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Abstract
Reasoning about objects in a visual scene can be substantially
improved if we have a representation that includes both in-
formation about the object properties and information about
the relations that hold between them. For this, we have built
a semantic-relational network that makes use of textual com-
monsense knowledge of both sorts and allows for inference
within a Bayesian framework (Röhrbein, Eggert, & Körner,
2007). In order to enrich this graphical representation, we tar-
get at adding complementary information gained, for example,
from sets of labeled images. We are especially interested in re-
lational knowledge, a demand that rules out most existing im-
age databases since they usually contain only one labeled ob-
ject per image. LabelMe proved as a promising alternative and
we started our efforts by analyzing the statistical dependencies
between all objects in fully-labeled images of that database. In
the contribution here, we report these results and discuss how
the gained information can be used to build contexts as a first
important step in reaching the final goal of learning a relational
knowledge representation in an autonomous way.
Keywords: inter-object relations; spatial context; labeled im-
ages

Introduction
Visual scenes contain a wealth of information which would be
very useful for technical systems. The complexity of visual
information and the processing and storage costs involved in
acquiring any form of this information that is directly usable,
makes the use of visual information very challenging. This is
further complicated by the problem of deciding what kind of
information is useful and what is simply superfluous. How-
ever, a lot of research has been carried out over the years
to obtain useful information from visual scenes whether it
be high-level, global context information (Fei-Fei & Perona,
2005), object recognition (Wersing & Körner, 2003), or low-
level image processing for feature detection (Lowe, 2004). In
this paper, we report on preliminary results of statistical anal-
ysis on images at an intermediate-level where object informa-
tion is assumed to be readily available showing that there are
some statistical regularities in visual scenes at a level below
that of global cues (like texture or gist models) and above that
of local analysis (such as edge detection or single objects).

Working at object-level means that annotated images must
be available. Some of the common analysis techniques in-
clude object positions, percentage area covered by object, and

object complexity (boundary points). However, these tech-
niques do not scale very well with number of images and if
any regularities are seen then they are more representative of
artistic preferences of photographers than actual object prop-
erties in real-world scenes (e.g. photographs of airplanes will
usually be centered on the plane when obviously an airplane
is seldom in the center of the visual field in everyday scenes).
For this reason, it is our belief that analyzing object-object
relations in images rather than object-scene relations would
reduce the effect of photography bias and, as shown in the
results, could detect some regularities in spatial relations be-
tween these objects.

The following section will give a brief introduction to the
LabelMe database that we use in our analysis followed by an
overview of region connection calculus, of which we used a
modified version to describe relations between objects in im-
ages. In the results section, we report on some of the interest-
ing results we found on different levels of detail. Following
this, we dedicate the final section to discussing the results and
how to interpret them as well as present the problems faced
and how these problems affected the results. There is also
a subsection discussing related work and the reported results
and the discussion section ends by briefly talking about future
plans and incorporating this information into our semantic-
relational network.

Method
Annotated images
One of the main requirements for this research is to have a
large database of images with multiple annotated objects per
image. Even though there are several publicly available an-
notated image data-sets, most of them either have too few
images for our purpose or contain only one object per image.
Such single-object images are very useful as training data for
object recognition but are useless for trying to uncover regu-
larities in larger, complex, multi-object scenes. For this pur-
pose, we use LabelMe (Russel, Torralba, Murphy, & Free-
man, 2008) which is an on-line, publicly accessible database
which depends on Internet users to upload and annotate im-
ages.
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The LabelMe database consists of many images along with
corresponding XML files containing the label names and
polygon points representing each labeled object in the image.
A single image may contain any number of labeled polygons
(see Figure 1 for an example). Internet users can view current
labels and add new ones. Labels of objects are typed in using
the keyboard and there are no restrictions on what any label
can be.

Undoubtedly, the use of such an “uncontrolled” data-set
introduces some problems. One very pronounced problem is
that there could be many variations of the same object class
(e.g. trashcan, bin, trash bin, waste basket, etc...). In the
reported results, all the different “synonyms” of an object
class are treated as if they are independent classes without
any attempt to normalize or consolidate the user-submitted
labels. Another related problem is that of viewing-angle la-
bels. Many users provide some hints in the labels as to what
the viewing angle of the object is, and even though there are
some attempts by the annotators to have a standard for pro-
viding such information, it is largely un-managed resulting in
labels like car front, car side view, and car az240deg specify-
ing the azimuth in degrees. Such labels are going to be very
useful at a later stage when view-dependent statistics are re-
quired but again, at this stage, each different label is treated
as an independent object class. There are also spelling mis-
takes (e.g. wnidow) and garbage labels found in the data but
these do not appear often enough to pass as legitimate object
classes according to our filtering criteria discussed next.

LabelMe is a very large database, and many of its images
have few or no annotated objects. One way to deal with this
problem is to only use fully-annotated images. An image is
considered to be fully-annotated if at least 90 percent of its
area is assigned to at least one annotation. Of course this
is an arbitrary choice but it provides a large enough data-set
while removing most images that do not have enough labeled
objects. The resulting data-set of 4,955 images had an aver-
age of 16.7 objects per image ranging from 1 object to 266.
To increase the reliability of the results, any object class that
had less than 10 instances in the database, or only existed in
one image was excluded from the analysis, in the latter case,
regardless of how many instances were found.

Region Connection Calculus
In order to be able to extract useful relations between objects
in images we need a standard way of describing the possi-
ble spatial arrangements between them. One way to do this
would be to have directional relations like left-of, above, be-
hind, etc, but this introduces the problem of granularity and
fuzziness so a much simpler and unambiguous representation
was needed.

Region connection calculus (RCC) is a qualitative spatial
representation to abstractly describe regions and their rela-
tions to each other (Randell, Cui, & Cohn, 1992). One ver-
sion of RCC, called RCC8, consists of 8 basic relations that
are possible between two regions in two-dimensional space.
The disconnected (DC) relation represents two separate ob-

Figure 1: A fully-annotated LabelMe image with associated
labels. In this example, manhole is a proper part of road-
Region and disconnected from bicycleSide which itself par-
tially overlaps one of the car occluded objects (see next sec-
tion). Repeated labels have been removed for brevity. (Image
adapted from LabelMe (Russel et al., 2008))

jects; externally connected (EC) represents separate objects
that are touching at an edge; the equal (EQ) relation means
both objects are exactly equal in size and in the same position;
partially overlapping (PO) means part of one object intersects
with the other; tangential proper part (TPP) and tangential
proper part inverse (TPPi) represent the cases where one ob-
ject is completely contained within the other and is touch-
ing at some edge; and non-tangential proper part (NTPP)
and non-tangential proper part inverse (NTPPi) also repre-
sent cases of one object contained within the other with the
difference that no edges are touching. From these basic re-
lations, different combinations can be built, resulting in new
relations.

In our analysis, we choose a subset of RCC8 which rep-
resents the combinations we found to be most likely in a
two-dimensional projection of the three-dimensional physi-
cal world. The EC category is incorporated with the DC cat-
egory by introducing a distance variable where a distance of
zero represents EC and a distance greater than zero repre-
sents DC. We call this new relation, non-overlapping (NO).
TPP and NTPP are combined into a proper part category (PP)
which simply means that one object is completely contained
within the other. Similarly, TPPi and NTPPi are combined
into proper part inverse (PPi). The PO category is used as
is with no changes while EQ is dropped all together since it
would be highly improbable for two objects to be in exactly
the same position with exactly the same size in an image and
still be recognizable as to receive two separate labels.

Interestingly, Galleguillos, Rabinovich and Belongie
(Galleguillos, Rabinovich, & Belongie, 2008) came up with
similar spatial categories using a vector quantization ap-
proach. For the representation of spatial relationships they
use INSIDE, AROUND, ABOVE and BELOW. The main
difference to our RCC-derived categories lies in neglecting
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horizontal relations, which is due to the image databases they
are using (see Discussion section).

For deciding which category an object pair falls into, poly-
gon intersection areas are used. An intersection area of zero
means an NO relation; PP or PPi is the result when the area
of the intersection is equal to the area of one of the polygons
but not the other, and a PO relation is the result when the in-
tersection area is less than both polygon areas. For distance
measurement, we use a minimum gap algorithm on the con-
vex hulls of the corresponding object polygons and for angle
measurement, we calculate the angle between the centroids
of the polygons.

Results
In the following few subsections, results from different levels
of abstraction are shown.

Object Co-occurrence
Using only fully-labeled images as described earlier, there
was a total of 1,622 object classes which gives a total of
1,314,631 possible tuples. Out of these, only 3207 tuples
were found to exist in the same image, which is less than
0.25 percent.

Conditional Probabilities
In an attempt to see how the presence of an object predicts
the presence of another, we calculate the conditional proba-
bilities of object 1 being found in an image given that object 2
is known to be there and vice-versa. It is not possible to list all
these probabilities here so Table 1 shows all instances where
this probability is one. In the table, the presence of “Object
1” in an image predicts with a probability of one, that “Ob-
ject 2” is found somewhere in the same image. For example,
the data predicts that if taxi or van rear is seen, then there is
always a road. It has to be kept in mind that this does not
make any predictions about how the objects are related spa-
tially or conceptually, it is merely a co-existence correlation
which explains why seemingly counter-intuitive pairs such as
one way sign and window are so strongly correlated.

Spatial Relations
Out of the 3,207 found co-occurring pairs, there are 144 pairs
that have a probability less than 0.5 to be in the NO category.
Only 10 pairs are found to belong to category PP with a prob-
ability greater than 0.5 (Table 2). The PPi category contains
the same 10 pairs with a probability greater than 0.5 with the
difference that “Object 1” and “Object 2” are switched. For
the PO category, 103 pairs with probability greater than 0.5
are found.

Distributions
For each of the categories, distributions of selected variables
over the individual instances are presented here. For the NO
category, distributions are shown for the distance1 between

1Several image sizes have been used therefore the distance mea-
surements also include an implicit depth attribute.

Table 1: All object pairs where the probability of appearance
of the second object given the first object is present is 1

Object 1 Object 2 Object 1 Object 2
taxi road tray wall
washbasin wall socket wall
windshield (occ) window dishwasher wall
van rear road cars side (occ) road
wheel rim wheel telephone wall
dishwasher sink ceiling wall
light switch wall cushion wall
dishwasher faucet bed crop wall
cupboard wall toilet paper wall
bed wall outlet wall
electrical outlet wall one way sign window
wheel (occ) window cabinet wall
ceiling light wall motorcyclist road
toilet wall rug wall
alarm clock wall end table wall
papers wall porch window

Table 2: All pairs of the proper part (PP) category with prob-
ability greater than 0.5

Object 1 Object 2 Object 1 Object 2
bed pillow field shrub
building region window house sign
buildings windows road manhole
car az30deg wheel rim road manhole cover
ceiling ceiling light wall alarm clock

objects as well as the distribution of the angle between them
(Figures 2(a) and 2(b) respectively). For PO, Figure 2(c)
shows the distribution of the ratio between the area of the
overlapping regions and the area of the first object while Fig-
ure 2(d) shows the angles between the partially overlapping
objects. For PP (Figures 2(e) and 2(f)), the distributions show
the angles between the objects and how much of the larger
object is covered by the smaller one (represented as a ratio).
Distributions for PPi are the same as those for PP with the
difference that angle distributions are mirrored along the hor-
izontal direction.

Discussion
Some research suggests that many cognitive abilities, includ-
ing abstract thought, make use of spatial relations or schemas
in contexts that do not necessarily involve physical spatial
properties (Gattis, 2001). An example would be people think-
ing about horizontal directions when thinking about siblings
or the upwards direction when thinking about respect. It
is therefore our belief that spatial relations are important in
knowledge representations since they are not only confined
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(a) Distribution of distances (in pixels) for
the NO category

(b) Percentage distribution of angles (in
degrees) for the NO category

(c) Distribution of area ratio (overlap area/
area of object 1) for PO category

(d) Percentage distribution of angles (in
degrees) for the PO category

(e) Distribution of area ratio (area of ob-
ject 2/ area of object 1) for PP category

(f) Percentage distribution of angles (in
degrees) for the PP category

Figure 2: Various distributions between object pairs of the different relation categories

to relations between physical objects thus providing ground-
ing for other, more abstract concepts.

In the physical context, it could at first seem that natu-
ral scenes are combinatorially infinite in terms of object re-
lations, however, previous research (Torralba, Oliva, Castel-
hano, & Henderson, 2006) shows regularities in distributions
for object instances of the same class. The results presented
here, show that there are also regularities between object in-
stances of different classes which limits the possible combi-
nations, or at least, highlights the most probable ones. The
results also show that more than 99.75% of all object pairs
tested, never co-occur in the same scene, suggesting that it is
not very likely that any of these pairs would occur in normal,

everyday scenes. It is also predicted by the results that the
majority of co-occuring objects in a scene will be nonover-
lapping. Even though we believe that this prediction is overly
exaggerated due to reasons discussed later, it seems that it is
also a viable characteristic of natural scenes since most ob-
jects will, in fact, have some distance between them except in
highly crowded scenes.

There are also some regularities seen regarding the rela-
tive positions and distances for the different relation cate-
gories. The distributions in Figure 2 seem to suggest that
non-overlapping, co-occurring object pairs tend to be close
together and positioned horizontally from each other. Par-
tially overlapping pairs show a very small overlap ratio to the
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area of the first object and are more evenly positioned with a
preference towards the vertical direction. For the proper part
pairs, it seems that the majority of smaller objects are much
smaller than the bigger ones. It might also be worth noting
that the angle distributions for NO and PO are almost sym-
metrical in both the vertical and horizontal directions while
the PP and PPi angle distributions are only symmetrical along
the vertical. Even though it might not be straight forward to
interpret what these regularities mean, it seems that these reg-
ularities do exist and can be helpful for visual tasks.

Looking at results from other research, it has been shown
that multi-class object detection using contextual information
between objects and object parts has shown an improvement
in performance over systems which do not use such contex-
tual information (Fink & Perona, 2004). However, this work
has only been applied to face recognition tasks and it is not
clear how this would generalize to other tasks. Also, the focus
of this work is on the interactions between part and whole de-
tection of one object rather than on the inter-object relations
which our work focuses on.

There is also work on improving image segmentation by
finding associations between image segments and a list of
word tokens the image is annotated with (Carbonetto, Fre-
itas, Freitas, & Barnard, 2004). The way this works is by
formulating a probabilistic mapping between continuous im-
age feature vectors and the supplied word tokens, which can
lead to smoothed image segmentation, especially in situations
where the scene was previously over-segmented. In contrast,
we make use of already labeled multi-object images and di-
rectly analyze the spatial relations which hold between these
objects within an image, giving inter-object relations rather
than segment-word mappings.

A very recent paper by Galleguillos, Rabinovich and Be-
longie (Galleguillos et al., 2008) is most similar to our work
reported here, since they make use of co-occurrence statistics
as well as spatial relations to improve their object recognition
system. They claim to be the first who make use of explicit
spatial context between objects, but the generality of the re-
sults they obtain is severely limited by the databases (MSRC
and PASCAL2007) they are using: MSRC comprises only
23 different categories while PASCAL2007 contains 20 cat-
egories. Even more severe, the images contain on average
of only 3 (MSRC) or even 2 (PASCAL2007) objects. A fur-
ther drawback with respect to accuracy is that both do not use
polygons, but region masks or simple bounding boxes2.

Problematic Cases
In our results, it is generally the case that many more in-
stances of any given object pair fall into the NO category than
we expected. For example, looking at car and license plate
(see Table 3), we see that a license plate is only a proper part
of a car about 25 percent of the time and non-overlapping
with it the rest of the time with no partial overlaps. This might

2For a detailed comparison of the different labeled image
databases see (Russel et al., 2008).

suggest that, 75% of cars do not have license plates which is
obviously false. Such false predictions are made due to a
combination of several factors, one of which is the aforemen-
tioned viewing angle. In this case, it could be said that out of
all the times a car is seen, it is only seen at an angle which al-
lows the license plate to also be seen, about 25% of the time.
This makes sense if we assume that most of the time, cars are
seen from the side. However, in other cases, viewing angle
does not properly account for the discrepancy between the
results and real world statistics. One of the most pronounced
examples of this is that of comparing building occluded with
window (see Table 3). In this example, we see a very high
percentage of NO instances, with a relatively small percent-
age of PP instances where a window is completely inclosed
within a building. One of the factors which brings about such
inaccurate results is the inconsistency in the labeling. Some
buildings will have every single window with a separate la-
bel, some buildings will have all of its windows labelled with
a single all-inclusive label. Others still, will have only one
or two labelled windows and sometimes none, and this obvi-
ously skews the results. Another very important issue is that
of the category abstraction level of a label. In this case, the
label “window” is found in the dataset to represent instances
of car windows, building windows, indoor windows, and this
contributes to a certain extent to the NO category overtaking
the others. A more illustrative example might be that of the
object leg which could represent a dog’s leg, a person’s leg,
or a chair leg.

Some of the other problems we found include polygon in-
accuracy and edge overlap issues. In polygon inaccuracy, la-
belers often need to estimate borders and there can always be
a small overlap between separate objects or parts of a sup-
posedly PP object lying outside of its enclosing object. In
edge overlap situations, where one object completely hides
the edge of another object, labelers tend to trace the visible
border between the two objects rather than approximate the
actual edge, giving inaccurate results. For example, in im-
ages with buildings that have cars parked in front of them, it
is very common to see labelers trace around the cars instead
of guess where the building would meet the ground.

There is also one particular problem that has proven to be
not so trivial to deal with; and that is the problem of “false-
positives”. Many pair instance comparisons result in an NO
relation when in fact one of the instance pairs has a PO or
a PP relation with another instance in the same image. For
example, if we go back to our car/license plate example, hav-
ing multiple instances of cars and license plates in an image
is problematic, even if the labeling is accurate and complete.
If we assume there are n cars and n license plates in the image
and every instance of car has exactly one PP relation with a
license plate, we can see that there are n2− n NO relations
and only n PP relations. And the problem gets worse with
more instances since increasing the number to n+1 cars and
license plates, gives a much higher increase in NO to n2 + n
compared to the increase in PP which only becomes n+1.
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Table 3: Some inaccurate examples (Object names are fol-
lowed by number of instances found)

Example 1 Example 2
Object 1 car (101) building (occ) (127)
Object 2 license plate (111) window (603)
Tuples 151 833
NO 114 (≈ 75%) 709 (≈ 85%)
PO 0 (0%) 3 (≈ 0%)
PP 37 (≈ 25%) 121(≈ 15%)
PPi 0 (0%) 0 (0%)

In an attempt to solve this problem we separate the NO cat-
egory into two sub-categories, NO-1 and NO-2, where NO-1
represents pairs where the first object does not overlap any
instance of the second object in the same image and NO-
2 represents pairs where the first object does not overlap a
given instance of the second object while it does overlap at
least one other instance. This distinction between “verified”
NO pairs and “suspicious” ones gives the ability to have some
idea of how strong the overall NO relation between the object
classes is while not making any assumptions based on our
knowledge of the objects in question. For the license plate ex-
ample this gives 81 instances in the NO-1 category (≈ 54%)
which is still quite high, but it must be noted that license
plate can also be part of van or car back so some process-
ing of the synonyms of object names could give much bet-
ter results (e.g. using WordNet (Fellbaum, 1998)). It is still
not very clear what NO-2 indicates since in some situations it
would contain legitimate non-overlapping object pairs, and in
other situations it would include the false-positives we wish
to eliminate. We found no trivial, generic way to differenti-
ate between the two situations without having some previous
knowledge about the objects in question.

Future Directions
One of the reasons for performing this analysis is to extend
a semantic-relational network with information about spatial
relations between objects. It is relatively straightforward at
this stage to use the results we have to store Bayesian spa-
tial relations in the network. A future step would be to see
how combining this setup with other techniques like saliency
maps or feature detection algorithms would improve the per-
formance in tasks such as object recognition or guided vi-
sual search. However, it must be noted that the results pre-
sented here are only for pairs of objects, and given the prob-
lems faced, there is still more work needed to improve the
results (as discussed earlier). Another way the results could
be made more reliable is by extending the idea to analyze
triples or quadruples of objects. By moving towards incorpo-
rating more and more objects in the analysis, any regularities
found would eventually form a context (for example chair,
desk, wall and window can form a “working area” context
which can be combined with other objects like water dis-

penser or bed to differentiate between offices and bedrooms).
It seems plausible that the idea of a hierarchy of relations
could prove to be very useful. Another way to improve the
results would be to capitalize on orientation-dependent regu-
larities that have already been found where it might be useful
to use image analysis at an early stage to determine the pose
of objects as it is very likely that pose-related regularities can
be found (e.g. chair facing desk, mug handle facing outside).
On a slightly different front, performing the analysis on se-
quences of images seems to be a very interesting idea, where
the aim would be to discover regularities in the way spatial re-
lations change over time and how these regularities might be
different between different objects, adding an extra temporal
dimension to the semantic-relational network.
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