Modeling Acquisition of a Torque Rule on the Balance-scale Task

Fredéric Dandurand (frederic.dandurand@univ-provence.fr)
L aboratoire de psychologie cognitive, CNRS & Université de Provence, UMR 6146, Case D, Batiment 9,
3 Place Victor Hugo, 13331 Marseille Cedex 3 France

Thomas R. Shultz (thomas.shultz@mcgill.ca)
Department of Psychology and School of Computer Science, McGill University,
1205 Penfield Avenue, Montreal, QC H3A 1B1 Canada

Abstract

We present a new model of development of children’'s
performance on the balance-scale task, one of the most
common benchmarks for computational modeling of
development. Knowledge-based cascade-correlation (KBCC)
networks progress through al four stages seen in children,
ending with a genuine torque rule that can solve problems
only solvable by comparing torques. A key element in the
model is injection of a neurally-implemented torque rule into
the recruitment pool of KBCC networks, mimicking the
explicit teaching of torque in secondary-school science
classrooms.

Keywords: Cognitive development; balance scale; neural
networks; knowledge-based learning; KBCC; SDCC.

I ntroduction

The ongoing competition between symbolic and neural-
network models of cognition often focuses on development
of children’s performance on balance-scale problems, one of
the most modeled tasks in developmental psychology. The
symbolic view is that knowledge is represented in rules
containing propositions referring to things in the world, that
processing occurs as rules are selected and fired thus
generating new propositions, and that knowledge is acquired
by learning such rules. In neural-network accounts, active
knowledge is represented in rapidly changing unit
activations and long-term knowledge by excitatory and
inhibitory connections between units, processing involves
activations being passed from one layer of units to another,
and knowledge acquisition results from adjustment of
connection weights and occasional recruitment of new units
into the network. The symbolic approach is sometimes
referred to as rule use, and the neural-network approach as
rule following (Shultz & Takane, 2007).

At first glance this may seem to be a rather subtle
distinction, but there are important differences between the
two viewpoints that have consistently guided research over
the last few decades. The rule-use approach assumes that
people literally have and use rules to guide their reasoning
and behavior, often affording the perfect generalization that
symbolic rules sometimes allow. Rule-use is consistent with
the idea that human cognition is often quite regular. In
contrast, the rule-following approach assumes that such
regularities may be approximated by neura networks that
adapt to regularities in the environment. This affords graded
generalizations whose regularity approximates the extent to

which the environment is consistently regular, with the
advantage that both regularities and exceptions, which are
quite common in the complex phenomena that humans
encounter, can be handled within the same neural network.
In rule-use approaches, exceptions are instead typically
memorized by a separate system from the rules themselves.
Such differences are highlighted as researchers build precise
computational models of psychological theories (Shultz,
2003). Computational models with artificial neural networks
are quite different from those that represent and use
symbolic rules.

One of the most frequently modeled domains in
developmental psychology focuses on the balance-scale
task, used by Siegler (1976) and severa other
developmental researchers. The balance-scale is considered
to be representative of the many tasks requiring integration
of information across two separate quantitative dimensions.
Results have been consistently replicated and include an
interesting stage progression.

Here we report an extended computational model of
balance-scale development that addresses a recent criticism
affecting most of the computational models — namely
ensuring that the final stage consists of a genuine,
multiplicative torque rule and not a simpler rule based on
addition (Quinlan, van der Maas, Jansen, Booij, & Rendell,
2007). We first describe the basic balance-scale task and its
stages before presenting our new computational model.

The Balance-scale Task

In this task, a participant is presented with a rigid beam
balanced on a fulcrum (Siegler, 1976). There are severa
pegs positioned on the beam at regular distances to the left
and right of the fulcrum. An experimenter places some
identical weights on a peg on the left side and some other
identical weights on a peg on the right side of the scale. The
participant is asked which side of the scale will drop, or
whether the scale will remain balanced, when the beam is
released from its supports, often consisting of a block placed
under each end of the beam. Archimedes' (c. 287-212 BC)
principle of the lever describes a rule that yields a correct
answer to balance-scale problems: multiply the weight and
distance from the fulcrum on each side and predict the side
with the larger product (torque) to drop.

A neurd-network simulation using the cascade-
correlation (CC) agorithm (Shultz, Mareschal, & Schmidt,
1994) captured the four stages seen in children (Siegler,

1541



1976): 1) predicting the side with more weights to descend;
2) when the weights are equal on both sides, also predicting
the side with greater distance to descend; 3) predicting
correctly when weight and distance cues both forecast the
same result and performing at chance when these cues
conflict, as in the problems shown in Figure 1; and 4) being
correct on at least 80% of balance-scale problems.

Diagnosing Stage 4

If performance at Stage 4 is diagnosed as being correct on
80% of balance-scale problems, many of which are difficult
problems in which weight and distance cues conflict with
each other, then at least some computational models, both
symbolic (Schmidt & Ling, 1996) and connectionist
cascade-correlation networks (Shultz et al., 1994), succeed
in reaching Stage 4. But if Stage 4 is defined by possession
of a genuine torque rule, as opposed to a mere addition rule,
then the modeling challenge is still open. Because many
conflict problems can be solved by adding (rather than
multiplying) weight and distance, documentation of atorque
rule needs to be supported by success on problems that
cannot also be solved by an addition rule (Boom, Hoaijtink,
& Kunnen, 2001; Quinlan et a., 2007).

With five pegs and five weights, the problem size often
used in simulations of the balance scale (Shultz et al., 1994),
there are 625 total problems, of which just 200 are relatively
difficult conflict problems in which weight and distance
information, used alone, lead to different answers. Only 52
of these conflict problems are torque problems that cannot
be solved by mere addition; the other 148 conflict problems
are addition problems that can be solved correctly by adding
distance and weight on each side and comparing these sums.

The torque problems, an example of which is shown in
Figure 1a, require comparison of left and right torques. In
example 1a, a torque of 6 on the left side is greater than a
torque of 4 on the right side. Comparing sums instead
predicts this scale will balance because the sum of weight
and distance on each side is 5. Most conflict balance-scale
problems, such as the one in Figure 1b, can be solved by a
simpler addition rule: predict that the side with the larger
sum of weight plus distance values will descend. In 1b, the
sum on the right side (6) is greater than the sum on the left
side (5). Likewise, the torque on the right side (8) is greater
than the torque on the | eft side (6).

a

UIHAIIIJ,J hbH:IIAlillJ

Figure 1: Example of atorque problem (a) that can be
solved by comparing torques but not by comparing sums,
and an example of an addition problem (b) that can be
solved by comparing either sums or torques.

Until recently, addition was routinely ignored in
computational models of balance-scale development,
whether symbolic (Schmidt & Ling, 1996) or connectionist

(McClélland, 1989; Shultz et al., 1994), just as it had been
ignored in many older psychology experiments. But with
recent evidence that at least some people use or follow a
genuine torque rule, solving balance-scale problems that
addition cannot solve (Boom et al., 2001; Quinlan et a.,
2007), it is important to test computational models on their
ability to acquire a genuine torque rule. Some researchers
(Quinlan et a., 2007) argued that neural-network models
may not be able to learn a genuine torque rule.

However, we showed that constructive neural networks
could learn a torque rule in either of two ways: by
prolonged training with sufficient numbers of torque
problems, or by being taught an explicit torque rule as often
happens with adolescents in secondary-school science
courses (Shultz, Rivest, Egri, Thivierge, & Dandurand,
2007). The former method was implemented in ordinary CC
networks that recruit single hidden units having a sigmoid
activation function; the latter with KBCC, permitting
recruitment of previously learned networks or injected
functions as well as single hidden units (Shultz & Rivest,
2001; Thivierge, Dandurand, & Shultz, 2004).

Our experience teaching university students about
psychological development on the balance scale suggests
that those few students who spontaneously use the torque
rule to solve balance problems admit that they learned this
method in science classes, either in secondary school or
college. When the remaining students are informed that
balance-scale problems can be solved by computing and
comparing torques, they too begin to sometimes use this
torque rule to produce more correct answers. Thus, it seems
likely that most people learn a torque rule from explicit
verbal instruction that includes relevant examples (Siegler,
personal communication). In contrast, people are unlikely to
learn a torque rule from processing many examples alone
because problems requiring the torque rule (like that in
Figure 1a) are so rare.

Consistent with this idea, we found that knowledge-based
learning with KBCC performs better, particularly in making
the transition to the correct responding characteristic of a
stage-4 torque rule, than networks that learn solely from
examples (Shultz et al., 2007). In avariant of KBCC, called
function-based CC (FBCC), symbolic functions can be
injected into the recruitment pool. The injected function in
our recent simulations was a torque-difference function
inputting continuous values representing a left and a right
weight-and-distance pair, and producing the difference
between the left and right torque products that was then
squashed through a sigmoid output unit. KBCC can equally
well recruit functions or networks, the only restriction being
that the recruit is as a differentiable function. These KBCC
networks made a transition between stage 3 and stage 4,
diagnosed by either the 80%-correct method (Siegler, 1976)
or by latent class analysis (Quinlan et a., 2007). However,
this model did not capture the progression through the first
three stages of balance-scale devel opment.

Here, we attempt to achieve a successful and
psychologically more valid model of balance-scale

1542



development by capturing al four stages, including a
genuine torque rule at stage 4. The new model combines
and extends our initial balance-scale simulation (Shultz et
al., 1994) and our recent exploratory work with KBCC
(Shultz et al., 2007).

Method

Learning Algorithms

Ordinary CC learns by alternating between two phases:
input phase and output phase (Fahlman & Lebiere, 1990).
CC networks at first have no hidden units. They begin
training in output phase, by adjusting connection weights
entering output units to reduce error as much as possible. In
input phases, the inputs to candidate hidden units are trained
so as to maximize the covariance between unit activation
and network error. The candidate unit with the highest
absolute covariance is selected and instaled into the
network with random input connection weights of the same
sign as just learned, the other candidates are discarded, and
there is a shift back to output phase. The algorithm shifts
from one phase to the other when the current phase fails to
improve the solution of the problem on which the network is
being trained, by not reducing error or failing to improve
covariances, for output- or input-phase, respectively.

Sibling-descendant cascade-correlation (SDCC) is a
newer version of CC that decides whether to install a new
hidden-unit recruit on the current highest layer (as a sibling)
or on its own highest layer (as a descendant) (Bauja &
Fahiman, 1994). SDCC decides to do whichever is better at
the time of installation, recruiting the unit whose activations
covary best with existing network error. In each input phase,
the candidate pool contains equal numbers of sibling units
and descendant units, each with randomly-initialized input
weights from the network’s input units. Because of the
tendency to recruit units with the most computational
power, the correlations with descendant candidates (having
extra, cascaded inputs from hidden units at the current
highest level) are typically penalized by a multiplier of 0.8.
This has been found to decrease network depth without
damaging generalization to untrained test patterns (Baluja &
Fahlman, 1994). When used in a variety of psychology
simulations, SDCC performs with the same functionality as
standard CC, but with flatter networks, fewer connection
weights, and more topological variety (Shultz, 2006).

KBCC differs from CC and SDCC mainly in that it has
the potential to recruit previously-learned networks or
indeed any differentiable function, in competition with
single hidden units (Shultz & Rivest, 2001). The
computational device that gets recruited is the one whose
output covaries best with residual network error. A simple
example of a KBCC network is shown in Figure 2,
illustrating that a recruited source network or function can
have multiple inputs and outputs, thus requiring connection-
weight matrices rather than vectors. Mathematical details
about KBCC are available elsewhere (Shultz & Rivest,
2001; Shultz et ., 2007).

Outputs

Source function

Weight

Weight A
matrix

vector

E.Bia.s.g I Inputs I

Figure 2: Drawing of a sample KBCC network that has
recruited a single sigmoid hidden unit followed by a source
function. Thick solid lines represent connection-weight
matrices, thin solid lines represent connection-weight
vectors, and the dashed line represents a single connection
weight.

Torque-rulelInjection

To simulate the teaching of atorque rule, we introduce after
350 epochs a module consisting of a KBCC network which
has a four-input function (hereafter referred to as the torque
rule) in its recruitment source pool:

TR:M%_O Equation 1

where TD = (w,d, )—(wd,) Equation 2
Here, TR is the torque rule, and TD is torque-difference,
computed as the difference between the torque on the right
side of the fulcrum and the torque on the left side of the
fulcrum. On each side of the fulcrum, right or l€ft, torqueis
computed as the product of weight (w) and distance (d). TD
is then passed through a sigmoid squashing function to
obtain TR. TR is an S-shaped activation function with a
floor at -0.5, aceiling at 0.5, and an inflection point at 0. TR
is aso a differentiable function, which KBCC requires of
potential recruits. The exponent of 4 increases the steepness
of TR, emphasizing the binary judgments that humans are
asked to make on this task, but the reported results were also
produced with an exponent of 1.

Simulation M odules

There are four key modules: an intuitive network, a torque-
rule network, a confidence network, and a selection module.

Intuitive Network Asinour initial ssmulation (Shultz et al.,
1994), the intuitive SDCC network learns to predict balance
scale results from learning with examples only. It has four
inputs representing distance on the right, distance on the
left, weight on the right, and weight on the left. There are
two outputs, whose target patterns are coded as follows: 0 0
for balance, +0.5 -0.5 for left heavier, and -0.5 +0.5 for right
heavier. The recruitment pool contains eight sibling and
eight descendent sigmoid units.

Training begins with 100 initial patterns, randomly
selected from the 625 possible balance-scale problems
dlowed by five weights and five distances from the

1543



fulcrum. In the selection process, there is a .9 bias toward
equal-distance problems (in which the weights are placed
equally distant from the fulcrum), designed to encourage
early use of the weight rule (the side with more weights
should descend) under the assumption that children have
rather few experiences with physical devices that
systematically vary distance from a fulcrum (McClelland,
1989). One new pattern is added in each output epoch,
under this same .9 bhias. Because items are selected with
replacement, random selection of duplicate patterns is
permitted.

Exploratory simulations indicate that networks are well
into stage 3 by about 350 epochs (see confirming evidence
in Results section). Thus, when a network reaches 350
epochs, we alow it to complete the current output phase,
and then stop training.

Parameter settings are the same as in the origind
simulation: score threshold = 0.25, output learning rate =
0.175, input learning rate = 0.5, and other parameters are
left at default values.

Torque-rule Network The torque-rule network uses KBCC
with atorque rule as injected knowledge. The target torque-
rule network has the same inputs and outputs as the intuitive
network. But in the recruitment pool, it has eight sibling
torque rules and eight descendent torque rules in addition to
the eight sibling sigmoid and eight descendent sigmoid
units. Its training data uses the final data set of an intuitive
network and expands it with 25 randomly-selected torque
problems. There is no further per-epoch expansion of the
training set. Parameter settings are the same as for the
intuitive network. Training begins in input phase rather than
the usual output phase.

Confidence Network The confidence network learns to
predict the accuracy of the intuitive network. It has seven
inputs. In addition to the usual four inputs describing a
balance-scale problem, these include a torque-difference
measure, the absolute value of Equation 2, and two binary
inputs indicating symmetry of weights and symmetry of
distance (1 if symmetrical, O otherwise). There is one output
encoding (2 — error) / 2, where error is the sum of the
absolute values of intuitive network error across the two
outputs of the intuitive network on the same problem. This
output can be considered as a measure of confidence in the
correctness of the intuitive network’s answers. as error
diminishes toward 0, confidence approaches 1; and as error
increases, confidence decreases toward 0. The training data
and parameter settings are the same as for the torque-rule
network, except that score-threshold is lowered to 0.1, to
more accurately learn this continuous confidence function.

Selection Module The selection module is software that
decides whether to use the intuitive network or the torque-
rule network to generate a response. It first presents the
problem to the intuitive and confidence networks, and reads
the output of the latter as confidence in the intuitive

network. If this confidence is sufficiently high (0.95 or
more), it returns the intuitive response, otherwise it returns
the torque-rule network’ s response.

Test Sets

The system is tested with three different sets of problems,
labeled Siegler-TD, Addition, and Torque.

Siegler-TD The so-called Siegler-TD test set contains 24
balance-scale patterns selected as in our original simulation
(Shultz et al., 1994), inspired by Siegler’s (1976) test set but
additionally balanced for torque-difference effects. It
contains four randomly-selected problems of each of
Siegler's six types. balance, weight, distance, conflict
balance, conflict weight, and conflict distance problems.
The four problems of each of the six problem types each
represent a different level of torque difference: 1, 3-5, 6-9,
or 10-19. This is an improvement over studies that ignore
torque differences and thus risk confounding problem type
with torque difference and studies that use only small torque
differences and thus risk underestimating torque-difference
effects (Shultz et al., 1994).

This test set is used to diagnose stages 0-4 according to
Siegler's (1976) criteria, with the proviso that Stage 2 is
given diagnostic priority over Stage 3 (Shultz et a., 1994).
Rule diagnosis is conducted by software: diagnosis of Stage
4 requires 20 of 24 problems correct; diagnosis of stage 2
requires at least 13 correct on the 16 balance, weight,
distance, and conflict-weight problems and less than 3
correct on the 8 conflict-distance and conflict-balance
problems; stage 3 requires at least 10 correct on the 12
balance, weight, and distance problems and fewer than 10
correct on the 12 conflict problems; stage 1 requires at least
10 correct on the 12 balance, weight, and conflict-weight
problems and fewer than 3 correct on the 12 distance,
conflict-distance, and conflict-balance problems. Stage 2 is
given scoring priority over Stage 3 because the criteria for
Stage 2 are more specific, particularly on how to score
conflict-weight problems.

Addition The Addition test set helps to distinguish a
genuine torque rule from a mere addition rule. It contains all
148 addition problems (among al conflict problems), a few
of which may be included in the training set when
expanding by one pattern per epoch. Typicaly, no more
than one or two such patterns get included in the train set.

Torque The torque test set contains the 27 torque problems
not randomly selected to expand the training set in torque-
rule training. Among all conflict problems, there are 52
torque problems, 25 of which are used in training. Thereisa
small probability that these problems are selected when
expanding the train set by one pattern per epoch, but in
practice no more than a single pattern is included in this
way. If a network gets al (or nearly al) torque problems
correct, then it is diagnosed as following a genuine torque

1544



rule as opposed to solving balance-scale problems with the
often successful addition rule.

Procedure

We ran 20 network systems, with each system containing
each of the three described networks, which were tested on
each of the three test sets every 25 epochs. An epoch is a
pass through the entire training set.

Results

Intuitive networks trained for a mean of 399 epochs (SD =
44), torque-rule networks for a mean of 291 epochs (SD =
86), and confidence networks for a mean of 1103 epochs
(SD = 161). Torgue-rule networks and confidence networks
train until al outputs are within the score-threshold of
targets, whereas training of intuitive networks is stopped
early (as noted) in order to mimic stage 3 performance.
Confidence networks take longer because they are learning
to approximate a continuous function (with a smaller score
threshold) as opposed to the classification task (with two
binary outputs) for the torque and intuitive networks.

Figure 1 presents mean stage classification on the Siegler-
TD test set for 20 intuitive networks over epochs.
Performance at stage 1 is evident at epoch 25, stage 2 at
epochs 75-150, and stage 3 at epochs 200-350. Epoch 50
marks the transition between stages 1 and 2, and epoch 175
marks the transition from stage 2 to 3. Thus, these networks
capture the first three balance-scale stages seen in children
from about five years of age up through early adolescence.

4 A

Mean stage
N w
. |

[
I

o

0 50 100 150 200 250 300 350
Epoch

Figure 1: Mean stages on Siegler-TD test set of 20 intuitive
networks over epochs +SE.

Figure 2 shows accuracy, in terms of mean proportion
correct, in 20 intuitive networks on each of the three test
sets over epochs. This confirms that intuitive networks learn
to perform well on the Siegler-TD and Addition test sets,
but not on the Torque test set. With this kind of training
regimen, lacking sufficient experience with torque
problems, something else is clearly required to achieve
successful performance on problems that can be solved only
by comparing torques.

The extra factor in this simulation that allows networks to
succeed on torque problems is the neurally-coded torque-
rule network, mimicking the instruction that many children
receive in secondary-school science classes, aong with
enough examples of torque problems to practice on, and a

confidence network that allows selection of the torque-rule
network when confidence in the intuitive solution islow.

1+

3]
Q
5 |
2 0.75 Test set
K] .
£ 05 Siegler-TD
s | ¥ Addition
o
X it Torque

§°°] Flog 11 1
< T S It

0 T T T T T T T

0 50 100 150 200 250 300 350
Epoch

Figure 2: Accuracy of 20 intuitive networks on three test
sets over epochs +SE.

Figure 3 presents mean accuracies of the two network
modules on the three test sets after training is complete,
aong with 95% confidence intervals. Although intuitive
networks perform well on the Siegler-TD and Addition test
sets, they do badly on Torque problems. In contrast,
combining the two network modules, by using the intuitive
network when it provides an answer in which the confidence
network is sufficiently confident and resorting to the torque
network when confidence is low, alows a high level of
performance on al three test sets.

1+

S E ==
2 Frt
8 0.75 ~ Test set
IS O Siegler-TD
‘g 0.5 - O Addition
o
s @ Torque
g 0.25 1
Q
=

0

Intuitive Combination

Network module

Figure 3: Accuracy of network modules on three test sets
after training £95% confidence interval.

The mean proportions of problems solved by the intuitive
network under combination conditions were .60, .47, and
.09 on the Siegler-TD, Addition, and Torque test sets,
respectively. That is, torque problems are almost never
solved intuitively, whereas about half of non-torque
problems are solved intuitively.

Discussion
Our results show that, contrary to previous claims (Quinlan
et a., 2007), it is indeed possible for neural networks to
learn to follow a genuine torque rule in balance-scale
development. In this context, a torque rule can be
considered genuine if it generalizes very well to conflict
problems that cannot be solved a simpler rule that merely
adds, rather than multiplies, weight and distance

1545



information. Our networks generalize correctly to such
untrained torque problems with over 90% success.

Previous work showed that it was possible for neural
networks to acquire a genuine torque rule from examples
alone or by recruiting an injected torque rule if sufficient
torque problems were provided in training (Shultz et al.,
2007). But these models did not progress through the first
three stages of balance-scale performance seen in children.
Progression through these earlier stages requires a training
set with random problem selection subject to a strong biasin
favor of equal-distance problems in which there are the
same numbers of weights placed equally distant from the
fulcrum, thus preventing sufficient experience with the very
rare torque problems.

The present model is the only neural-network system to
so far demonstrate progression through all four balance-
scale stages finishing with a genuine torque rule. Our multi-
network system captures the first three balance-scale stages
with an intuitive network that learns only from examples.
Then a knowledge-based network with an injected torque
rule in the source-knowledge pool and additional torque
training examples builds on this early intuitive training by
recruiting this taught torque rule and learning how to useit.

Just as with secondary-school science students, a lesson
on torque does not guarantee a torque solution. The taught
torque rule must be stored, recruited, and practiced; and
even then it may not be used on simple balance-scale
problems that can be solved intuitively. A confidence
network learns to predict whether the intuitive network is
able to solve a given balance-scale problem based in part on
how close the torques are on each side. If confidence in the
intuitive network is too low, the torquerule network
provides a more accurate answer.

Our model is consistent with psychological evidence that
response time is slower with increasing age and increasing
rule complexity (van der Maas & Jansen, 2003). This is
because using the torque-rule network, the time for which
adds to that of using the intuitive network, is more likely
with increased training and more difficult problems. It is
also consistent with the intuition that ordinary people do not
invent a torque rule on their own, but rather are sometimes
taught about torque in science classes (Siegler, persond
communication). Our model predicts, perhaps uniquely, that
response times would increase on problems with small
absolute torque differences between the sides of the scale.

The ability of KBCC to incorporate differentiable
functions into its source knowledge pool is a promising and
novel way to integrate neura-network and symbolic
approaches to cognitive modeling. Our use of a confidence
network indicates that neural networks may be able to
simulate aspects of meta-cognition.

Acknowledgments

This research is supported by a grant to TRS from the
Natural Sciences and Engineering Research Council of
Canada

References

Baluja, S., & Fahlman, S. E. (1994). Reducing network
depth in the cascade-correlation learning architecture.
(No. Technical Report CMU-CS-94-209). Pittsburgh, PA:
School of Computer Science, Carnegie Mellon University.

Boom, J., Haijtink, H., & Kunnen, S. (2001). Rules in the
balance: Classes, strategies, or rules for the balance scale
task. Cognitive Development, 16, 717-735.

Fahlman, S. E.,, & Lebiere, C. (1990). The cascade-
correlation learning architecture. In D. S. Touretzky (Ed.),
Advances in neural information processing systems 2 (pp.
524-532). Los Altos, CA: Morgan Kaufmann.

McClelland, J. L. (1989). Parallel distributed processing:
Implications for cognition and development. In R. G. M.
Morris (Ed.), Parallel distributed processing: Implications
for psychology and neurobiology (pp. 8-45). Oxford, UK:
Oxford University Press.

Quinlan, P. T., van der Maas, H. L. J,, Jansen, B. R. J,
Boaij, O., & Rendell, M. (2007). Re-thinking stages of
cognitive development: An appraisal of connectionist
models of the balance scale task. Cognition, 103, 413-459.

Schmidt, W. C., & Ling, C. X. (1996). A decision-tree
model of balance scale development. Machine Learning,
24, 203-229.

Shultz, T. R. (2003). Computational developmental
psychology. Cambridge, MA: MIT Press.

Shultz, T. R. (2006). Constructive learning in the modeling
of psychological development. In Y. Munakata & M. H.
Johnson (Eds.), Processes of change in brain and
cognitive development: Attention and performance XXI.
(pp. 61-86). Oxford, UK: Oxford University Press.

Shultz, T. R., Mareschal, D., & Schmidt, W. C. (1994).
Modeling cognitive development on balance scae
phenomena. Machine Learning, 16, 57-86.

Shultz, T. R, & Rivest, F. (2001). Knowledge-based
cascade-correlation: Using knowledge to speed learning.
Connection Science, 13, 1-30.

Shultz, T. R., Rivest, F., Egri, L., Thivierge, J-P., &
Dandurand, F. (2007). Could knowledge-based neural
learning be useful in developmental robotics? The case of
KBCC. International Journal of Humanoid Robotics, 4,
245-279.

Shultz, T. R., & Takane, Y. (2007). Rule following and rule
use in simulations of the balance-scale task. Cognition,
103, 460-472.

Siegler, R. S. (1976). Three aspects of cognitive
devel opment. Cognitive Psychology, 8, 481-520.

Thivierge, J. P., Dandurand, F., & Shultz, T. R. (2004).
Transferring domain rules in a constructive network:
Introducing RBCC. In Proceedings of the IEEE
International Joint Conference on Neural Networks (pp.
1403-1409).

van der Maas, H. L. J, & Jansen, B. R. J. (2003). What
response times tell of children's behavior on the balance
scale task. Journal of Experimental Child Psychology, 85
141-177.

1546



