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Abstract

Undergraduates meet with difficulties when they have to
solve comparison problems in which key words in the
problem prime inappropriate operations (e.g., the word "less"
priming subtraction when addition is required to solve the
problem). This is a comprehension error. In this paper, I
examine one factor suspected of making the comprehension
of some problems more difficult than others: the
computational requirement of the problem. In two
experiments, the size of the operand involved in the
computation and the number of mathematical operations
required to solve a problem were manipulated. Both factors
affected the number of comprehension errors leading to the
conclusion that increasing the computational requirement of a
problem drove some of the solvers to use a superficial mode
of understanding the text.
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Introduction

Over the last twenty-five years, arithmetical word problems
have been the subject of a large amount of research (e.g.,
Andersson, 2007; De Corte, Verschaffel, & DeWinn, 1985;
Hegarty, Mayer, & Monk, 1995; Kintsch & Greeno, 1985;
Lewis & Mayer, 1987; Pape, 2003; Reed, 1999; Riley,
Grenno, & Heller, 1983; Reusser & Stebler, 1997,
Verschaffel, De Corte, & Pauwels, 1992). These problems
are interesting with respect to their role in the teaching of
arithmetics, but they are also fascinating materials for
cognitive scientists because solving them requires the
integration of  several competencies: language
understanding, problem solving strategies and arithmetical
abilities (Andersson, 2007; Cummins, Kintsch, Reusser, &
Weimer, 1988; LeBlanc & Weber-Russell, 1996; Thevenot
& Oakhill, 2008). This is specifically the case for problems
like the following one (Lewis & Mayer, 1987): At Shell, gas
costs 81.12 per gallon. This is 5 cents less than gas at
Texaco. How much do 3 gallons of gas cost at Texaco?
Children find such problems particularly difficult to solve.
According to Riley, Grenno and Heller‘s classification
(1983), this problem is one of the most difficult "two step"
arithmetical problems. It is a comparison problem because it
includes a relational statement that compares the value of
two variables. Such problems are more difficult than change
or combine problems (Riley et al., 1983). However, there is
a more important factor that explains why the example
problem is particularly difficult. It is a language
inconsistent problem because the relational term "less"
primes the use of an inappropriate arithmetical operation. To

solve the problem, it is necessary to add 5 to 1.12 rather
than subtract it. Use of the inappropriate arithmetical
operation, called a reversal error, is often observed with
inconsistent problems, while this error is rare for problems
with consistent relational statements such as ‘Gas at Texaco
is 5 cents more than at Shell’ (Lewis, 1989; Verschaffel et
al., 1992). Stern (1993), summarizing six studies in which
elementary school children solved comparison problems,
reported far more errors with inconsistent problems than
with consistent problems. Astonishingly, this is also true for
undergraduates. Lewis and Mayer (1987) observed that 13%
of undergraduates made reversal errors with inconsistent
comparison problems versus less than 1% for consistent
problems. Furthermore, one third of the 32 undergraduates
participating in the study by Hegarty, Mayer and Green
(1992) made at least two reversal errors with four
comparison problems, of which two were inconsistent and
two consistent. The present study aims at understanding
why undergraduates meet with difficulties when they have
to solve inconsistent comparison problems. Resting on
studies that showed that errors originate in the use of a
superficial comprehension strategy by the solvers, 1
evaluated one factor suspected of directing the strategy
selection: the computational requirement of the problem.

Why Do People Err in Solving Inconsistent
Problems?

A major change in the study of arithmetical word problems
emerged during the eighties when more and more
researchers stressed the central role of language
comprehension in explaining the difficulties solvers meet
(Cummins et al., 1988; De Corte, Verschaffel, & DeWinn,
1985; Kintsch & Greeno, 1985; Lewis & Mayer, 1987).
Their conviction mainly arose from two observations. First,
it appeared that children often solve arithmetical problems
more easily when presented numerically rather than as word
problems, even though both require exactly identical
computational steps (Cummins et al., 1988). Second,
researchers were able to improve dramatically the solution
performance by introducing a slight change in the wording
of the problem (De Corte et al., 1985; Hudson, 1983; Staub
& Reusser, 1995).

The crucial role of language comprehension is
particularly evident in the case of language inconsistent
compare problems. It is the way the problem is worded that
makes it more difficult to solve. For any inconsistent
problem, it is possible to design a consistent problem that
requests exactly the same computation steps to solve it.
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Solvers are more successful with the language consistent
problems while they often err when facing the language
inconsistent versions. Typically, they make reversal errors
(Cummins et al., 1986; Lewis & Mayer, 1987), caused by
the use of a deficient strategy to understand the problem.
For Hegarty et al. (1992, 1995), unsuccessful problem
solvers, i.e. solvers who make a large number of reversal
errors, do not build a problem model representing the
situation described in the text, while successful problem
solvers do. Using a direct translation strategy, unsuccessful
solvers try to construct a solution plan by devoting their
attention only to keywords such as relational terms and
numbers. In the case of an inconsistent problem, they are
misled by the relational term that primes the corresponding
but incorrect operation ("less" primes subtraction and
"more" addition), leading to a reversal error.

Analysis of the eye fixations collected during the reading
of word problems by successful and unsuccessful solvers
brought empirical data to support this theory. Unsuccessful
solvers spent more time than successful solvers fixating on
keywords and numbers, but less time on background
information useful to construct a situation model of the
problem. Moreover, Hegarty et al. (1995, see also Cummins
et al., 1986) observed that successful and unsuccessful
problem solvers do not remember the relational sentence in
the same way. Unsuccessful solvers reported more often
than successful solvers a relational statement that was the
reverse of the relation really expressed in the problem, but
preserved the original relational keyword they had seen.
Such an error is expected if they take a superficial view of
the problem and use a direct translation strategy based on
the keywords to construct the solution plan.

In summary, research on individual differences suggests
that successful solvers tend to construct a meaningful and
rich representation of the problem while unsuccessful
solvers tend to use a "short-coming" strategy. However, it
remains to be explained why successful solvers do not
always manage to answer an inconsistent problem correctly
and why unsuccessful solvers do not always err (Hegarty et
al., 1995, p. 29). Are there factors that make some
inconsistent compare problems more prone to reversal
errors? Discovering such factors would have several
implications. It would point out in which direction one
should look to find individual differences that cause the
frequent use of an inefficient strategy by some solvers.
Furthermore, the distinction between a deep and powerful
strategy that leads to the construction of a mental model and
a deficient strategy based on a superficial representation of
the problem is pervasive in text comprehension research
(Graesser, Millis, & Zwaan, 1997; Kintsch, 1998;
Noordman & Vonk, 1998; Rinck, 2000). Studying factors
that determine the comprehension strategy used should be
beneficial for this area too.

In the present study, I evaluated one factor suspected of
directing the strategy selection in understanding inconsistent
problems: the computational requirement of the problem.
Several studies showed that the comprehension and the

computational processes necessary to solve a problem are
not serial, but are at least partially overlapping (Hegarty et
al., 1992, 1995; Kintsch, 1998). For instance, Hegarty et al.
(1992) observed that the additional time necessary for
interpreting the inconsistent information does not occur
during the first reading of the problem, but later. Solvers
wait until they have read the entire problem before going
back to the relational statement and start to determine the
arithmetical operation requested. It is during this second
reading that they build the situational model necessary to
solve the inconsistent problem. Because attention resources
are limited and simultaneously required for computation and
comprehension, increasing the complexity of the
computation should capture resources that otherwise would
be devoted to the understanding of the relational statement.
This should direct some solvers to shift from a deep and
elaborate strategy to a more superficial and short-cut one.
To test this hypothesis, participants were asked to solve two
inconsistent problems that were very different in
computational requirement. Obviously, more arithmetical
errors for the computationally more difficult problems were
expected. The most interesting analysis focused on the
comprehension errors. If computational requirement affects
comprehension, there should have been more
comprehension errors for the computationally harder
problems.

Experiment 1

Method

Participants

Fifty-three participants, all second year psychology students
who were native speakers of French, took part in the
experiment for course credit.

Materials

The experimental material consisted of two inconsistent
two-step problems: one was a comparison problem and the
other was an equalize problem. In both the comparison and
equalize problems, the first sentence assigned a value to a
variable. The second sentence was the relational statement
that expressed the value of a new variable in terms of the
first variable, and the third sentence asked for some kind of
computation on the new variable. In both problems, the
relational term was the marked term «less», which is known
to produce many more reversal errors that the unmarked
term « more » (Lewis & Mayer, 1987). The only difference
between the comparison and equalize problems was in the
way the relational statement was worded. In the equalize
problem, the relational statement told how to change one
variable to make it equal to the other.

To manipulate the computational requirements, I wrote
two versions of each experimental problem by altering the
first two sentences. In both versions, numbers of the same
magnitude were used, but computation in the low-
requirement version was simplified by using round numbers
(See Table 1).
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Table 1: Problems for Experiment 1 (numbers in
parenthesis refer to the high requirement version).

Comparison Problem

Peter is paid EUR 1900 (1930) a month.
That’s 300 (355) less than Fabrice.
How much does Fabrice earn in 2 months?

Equalize Problem

A Shell stock costs EUR 460 (465)

If an Esso stock was EUR 100 (128) less, it would be
at the same price as a Shell stock.

How much do 3 Esso stocks cost?

There were also nine filler problems, mostly of the
combine and change type requiring three or four steps to be
solved. None of them were comparison or equalize
problems, and none included an inconsistent relational term.

Two counter-balanced sets of problems were constructed.
Each set contained the two experimental problems and the
nine filler problems. The comparison problem was
presented in position 3 and the equalize problem in position
10. In one set, the first experimental problem was the low
requirement version and the second experimental problem
the high requirement version. The reverse was true for the
second set. Therefore, each participant saw both
experimental problems, one in its low-requirement version
and the other in the high-requirement version. Twenty-seven
participants answered the first set and twenty-six the second.

Procedure

The arithmetical problem task was interleaved with a text
comprehension task in which participants had to read 250
word texts and answer four comprehension questions. The
arithmetic problems were to be solved between the reading
and question answering tasks. To maximize the cognitive
resource required by the task, participants were instructed to
solve each arithmetical problem mentally without writing
any intermediate computations and to do so in 30 seconds.
Texts and problems were assembled in booklets. Texts,
problems and comprehension questions were printed on
separate pages.

Participants were tested in groups of ten to fifteen in a
classroom. To keep subjects synchronized over the different
tasks, the time to process each task was fixed according to a
pilot study. At each transition point, the experimenter gave
the signal to start.

Results

First, an analysis was conducted to determine whether the
high requirement problems were, as expected, more difficult
than the low requirement problems. Results were clear-cut.
None of the 53 participants provided the exact numerical
answer for the high requirement problems, while 29 did for
the low-requirement problems. High requirement problems
were clearly harder.

However, this observation is not sufficient to demonstrate
that participants made more comprehension errors in the
high-requirement condition, because not all of the erroneous
answers were the result of an error in the reversal of the
relational term. There were a large number of numerical
errors, due to the requirement of computing the solution
mentally. The scoring was thus focused on the way
participants understood the inconsistent relational term. An
answer was scored as correct when it was close or equal to
the answer the participants should have produced if they
correctly reversed the relational term. An answer was scored
as a comprehension error when it was close or equal to the
answer participants would have produced if they did not
reverse the relational term. Undetermined answers
corresponded mainly to cases where participants provided
no answer, but also when they did not take into account the
relational term, producing their answer by using the first and
the third statements only. Table 2 shows that 62% of the
comprehension errors were observed in the high
requirement condition (see Table 2).

Table 2: Number of Correct Answers, Comprehension
Errors and Undetermined Answers for the Low and High
Requirement Conditions in Experiment 1

Low High
Correct answer 34 10
Comprehension error 13 21
Undetermined answer 6 22

Since each participant answered a low and a high
requirement problem, it was possible to apply a
nonparametric sign test to the participants who produced no
undetermined answers. Twenty-eight participants were in
this category. Nine of them produced two correct answers,
five produced two comprehension errors, and the remaining
14 produced only one comprehension error. Thirteen of
these 14 made their comprehension errors in the high
requirement problem while they solved the low requirement
problem correctly. Only one participant had the reverse
profile, making an error only in the low requirement
problem. The sign test on these values confirmed that the
high requirement condition led to significantly more
comprehension errors than the low requirement condition
(Sign-test' (N = 14; X = 1), p = .0018). In summary,
increasing the computational requirement of an inconsistent
problem interfered with the comprehension of the problem
and led to more reversal errors.

Experiment 2

The second experiment tests another manipulation of the
computational component of a problem: the number of steps
required to solve a problem. One-step problems require only

! Based on the classical sign test, called nonrandomized

conditional sign test in Coakley and Heise (1996), which is
recommended by many textbooks even if it is quite conservative.
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one arithmetic operation to be solved, the operation stated in
the relational sentence. The last sentence does not require
any supplementary operation. Two-step problems resemble
the one used in our first experiment. They end with a
question that requires a computational operation on a
variable. The more steps a problem requires, the more the
demand on the solver’s attention resources.

In this second experiment, I contrasted very easy one step
problems with far more difficult several step problems. The
most important difference between this "number of step
factor" and the "magnitude factor" already studied is the
position where the manipulation occurs in the problem. The
magnitude manipulation affects the relational statement
while the number of steps manipulation affects the last
sentence of the problem, the sentence that follows the
relational statement. If the computational complexity of this
last sentence affects the number of errors in understanding
the previous sentence, it would increase confidence that
comprehension and computational processes interact during
the solving of an arithmetical problem.

Method

Participants

One hundred and one participants, all second year
psychology students who were native speakers of French,
took part in the experiment for course credit.

Materials

The experimental material consisted of two inconsistent
comparison problems. To manipulate the computational
requirements of the third sentence, I wrote two versions of
each problem (see Table 3). In the OSP version, the last
sentence included no supplementary operation, while in the
3SP version, it included three supplementary operations:
two multiplications and one addition.

Table 3: Comparison Problem for Experiment 2.

The chemical formulary is 32 pages long.
It's 9 pages less than the mathematical one.
0OSP How many pages are in a mathematical formulary?

The chemical formulary is 32 pages long.
It's 9 pages less than the mathematical one.
3SP How many pages are in 3 chemical and 2
mathematical formularies?

Two counter-balanced sets of materials were constructed.
Each set contained the two experimental problems. In one
set, the first experimental problem appeared in the OSP
condition and the second in the 3SP condition. The reverse
was true for the second set. Fifty-one participants answered
the first set and fifty answered the second set.

There were also two filler problems that participants
answered between the two experimental problems. These
were very difficult logical problems adapted from Casey
(1993) that were expected to prevent participants from

perceiving the structural
experimental problems.

similarity between the two

Procedure

Problems were presented in booklets. The first and last were
always the arithmetical word problems and the two
intermediates were the filler problems. Participants were
tested in groups of five to ten in a classroom. They were
instructed to solve the problems mentally without writing
any intermediate computations. The time allowed to solve
each problem was not limited because, as observed in the
first experiment, this restriction prevented some participants
from producing an interpretable answer in the available
time. Participants typically took between five and twelve
minutes to solve the four problems.

Results

As expected, the OSP problems were far easier to solve than
the 3SP problems. Ninety-six percent of the participants
provided the exact numerical answer for the OSP, while only
66% did for the 3SP problems.

To test our prediction that participants made more
comprehension errors in the 3SP condition than in the OSP
condition, I scored participants’ answers based on how they
understood the inconsistent relational term. The scoring
procedure was identical to the procedure used in Experiment
1, except that it was not necessary to use an undetermined
category as all the participants produced interpretable
numerical answers.

Table 4: Number of Correct Answers and Comprehension
Errors for the OSP and 3SP Conditions in Experiment 2

0SP 3SP
Correct answer 97 84
Comprehension error 4 17

As summarized in Table 4, 80% of the comprehension
errors were observed in the 3SP condition. Overall, 81
participants made no comprehension errors and one made an
error both in the OSP and in the 3SP problem. The
remaining 19 participants made only one comprehension
error. Sixteen of them made their comprehension error in
the 3SP problem while they solved the OSP problem
correctly. Only three participants had the reverse profile,
making an error in the OSP problem only. The sign test on
these values confirmed that the 3SP condition led to
significantly more comprehension errors than the OSP
condition (Sign-test (N =19, X =3), p =.0044).

Conclusion

Language inconsistent arithmetical problems have been
the subject of a large amount of research over the last
twenty-five years. It has shown that difficulties occur during
the comprehension of the problem. It has also pointed out
important individual differences in the ability to solve these
kinds of problems due to the strategy used to understand the
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problem. Successful solvers construct a meaningful and rich
representation of the problem while unsuccessful solvers use
a short-cut strategy that leads to reversal errors. The present
paper addresses a related question: why are some language
inconsistent problems more difficult than others or,
alternatively stated, why do solvers sometimes use an
inefficient strategy and sometimes an efficient one? More
specifically, I focused on one factor suspected of directing
the strategy selection: the computational requirement of the
problem. In two experiments I manipulated the size of the
operand involved in the computation and the number of
mathematical operations required to solve the problem. Both
factors affected the number of reversal errors produced by
the solvers. The harder the problem was at the
computational level, the larger the number of
comprehension errors. These results can be interpreted in
the framework of Hegarty et al.'s (1992, 1995) explanations
of individual differences in solving inconsistent problems.
Increasing the computational requirements of a problem
directs some solvers to shift from a deep and elaborate
strategy to a more superficial and short-cut one.

The limited scope of this paper must be stressed. This

study specifically addresses the difficulties met by
undergraduates who are able to correctly answer
inconsistent problem, but who sometimes make

comprehension errors. Explaining the difficulties children
have to master inconsistent problems is another question
studied, for instance, by Stern (1993). She observed that
first graders did not seem to understand that statements like
"Jane has 2 marbles more than Peter " and "Peter has two
marbles fewer than Jane" express the same situation (Stern,
1993). They were consequently unable to reverse the
relational term. This was not the case for the undergraduates
who participated to our experiments because almost all of
them solved correctly at least one of the two inconsistent
problems.

However, by focusing on a factor that directs the
comprehension strategy used by the readers, this study has
implications that go further than the processing of
arithmetical problems to reach text comprehension in
general. The strategy selected to understand a text and the
nature of the representation build by the reader is central to
current models of text comprehension (Graesser, Millis, &
Zwaan, 1997; Kintsch, 1998; Rinck, 2000; Tzeng, van den
Broek, Kendeou, & Lee, 2005; van den Broek, Rapp, &
Kendeou, 2005). A text can be understood at a superficial
level leaving readers with a propositional representation of
its content or at a deeper level if readers build a mental
model of what the text is about. Only the latter allows the
reader to fully understand the text (Kintsch, 1994). Research
on text comprehension showed that several factors
determine the depth of processing. Readers who have
relevant prior knowledge about a text tend to build a mental
model while low-knowledge readers build a representation
closer to the surface of the text (McNamara & Kintsch,
1996; Noordman & Vonk, 1992). Characteristics of the text
are also important. Rewriting a poor text to make it more

coherent favours the building of a mental model (Britton &
Giilgoz, 1991Roebben & Bestgen, 2006)). McNamara et al.
(1996) and OReilly and McNamara (2007) showed
furthermore that these readers' and textual factors interact in
determining the comprehension strategy. Even if our study
is focused on arithmetical word problems, it sheds a
complementary light on this question by identifying another
factor that directs the selection of the comprehension
strategy. Increasing the computational requirement of a
problem was enough to conduct some of the solvers to use a
superficial mode of understanding the text. This was
observed even if solvers had the prior knowledge necessary
to understand the problem, that is knowing that if gas at
Shell is five cents less than at Texaco, gas at Texaco is five
cents more than at Shell. They just skipped to use it.
Moreover, the use of a deficient comprehension strategy
was forced by manipulating not the comprehension
difficulty of the text, but its computational difficulties.
Further research is now needed to determine if such effects
can be observed with other genre of texts like expository
texts and to test other manipulations that could direct the
selection of a superficial strategy.
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