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Abstract 
Undergraduates meet with difficulties when they have to 
solve comparison problems in which key words in the 
problem prime inappropriate operations (e.g., the word "less" 
priming subtraction when addition is required to solve the 
problem). This is a comprehension error. In this paper, I 
examine one factor suspected of making the comprehension 
of some problems more difficult than others: the 
computational requirement of the problem. In two 
experiments, the size of the operand involved in the 
computation and the number of mathematical operations 
required to solve a problem were manipulated. Both factors 
affected the number of comprehension errors leading to the 
conclusion that increasing the computational requirement of a 
problem drove some of the solvers to use a superficial mode 
of understanding the text. 

Keywords: Arithmetical word problem; language 
comprehension; computational requirement. 

Introduction 
Over the last twenty-five years, arithmetical word problems 
have been the subject of a large amount of research (e.g., 
Andersson, 2007; De Corte, Verschaffel, & DeWinn, 1985; 
Hegarty, Mayer, & Monk, 1995; Kintsch & Greeno, 1985; 
Lewis & Mayer, 1987; Pape, 2003; Reed, 1999; Riley, 
Grenno, & Heller, 1983; Reusser & Stebler, 1997; 
Verschaffel, De Corte, & Pauwels, 1992). These problems 
are interesting with respect to their role in the teaching of 
arithmetics, but they are also fascinating materials for 
cognitive scientists because solving them requires the 
integration of several competencies: language 
understanding, problem solving strategies and arithmetical 
abilities (Andersson, 2007; Cummins, Kintsch, Reusser, & 
Weimer, 1988; LeBlanc & Weber-Russell, 1996; Thevenot 
& Oakhill, 2008). This is specifically the case for problems 
like the following one (Lewis & Mayer, 1987): At Shell, gas 
costs $1.12 per gallon. This is 5 cents less than gas at 
Texaco. How much do 3 gallons of gas cost at Texaco? 

Children find such problems particularly difficult to solve. 
According to Riley, Grenno and Heller‘s classification 
(1983), this problem is one of the most difficult "two step" 
arithmetical problems. It is a comparison problem because it 
includes a relational statement that compares the value of 
two variables. Such problems are more difficult than change 
or combine problems (Riley et al., 1983). However, there is 
a more important factor that explains why the example 
problem is particularly difficult. It is a language 
inconsistent problem because the relational term "less" 
primes the use of an inappropriate arithmetical operation. To 

solve the problem, it is necessary to add 5 to 1.12 rather 
than subtract it. Use of the inappropriate arithmetical 
operation, called a reversal error, is often observed with 
inconsistent problems, while this error is rare for problems 
with consistent relational statements such as ‘Gas at Texaco 
is 5 cents more than at Shell’ (Lewis, 1989; Verschaffel et 
al., 1992). Stern (1993), summarizing six studies in which 
elementary school children solved comparison problems, 
reported far more errors with inconsistent problems than 
with consistent problems. Astonishingly, this is also true for 
undergraduates. Lewis and Mayer (1987) observed that 13% 
of undergraduates made reversal errors with inconsistent 
comparison problems versus less than 1% for consistent 
problems. Furthermore, one third of the 32 undergraduates 
participating in the study by Hegarty, Mayer and Green 
(1992) made at least two reversal errors with four 
comparison problems, of which two were inconsistent and 
two consistent. The present study aims at understanding 
why undergraduates meet with difficulties when they have 
to solve inconsistent comparison problems. Resting on 
studies that showed that errors originate in the use of a 
superficial comprehension strategy by the solvers, I 
evaluated one factor suspected of directing the strategy 
selection: the computational requirement of the problem. 

Why Do People Err in Solving Inconsistent 
Problems? 
A major change in the study of arithmetical word problems 
emerged during the eighties when more and more 
researchers stressed the central role of language 
comprehension in explaining the difficulties solvers meet 
(Cummins et al., 1988; De Corte, Verschaffel, & DeWinn, 
1985; Kintsch & Greeno, 1985; Lewis & Mayer, 1987). 
Their conviction mainly arose from two observations. First, 
it appeared that children often solve arithmetical problems 
more easily when presented numerically rather than as word 
problems, even though both require exactly identical 
computational steps (Cummins et al., 1988). Second, 
researchers were able to improve dramatically the solution 
performance by introducing a slight change in the wording 
of the problem (De Corte et al., 1985; Hudson, 1983; Staub 
& Reusser, 1995). 

The crucial role of language comprehension is 
particularly evident in the case of language inconsistent 
compare problems. It is the way the problem is worded that 
makes it more difficult to solve. For any inconsistent 
problem, it is possible to design a consistent problem that 
requests exactly the same computation steps to solve it. 
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Solvers are more successful with the language consistent 
problems while they often err when facing the language 
inconsistent versions. Typically, they make reversal errors 
(Cummins et al., 1986; Lewis & Mayer, 1987), caused by 
the use of a deficient strategy to understand the problem. 
For Hegarty et al. (1992, 1995), unsuccessful problem 
solvers, i.e. solvers who make a large number of reversal 
errors, do not build a problem model representing the 
situation described in the text, while successful problem 
solvers do. Using a direct translation strategy, unsuccessful 
solvers try to construct a solution plan by devoting their 
attention only to keywords such as relational terms and 
numbers. In the case of an inconsistent problem, they are 
misled by the relational term that primes the corresponding 
but incorrect operation ("less" primes subtraction and 
"more" addition), leading to a reversal error.  

Analysis of the eye fixations collected during the reading 
of word problems by successful and unsuccessful solvers 
brought empirical data to support this theory. Unsuccessful 
solvers spent more time than successful solvers fixating on 
keywords and numbers, but less time on background 
information useful to construct a situation model of the 
problem. Moreover, Hegarty et al. (1995, see also Cummins 
et al., 1986) observed that successful and unsuccessful 
problem solvers do not remember the relational sentence in 
the same way. Unsuccessful solvers reported more often 
than successful solvers a relational statement that was the 
reverse of the relation really expressed in the problem, but 
preserved the original relational keyword they had seen. 
Such an error is expected if they take a superficial view of 
the problem and use a direct translation strategy based on 
the keywords to construct the solution plan.  

In summary, research on individual differences suggests 
that successful solvers tend to construct a meaningful and 
rich representation of the problem while unsuccessful 
solvers tend to use a "short-coming" strategy. However, it 
remains to be explained why successful solvers do not 
always manage to answer an inconsistent problem correctly 
and why unsuccessful solvers do not always err (Hegarty et 
al., 1995, p. 29). Are there factors that make some 
inconsistent compare problems more prone to reversal 
errors? Discovering such factors would have several 
implications. It would point out in which direction one 
should look to find individual differences that cause the 
frequent use of an inefficient strategy by some solvers. 
Furthermore, the distinction between a deep and powerful 
strategy that leads to the construction of a mental model and 
a deficient strategy based on a superficial representation of 
the problem is pervasive in text comprehension research 
(Graesser, Millis, & Zwaan, 1997; Kintsch, 1998; 
Noordman & Vonk, 1998; Rinck, 2000). Studying factors 
that determine the comprehension strategy used should be 
beneficial for this area too. 

In the present study, I evaluated one factor suspected of 
directing the strategy selection in understanding inconsistent 
problems: the computational requirement of the problem. 
Several studies showed that the comprehension and the 

computational processes necessary to solve a problem are 
not serial, but are at least partially overlapping (Hegarty et 
al., 1992, 1995; Kintsch, 1998). For instance, Hegarty et al. 
(1992) observed that the additional time necessary for 
interpreting the inconsistent information does not occur 
during the first reading of the problem, but later. Solvers 
wait until they have read the entire problem before going 
back to the relational statement and start to determine the 
arithmetical operation requested. It is during this second 
reading that they build the situational model necessary to 
solve the inconsistent problem. Because attention resources 
are limited and simultaneously required for computation and 
comprehension, increasing the complexity of the 
computation should capture resources that otherwise would 
be devoted to the understanding of the relational statement. 
This should direct some solvers to shift from a deep and 
elaborate strategy to a more superficial and short-cut one. 
To test this hypothesis, participants were asked to solve two 
inconsistent problems that were very different in 
computational requirement. Obviously, more arithmetical 
errors for the computationally more difficult problems were 
expected. The most interesting analysis focused on the 
comprehension errors. If computational requirement affects 
comprehension, there should have been more 
comprehension errors for the computationally harder 
problems.  

Experiment 1 

Method 
Participants 
Fifty-three participants, all second year psychology students 
who were native speakers of French, took part in the 
experiment for course credit. 
 
Materials 
The experimental material consisted of two inconsistent 
two-step problems: one was a comparison problem and the 
other was an equalize problem. In both the comparison and 
equalize problems, the first sentence assigned a value to a 
variable. The second sentence was the relational statement 
that expressed the value of a new variable in terms of the 
first variable, and the third sentence asked for some kind of 
computation on the new variable. In both problems, the 
relational term was the marked term «less», which is known 
to produce many more reversal errors that the unmarked 
term « more » (Lewis & Mayer, 1987). The only difference 
between the comparison and equalize problems was in the 
way the relational statement was worded. In the equalize 
problem, the relational statement told how to change one 
variable to make it equal to the other. 

To manipulate the computational requirements, I wrote 
two versions of each experimental problem by altering the 
first two sentences. In both versions, numbers of the same 
magnitude were used, but computation in the low-
requirement version was simplified by using round numbers 
(See Table 1). 
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Table 1: Problems for Experiment 1 (numbers in 

parenthesis refer to the high requirement version). 
 
Comparison Problem 
   Peter is paid EUR 1900 (1930) a month. 
   That’s 300 (355) less than Fabrice. 
   How much does Fabrice earn in 2 months? 
Equalize Problem 
   A Shell stock costs EUR 460 (465) 
   If an Esso stock was EUR 100 (128) less, it would be 

at the same price as a Shell stock. 
   How much do 3 Esso stocks cost? 
 

There were also nine filler problems, mostly of the 
combine and change type requiring three or four steps to be 
solved. None of them were comparison or equalize 
problems, and none included an inconsistent relational term.  

Two counter-balanced sets of problems were constructed. 
Each set contained the two experimental problems and the 
nine filler problems. The comparison problem was 
presented in position 3 and the equalize problem in position 
10. In one set, the first experimental problem was the low 
requirement version and the second experimental problem 
the high requirement version. The reverse was true for the 
second set. Therefore, each participant saw both 
experimental problems, one in its low-requirement version 
and the other in the high-requirement version. Twenty-seven 
participants answered the first set and twenty-six the second. 
 
Procedure 
The arithmetical problem task was interleaved with a text 
comprehension task in which participants had to read 250 
word texts and answer four comprehension questions. The 
arithmetic problems were to be solved between the reading 
and question answering tasks. To maximize the cognitive 
resource required by the task, participants were instructed to 
solve each arithmetical problem mentally without writing 
any intermediate computations and to do so in 30 seconds. 
Texts and problems were assembled in booklets. Texts, 
problems and comprehension questions were printed on 
separate pages. 

Participants were tested in groups of ten to fifteen in a 
classroom. To keep subjects synchronized over the different 
tasks, the time to process each task was fixed according to a 
pilot study. At each transition point, the experimenter gave 
the signal to start.  

Results 
First, an analysis was conducted to determine whether the 
high requirement problems were, as expected, more difficult 
than the low requirement problems. Results were clear-cut. 
None of the 53 participants provided the exact numerical 
answer for the high requirement problems, while 29 did for 
the low-requirement problems. High requirement problems 
were clearly harder.  

However, this observation is not sufficient to demonstrate 
that participants made more comprehension errors in the 
high-requirement condition, because not all of the erroneous 
answers were the result of an error in the reversal of the 
relational term. There were a large number of numerical 
errors, due to the requirement of computing the solution 
mentally. The scoring was thus focused on the way 
participants understood the inconsistent relational term. An 
answer was scored as correct when it was close or equal to 
the answer the participants should have produced if they 
correctly reversed the relational term. An answer was scored 
as a comprehension error when it was close or equal to the 
answer participants would have produced if they did not 
reverse the relational term. Undetermined answers 
corresponded mainly to cases where participants provided 
no answer, but also when they did not take into account the 
relational term, producing their answer by using the first and 
the third statements only. Table 2 shows that 62% of the 
comprehension errors were observed in the high 
requirement condition (see Table 2).  

 
Table 2: Number of Correct Answers, Comprehension 

Errors and Undetermined Answers for the Low and High 
Requirement Conditions in Experiment 1 

 
 Low High 
Correct answer 34 10 
Comprehension error 13 21 
Undetermined answer 6 22 

 
Since each participant answered a low and a high 

requirement problem, it was possible to apply a 
nonparametric sign test to the participants who produced no 
undetermined answers. Twenty-eight participants were in 
this category. Nine of them produced two correct answers, 
five produced two comprehension errors, and the remaining 
14 produced only one comprehension error. Thirteen of 
these 14 made their comprehension errors in the high 
requirement problem while they solved the low requirement 
problem correctly. Only one participant had the reverse 
profile, making an error only in the low requirement 
problem. The sign test on these values confirmed that the 
high requirement condition led to significantly more 
comprehension errors than the low requirement condition 
(Sign-test1 (N = 14; X = 1), p = .0018). In summary, 
increasing the computational requirement of an inconsistent 
problem interfered with the comprehension of the problem 
and led to more reversal errors. 

Experiment 2 
The second experiment tests another manipulation of the 
computational component of a problem: the number of steps 
required to solve a problem. One-step problems require only 

                                                             
1 Based on the classical sign test, called nonrandomized 

conditional sign test in Coakley and Heise (1996), which is 
recommended by many textbooks even if it is quite conservative. 
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one arithmetic operation to be solved, the operation stated in 
the relational sentence. The last sentence does not require 
any supplementary operation. Two-step problems resemble 
the one used in our first experiment. They end with a 
question that requires a computational operation on a 
variable. The more steps a problem requires, the more the 
demand on the solver’s attention resources.  

In this second experiment, I contrasted very easy one step 
problems with far more difficult several step problems. The 
most important difference between this "number of step 
factor" and the "magnitude factor" already studied is the 
position where the manipulation occurs in the problem. The 
magnitude manipulation affects the relational statement 
while the number of steps manipulation affects the last 
sentence of the problem, the sentence that follows the 
relational statement. If the computational complexity of this 
last sentence affects the number of errors in understanding 
the previous sentence, it would increase confidence that 
comprehension and computational processes interact during 
the solving of an arithmetical problem. 

Method 
Participants 
One hundred and one participants, all second year 
psychology students who were native speakers of French, 
took part in the experiment for course credit. 
 
Materials 
The experimental material consisted of two inconsistent 
comparison problems. To manipulate the computational 
requirements of the third sentence, I wrote two versions of 
each problem (see Table 3). In the 0SP version, the last 
sentence included no supplementary operation, while in the 
3SP version, it included three supplementary operations: 
two multiplications and one addition. 

 
Table 3: Comparison Problem for Experiment 2. 

 
 
 
0SP 

The chemical formulary is 32 pages long. 
It's 9 pages less than the mathematical one. 
How many pages are in a mathematical formulary? 

 
 
3SP 

The chemical formulary is 32 pages long. 
It's 9 pages less than the mathematical one. 
How many pages are in 3 chemical and 2  
   mathematical formularies? 

 
Two counter-balanced sets of materials were constructed. 

Each set contained the two experimental problems. In one 
set, the first experimental problem appeared in the 0SP 
condition and the second in the 3SP condition. The reverse 
was true for the second set. Fifty-one participants answered 
the first set and fifty answered the second set. 

There were also two filler problems that participants 
answered between the two experimental problems. These 
were very difficult logical problems adapted from Casey 
(1993) that were expected to prevent participants from 

perceiving the structural similarity between the two 
experimental problems. 
 
Procedure 
Problems were presented in booklets. The first and last were 
always the arithmetical word problems and the two 
intermediates were the filler problems. Participants were 
tested in groups of five to ten in a classroom. They were 
instructed to solve the problems mentally without writing 
any intermediate computations. The time allowed to solve 
each problem was not limited because, as observed in the 
first experiment, this restriction prevented some participants 
from producing an interpretable answer in the available 
time. Participants typically took between five and twelve 
minutes to solve the four problems. 

Results 
As expected, the 0SP problems were far easier to solve than 
the 3SP problems. Ninety-six percent of the participants 
provided the exact numerical answer for the 0SP, while only 
66% did for the 3SP problems. 

To test our prediction that participants made more 
comprehension errors in the 3SP condition than in the 0SP 
condition, I scored participants’ answers based on how they 
understood the inconsistent relational term. The scoring 
procedure was identical to the procedure used in Experiment 
1, except that it was not necessary to use an undetermined 
category as all the participants produced interpretable 
numerical answers. 

 
Table 4: Number of Correct Answers and Comprehension 
Errors for the 0SP and 3SP Conditions in Experiment 2 

 
 0SP 3SP 
Correct answer 97 84 
Comprehension error 4 17 

 
As summarized in Table 4, 80% of the comprehension 

errors were observed in the 3SP condition. Overall, 81 
participants made no comprehension errors and one made an 
error both in the 0SP and in the 3SP problem. The 
remaining 19 participants made only one comprehension 
error. Sixteen of them made their comprehension error in 
the 3SP problem while they solved the 0SP problem 
correctly. Only three participants had the reverse profile, 
making an error in the 0SP problem only. The sign test on 
these values confirmed that the 3SP condition led to 
significantly more comprehension errors than the 0SP 
condition (Sign-test (N = 19, X = 3), p = .0044). 

Conclusion 
Language inconsistent arithmetical problems have been 

the subject of a large amount of research over the last 
twenty-five years. It has shown that difficulties occur during 
the comprehension of the problem. It has also pointed out 
important individual differences in the ability to solve these 
kinds of problems due to the strategy used to understand the 
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problem. Successful solvers construct a meaningful and rich 
representation of the problem while unsuccessful solvers use 
a short-cut strategy that leads to reversal errors. The present 
paper addresses a related question: why are some language 
inconsistent problems more difficult than others or, 
alternatively stated, why do solvers sometimes use an 
inefficient strategy and sometimes an efficient one? More 
specifically, I focused on one factor suspected of directing 
the strategy selection: the computational requirement of the 
problem. In two experiments I manipulated the size of the 
operand involved in the computation and the number of 
mathematical operations required to solve the problem. Both 
factors affected the number of reversal errors produced by 
the solvers. The harder the problem was at the 
computational level, the larger the number of 
comprehension errors. These results can be interpreted in 
the framework of Hegarty et al.'s (1992, 1995) explanations 
of individual differences in solving inconsistent problems. 
Increasing the computational requirements of a problem 
directs some solvers to shift from a deep and elaborate 
strategy to a more superficial and short-cut one.  

The limited scope of this paper must be stressed. This 
study specifically addresses the difficulties met by 
undergraduates who are able to correctly answer 
inconsistent problem, but who sometimes make 
comprehension errors. Explaining the difficulties children 
have to master inconsistent problems is another question 
studied, for instance, by Stern (1993). She observed that 
first graders did not seem to understand that statements like 
"Jane has 2 marbles more than Peter " and "Peter has two 
marbles fewer than Jane" express the same situation (Stern, 
1993). They were consequently unable to reverse the 
relational term. This was not the case for the undergraduates 
who participated to our experiments because almost all of 
them solved correctly at least one of the two inconsistent 
problems. 

However, by focusing on a factor that directs the 
comprehension strategy used by the readers, this study has 
implications that go further than the processing of 
arithmetical problems to reach text comprehension in 
general. The strategy selected to understand a text and the 
nature of the representation build by the reader is central to 
current models of text comprehension (Graesser, Millis, & 
Zwaan, 1997; Kintsch, 1998; Rinck, 2000; Tzeng, van den 
Broek, Kendeou, & Lee, 2005; van den Broek, Rapp, & 
Kendeou, 2005). A text can be understood at a superficial 
level leaving readers with a propositional representation of 
its content or at a deeper level if readers build a mental 
model of what the text is about. Only the latter allows the 
reader to fully understand the text (Kintsch, 1994). Research 
on text comprehension showed that several factors 
determine the depth of processing. Readers who have 
relevant prior knowledge about a text tend to build a mental 
model while low-knowledge readers build a representation 
closer to the surface of the text (McNamara & Kintsch, 
1996; Noordman & Vonk, 1992). Characteristics of the text 
are also important. Rewriting a poor text to make it more 

coherent favours the building of a mental model (Britton & 
Gülgöz, 1991Roebben & Bestgen, 2006)). McNamara et al. 
(1996) and  O'Reilly and McNamara (2007) showed 
furthermore that these readers' and textual factors interact in 
determining the comprehension strategy. Even if our study 
is focused on arithmetical word problems, it sheds a 
complementary light on this question by identifying another 
factor that directs the selection of the comprehension 
strategy. Increasing the computational requirement of a 
problem was enough to conduct some of the solvers to use a 
superficial mode of understanding the text. This was 
observed even if solvers had the prior knowledge necessary 
to understand the problem, that is knowing that if gas at 
Shell is five cents less than at Texaco, gas at Texaco is five 
cents more than at Shell. They just skipped to use it. 
Moreover, the use of a deficient comprehension strategy 
was forced by manipulating not the comprehension 
difficulty of the text, but its computational difficulties. 
Further research is now needed to determine if such effects 
can be observed with other genre of texts like expository 
texts and to test other manipulations that could direct the 
selection of a superficial strategy. 
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