule to produce more correct answers. Thus, it seems 
likely that most people learn a torque rule from explicit 
verbal instruction that includes relevant examples (Siegler, 
personal communication). In contrast, people are unlikely to 
learn a torque rule from processing many examples alone 
because problems requiring the torque rule (like that in 
Figure 1a) are so rare.  

Consistent with this idea, we found that knowledge-based 
learning with KBCC performs better, particularly in making 
the transition to the correct responding characteristic of a 
stage-4 torque rule, than networks that learn solely from 
examples (Shultz et al., 2007). In a variant of KBCC, called 
function-based CC (FBCC), symbolic functions can be 
injected into the recruitment pool. The injected function in 
our recent simulations was a torque-difference function 
inputting continuous values representing a left and a right 
weight-and-distance pair, and producing the difference 
between the left and right torque products that was then 
squashed through a sigmoid output unit. KBCC can equally 
well recruit functions or networks, the only restriction being 
that the recruit is as a differentiable function. These KBCC 
networks made a transition between stage 3 and stage 4, 
diagnosed by either the 80%-correct method (Siegler, 1976) 
or by latent class analysis (Quinlan et al., 2007). However, 
this model did not capture the progression through the first 
three stages of balance-scale development.  

Here, we attempt to achieve a successful and 
psychologically more valid model of balance-scale 
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development by capturing all four stages, including a 
genuine torque rule at stage 4. The new model combines 
and extends our initial balance-scale simulation (Shultz et 
al., 1994) and our recent exploratory work with KBCC 
(Shultz et al., 2007).  

Method 

Learning Algorithms 
Ordinary CC learns by alternating between two phases: 
input phase and output phase (Fahlman & Lebiere, 1990). 
CC networks at first have no hidden units. They begin 
training in output phase, by adjusting connection weights 
entering output units to reduce error as much as possible. In 
input phases, the inputs to candidate hidden units are trained 
so as to maximize the covariance between unit activation 
and network error. The candidate unit with the highest 
absolute covariance is selected and installed into the 
network with random input connection weights of the same 
sign as just learned, the other candidates are discarded, and 
there is a shift back to output phase. The algorithm shifts 
from one phase to the other when the current phase fails to 
improve the solution of the problem on which the network is 
being trained, by not reducing error or failing to improve 
covariances, for output- or input-phase, respectively.  

Sibling-descendant cascade-correlation (SDCC) is a 
newer version of CC that decides whether to install a new 
hidden-unit recruit on the current highest layer (as a sibling) 
or on its own highest layer (as a descendant) (Baluja & 
Fahlman, 1994). SDCC decides to do whichever is better at 
the time of installation, recruiting the unit whose activations 
covary best with existing network error. In each input phase, 
the candidate pool contains equal numbers of sibling units 
and descendant units, each with randomly-initialized input 
weights from the network’s input units. Because of the 
tendency to recruit units with the most computational 
power, the correlations with descendant candidates (having 
extra, cascaded inputs from hidden units at the current 
highest level) are typically penalized by a multiplier of 0.8. 
This has been found to decrease network depth without 
damaging generalization to untrained test patterns (Baluja & 
Fahlman, 1994). When used in a variety of psychology 
simulations, SDCC performs with the same functionality as 
standard CC, but with flatter networks, fewer connection 
weights, and more topological variety (Shultz, 2006).  

KBCC differs from CC and SDCC mainly in that it has 
the potential to recruit previously-learned networks or 
indeed any differentiable function, in competition with 
single hidden units (Shultz & Rivest, 2001). The 
computational device that gets recruited is the one whose 
output covaries best with residual network error. A simple 
example of a KBCC network is shown in Figure 2, 
illustrating that a recruited source network or function can 
have multiple inputs and outputs, thus requiring connection-
weight matrices rather than vectors. Mathematical details 
about KBCC are available elsewhere (Shultz & Rivest, 
2001; Shultz et al., 2007).  

 
 

 
 
 
 
 

 

 
Figure 2: Drawing of a sample KBCC network that has 

recruited a single sigmoid hidden unit followed by a source 
function. Thick solid lines represent connection-weight 
matrices, thin solid lines represent connection-weight 

vectors, and the dashed line represents a single connection 
weight. 

Torque-rule Injection 
To simulate the teaching of a torque rule, we introduce after 
350 epochs a module consisting of a KBCC network which 
has a four-input function (hereafter referred to as the torque 
rule) in its recruitment source pool: 

5.0
1

1
4

−
+

= − TDe
TR    Equation 1 

where ( ) ( )llrr dwdwTD −=   Equation 2 

Here, TR is the torque rule, and TD is torque-difference, 
computed as the difference between the torque on the right 
side of the fulcrum and the torque on the left side of the 
fulcrum. On each side of the fulcrum, right or left, torque is 
computed as the product of weight (w) and distance (d). TD 
is then passed through a sigmoid squashing function to 
obtain TR. TR is an S-shaped activation function with a 
floor at -0.5, a ceiling at 0.5, and an inflection point at 0. TR 
is also a differentiable function, which KBCC requires of 
potential recruits. The exponent of 4 increases the steepness 
of TR, emphasizing the binary judgments that humans are 
asked to make on this task, but the reported results were also 
produced with an exponent of 1.  

Simulation Modules 
There are four key modules: an intuitive network, a torque-
rule network, a confidence network, and a selection module.  
 
Intuitive Network As in our initial simulation (Shultz et al., 
1994), the intuitive SDCC network learns to predict balance 
scale results from learning with examples only. It has four 
inputs representing distance on the right, distance on the 
left, weight on the right, and weight on the left. There are 
two outputs, whose target patterns are coded as follows: 0 0 
for balance, +0.5 -0.5 for left heavier, and -0.5 +0.5 for right 
heavier. The recruitment pool contains eight sibling and 
eight descendent sigmoid units.  

Training begins with 100 initial patterns, randomly 
selected from the 625 possible balance-scale problems 
allowed by five weights and five distances from the 
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fulcrum. In the selection process, there is a .9 bias toward 
equal-distance problems (in which the weights are placed 
equally distant from the fulcrum), designed to encourage 
early use of the weight rule (the side with more weights 
should descend) under the assumption that children have 
rather few experiences with physical devices that 
systematically vary distance from a fulcrum (McClelland, 
1989). One new pattern is added in each output epoch, 
under this same .9 bias. Because items are selected with 
replacement, random selection of duplicate patterns is 
permitted.  

Exploratory simulations indicate that networks are well 
into stage 3 by about 350 epochs (see confirming evidence 
in Results section). Thus, when a network reaches 350 
epochs, we allow it to complete the current output phase, 
and then stop training.  

Parameter settings are the same as in the original 
simulation: score threshold = 0.25, output learning rate = 
0.175, input learning rate = 0.5, and other parameters are 
left at default values.  

 
Torque-rule Network The torque-rule network uses KBCC 
with a torque rule as injected knowledge. The target torque-
rule network has the same inputs and outputs as the intuitive 
network. But in the recruitment pool, it has eight sibling 
torque rules and eight descendent torque rules in addition to 
the eight sibling sigmoid and eight descendent sigmoid 
units. Its training data uses the final data set of an intuitive 
network and expands it with 25 randomly-selected torque 
problems. There is no further per-epoch expansion of the 
training set. Parameter settings are the same as for the 
intuitive network. Training begins in input phase rather than 
the usual output phase.  
 
Confidence Network The confidence network learns to 
predict the accuracy of the intuitive network.  It has seven 
inputs. In addition to the usual four inputs describing a 
balance-scale problem, these include a torque-difference 
measure, the absolute value of Equation 2, and two binary 
inputs indicating symmetry of weights and symmetry of 
distance (1 if symmetrical, 0 otherwise). There is one output 
encoding (2 – error) / 2, where error is the sum of the 
absolute values of intuitive network error across the two 
outputs of the intuitive network on the same problem. This 
output can be considered as a measure of confidence in the 
correctness of the intuitive network’s answers: as error 
diminishes toward 0, confidence approaches 1; and as error 
increases, confidence decreases toward 0. The training data 
and parameter settings are the same as for the torque-rule 
network, except that score-threshold is lowered to 0.1, to 
more accurately learn this continuous confidence function.  
 
Selection Module The selection module is software that 
decides whether to use the intuitive network or the torque-
rule network to generate a response. It first presents the 
problem to the intuitive and confidence networks, and reads 
the output of the latter as confidence in the intuitive 

network. If this confidence is sufficiently high (0.95 or 
more), it returns the intuitive response, otherwise it returns 
the torque-rule network’s response.  

Test Sets 
The system is tested with three different sets of problems, 
labeled Siegler-TD, Addition, and Torque. 

 
Siegler-TD The so-called Siegler-TD test set contains 24 
balance-scale patterns selected as in our original simulation 
(Shultz et al., 1994), inspired by Siegler’s (1976) test set but 
additionally balanced for torque-difference effects. It 
contains four randomly-selected problems of each of 
Siegler’s six types: balance, weight, distance, conflict 
balance, conflict weight, and conflict distance problems. 
The four problems of each of the six problem types each 
represent a different level of torque difference: 1, 3-5, 6-9, 
or 10-19. This is an improvement over studies that ignore 
torque differences and thus risk confounding problem type 
with torque difference and studies that use only small torque 
differences and thus risk underestimating torque-difference 
effects (Shultz et al., 1994).  

This test set is used to diagnose stages 0-4 according to 
Siegler’s (1976) criteria, with the proviso that Stage 2 is 
given diagnostic priority over Stage 3 (Shultz et al., 1994). 
Rule diagnosis is conducted by software: diagnosis of Stage 
4 requires 20 of 24 problems correct; diagnosis of stage 2 
requires at least 13 correct on the 16 balance, weight, 
distance, and conflict-weight problems and less than 3 
correct on the 8 conflict-distance and conflict-balance 
problems; stage 3 requires at least 10 correct on the 12 
balance, weight, and distance problems and fewer than 10 
correct on the 12 conflict problems; stage 1 requires at least 
10 correct on the 12 balance, weight, and conflict-weight 
problems and fewer than 3 correct on the 12 distance, 
conflict-distance, and conflict-balance problems. Stage 2 is 
given scoring priority over Stage 3 because the criteria for 
Stage 2 are more specific, particularly on how to score 
conflict-weight problems.  

 
Addition The Addition test set helps to distinguish a 
genuine torque rule from a mere addition rule. It contains all 
148 addition problems (among all conflict problems), a few 
of which may be included in the training set when 
expanding by one pattern per epoch. Typically, no more 
than one or two such patterns get included in the train set.  
 
Torque The torque test set contains the 27 torque problems 
not randomly selected to expand the training set in torque-
rule training. Among all conflict problems, there are 52 
torque problems, 25 of which are used in training. There is a 
small probability that these problems are selected when 
expanding the train set by one pattern per epoch, but in 
practice no more than a single pattern is included in this 
way. If a network gets all (or nearly all) torque problems 
correct, then it is diagnosed as following a genuine torque 
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rule as opposed to solving balance-scale problems with the 
often successful addition rule.  

Procedure 
We ran 20 network systems, with each system containing 
each of the three described networks, which were tested on 
each of the three test sets every 25 epochs. An epoch is a 
pass through the entire training set. 

Results 
Intuitive networks trained for a mean of 399 epochs (SD = 
44), torque-rule networks for a mean of 291 epochs (SD = 
86), and confidence networks for a mean of 1103 epochs 
(SD = 161). Torque-rule networks and confidence networks 
train until all outputs are within the score-threshold of 
targets, whereas training of intuitive networks is stopped 
early (as noted) in order to mimic stage 3 performance. 
Confidence networks take longer because they are learning 
to approximate a continuous function (with a smaller score 
threshold) as opposed to the classification task (with two 
binary outputs) for the torque and intuitive networks.  

Figure 1 presents mean stage classification on the Siegler-
TD test set for 20 intuitive networks over epochs. 
Performance at stage 1 is evident at epoch 25, stage 2 at 
epochs 75-150, and stage 3 at epochs 200-350. Epoch 50 
marks the transition between stages 1 and 2, and epoch 175 
marks the transition from stage 2 to 3. Thus, these networks 
capture the first three balance-scale stages seen in children 
from about five years of age up through early adolescence.  
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Figure 1: Mean stages on Siegler-TD test set of 20 intuitive 

networks over epochs ±SE. 
 
Figure 2 shows accuracy, in terms of mean proportion 

correct, in 20 intuitive networks on each of the three test 
sets over epochs. This confirms that intuitive networks learn 
to perform well on the Siegler-TD and Addition test sets, 
but not on the Torque test set. With this kind of training 
regimen, lacking sufficient experience with torque 
problems, something else is clearly required to achieve 
successful performance on problems that can be solved only 
by comparing torques.  

The extra factor in this simulation that allows networks to 
succeed on torque problems is the neurally-coded torque-
rule network, mimicking the instruction that many children 
receive in secondary-school science classes, along with 
enough examples of torque problems to practice on, and a 

confidence network that allows selection of the torque-rule 
network when confidence in the intuitive solution is low.  
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Figure 2: Accuracy of 20 intuitive networks on three test 

sets over epochs ±SE. 
 

Figure 3 presents mean accuracies of the two network 
modules on the three test sets after training is complete, 
along with 95% confidence intervals. Although intuitive 
networks perform well on the Siegler-TD and Addition test 
sets, they do badly on Torque problems. In contrast, 
combining the two network modules, by using the intuitive 
network when it provides an answer in which the confidence 
network is sufficiently confident and resorting to the torque 
network when confidence is low, allows a high level of 
performance on all three test sets.  

0

0.25

0.5

0.75

1

Intuitive Combination

Network module

M
ea

n 
pr

op
or

tio
n 

co
rr

ec
t

Siegler-TD

Addition

Torque

Test set

 
Figure 3: Accuracy of network modules on three test sets 

after training ±95% confidence interval. 
 
The mean proportions of problems solved by the intuitive 

network under combination conditions were .60, .47, and 
.09 on the Siegler-TD, Addition, and Torque test sets, 
respectively. That is, torque problems are almost never 
solved intuitively, whereas about half of non-torque 
problems are solved intuitively.  

Discussion 
Our results show that, contrary to previous claims (Quinlan 
et al., 2007), it is indeed possible for neural networks to 
learn to follow a genuine torque rule in balance-scale 
development. In this context, a torque rule can be 
considered genuine if it generalizes very well to conflict 
problems that cannot be solved a simpler rule that merely 
adds, rather than multiplies, weight and distance 
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information. Our networks generalize correctly to such 
untrained torque problems with over 90% success.  

Previous work showed that it was possible for neural 
networks to acquire a genuine torque rule from examples 
alone or by recruiting an injected torque rule if sufficient 
torque problems were provided in training (Shultz et al., 
2007). But these models did not progress through the first 
three stages of balance-scale performance seen in children. 
Progression through these earlier stages requires a training 
set with random problem selection subject to a strong bias in 
favor of equal-distance problems in which there are the 
same numbers of weights placed equally distant from the 
fulcrum, thus preventing sufficient experience with the very 
rare torque problems.  

The present model is the only neural-network system to 
so far demonstrate progression through all four balance-
scale stages finishing with a genuine torque rule. Our multi-
network system captures the first three balance-scale stages 
with an intuitive network that learns only from examples. 
Then a knowledge-based network with an injected torque 
rule in the source-knowledge pool and additional torque 
training examples builds on this early intuitive training by 
recruiting this taught torque rule and learning how to use it.  

Just as with secondary-school science students, a lesson 
on torque does not guarantee a torque solution. The taught 
torque rule must be stored, recruited, and practiced; and 
even then it may not be used on simple balance-scale 
problems that can be solved intuitively. A confidence 
network learns to predict whether the intuitive network is 
able to solve a given balance-scale problem based in part on 
how close the torques are on each side. If confidence in the 
intuitive network is too low, the torque-rule network 
provides a more accurate answer.  

Our model is consistent with psychological evidence that 
response time is slower with increasing age and increasing 
rule complexity (van der Maas & Jansen, 2003). This is 
because using the torque-rule network, the time for which 
adds to that of using the intuitive network, is more likely 
with increased training and more difficult problems. It is 
also consistent with the intuition that ordinary people do not 
invent a torque rule on their own, but rather are sometimes 
taught about torque in science classes (Siegler, personal 
communication). Our model predicts, perhaps uniquely, that 
response times would increase on problems with small 
absolute torque differences between the sides of the scale.  

The ability of KBCC to incorporate differentiable 
functions into its source knowledge pool is a promising and 
novel way to integrate neural-network and symbolic 
approaches to cognitive modeling. Our use of a confidence 
network indicates that neural networks may be able to 
simulate aspects of meta-cognition.  
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