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Abstract

When a cause interacts with unobserved factors to produce an
effect, the contingency between the observed cause and effect
cannot be taken at face value to infer causality. Yet, it would
be computationally intractable to consider all possible
unobserved, interacting factors. Nonetheless, two experiments
found that when an unobserved cause is assumed to be fairly
stable over time, people can learn about such interactions and
adjust their inferences about the causal efficacy of the
observed cause. When they observed a period in which a
cause and effect were associated followed by a period of the
opposite association, rather than concluding a complete lack
of causality, subjects inferred an unobserved, interacting
cause. The interaction explains why the overall contingency
between the cause and effect is low and allows people to still
conclude that the cause is efficacious.
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Introduction

People often use co-variation between two observed events
to infer causal relationships. However, when inferring the
causal efficacy of an observed cause, assumptions and
beliefs about unobserved causes are critical. For example, if
an observed cause is confounded with an unobserved cause,
normative theories (e.g., Cheng, 1997; Pearl, 2000) demand
withholding inferences about the observed cause.
Furthermore, if an unobserved cause produces an effect such
that it is difficult for an observed cause to further increase
the probability of the effect (a ceiling effect), a learner
should adjust his/her calculation of the efficacy of the cause
to account for the unobserved cause (Cheng, 1997).

Do people actually use beliefs about unobserved causes
when making inferences about observed causes? Buehner
and Cheng (1997; Buehner, Cheng & Clifford, 2003) found
that people do adjust their causal efficacy estimates when
unobserved causes produce floor or ceiling effects (but see
Lober & Shanks, 2000; Vallee-Touragneau, et al., 1998, for
alternative interpretations). Furthermore, recent studies have
shown that people posit unobserved factors when an effect
occurs in the absence of the observed cause (i.e., an
unexplained effect; Luhmann & Ahn, 2007; Hagmayer &
Waldmann, 2007). In summary, previous studies have
shown that for floor/ceiling effects and unexplained events,
peoples’ inferences about unobserved causes influence
learning about observed causes (but see Luhmann, 2005, for
alternative possibilities).

The current study explores a third way that knowledge
about unobserved causes can influence judgments of
observed causes; observed and unobserved causes can
interact to produce an effect. If a learner is unaware of such
an interaction, he/she may incorrectly conclude that an
observed variable has no causal relation with an effect. For
example, consider a researcher studying if a new medicine
reduces heart disease. Suppose that the medicine
successfully reduced heart disease for half of the population,
but the other half of the population had an undiscovered
gene such that the medicine actually increased heart disease.
In this scenario, even though the medicine is involved in a
causal relationship with heart disease, there would be zero
contingency between the two. This scenario poses a
considerable challenge for causal learners; people cannot
always look for interactions because there are simply too
many possible interacting variables and there are always
unobserved variables. When are people able to avoid
overlooking real causal relationships that involve
interactions with unobserved variables?

We propose that people may overcome this challenge if
an unobserved variable is fairly stable over time and people
assume it to be fairly stable. Consider an interaction
scenario when there are two light switches connected to one
light; the light is on if both switches are up or down, but the
light is off if one switch is up and the other is down (the
biconditional logical function). For this scenario, even if a
person only knows about one of the switches, one may be
able to infer that the switch influences the light. For
example, suppose you enter a room for the first time and
discover that when you flip a switch up, a light goes on, and
when you flip it down, the light goes off (gray cells, Steps
1-4 in Figure la). If you assume that other potential causes
of the light are fairly stable (and did not happen to change
every time you flipped your switch), you would infer that
the switch influences the light. Later (Steps 4-5), the light
turns off without anyone touching the switch (perhaps your
daughter flipped the other switch unknown to you; U in
Figure la). Afterwards, when the switch is down, the light
is on, and off when up (Steps 5-8). From this scenario, you
might be very confident that your switch influences the
light; there were two long periods when the status of the
switch correlated with the status of the light. Additionally,
because the light mysteriously turned off, you might infer an
unobserved factor (I in Figure la) that interacts with your
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switch, explaining the overall zero contingency between the
switch and light.

However, inferring the observed switch to be efficacious
may depend upon the order of the observations. For
example, consider the same data from Figure 1a, rearranged
as in Figure 1b, which could result if an unobserved factor
changed frequently. Initially, the switch is down and the
light is off (Step 1). In Step 2 the switch is flipped up, but
the light still stays off. In order to believe that the switch is
causally efficacious, one must infer that at the moment the
switch was flipped, an unobserved factor coincidentally
changed and counteracted the effect of the observed switch,
as specified under column “U” (unobserved interacting
factor). Then, in Step 3, the light turns on without flipping
the switch, and so on. Thus, for the situation shown in
Figure 2, it would be extremely difficult to infer the switch
to be causally efficacious; the switch cannot be the sole
cause of the light because there is zero contingency with the
light. Furthermore, it would be difficult to infer it as part of
an interaction because doing so would require inferring an
unobserved factor operating as specified under row “U,”
which is counterintuitive; the unobserved interacting factor
is highly unstable and (intuitively) exceedingly complicated
to track. Instead, it seems likely that people would infer an
unobserved factor that is entirely responsible for the light.
Such a factor would be perfectly correlated with the light, as
specified under column “I” (inferred factor).

a. Grouped Scenario

Steps| 1 | 2| 3|45 6| 7] 8

Switchf Dn | Up [ Dn|{ Up | Up | Dn| Up | Dn

Light] Off | On | Off | On | Off | On | Off | On
UlUp|Up|Up|Up|[Dn|Dn|Dn|Dn
IlUp|Up|Up|Up|[Dn|Dnj|Dn|Dn

Steps| 1 2 3| 4 5 6| 7 8
Switchf Dn | Up | Up [ Dn|Dn|Up| Up| Dn
Light] Off | Off | On | On | Off | Off | On | On

UlUp|Dn|Up|[Dn|iUp|Dn|Up| Dn
I| Off | Off | On | On | Off | Off| On | On

Figure 1: Double Light Switch
Note: “U” is an unobserved, interacting switch and “I” is a
factor learners are likely to infer. Gray is when U is “Up,”
highlighting the (in)stability of U. “Dn” means “down.”

These two examples were meant to demonstrate that if
observations are grouped (reflecting stable background
causes, e.g., Figure l1a), rather than inter-mixed (reflecting
unstable background causes, e.g., Figure 1b), people may be
more likely to infer that an interaction is taking place and
that the observed cause is efficacious rather than that an
unobserved factor is entirely responsible for the effect. Such
findings would suggest not only that people make
sophisticated inferences about interactions, but also that
people tend to assume that unobserved causes are stable.

In two experiments, we manipulated the grouping of
observations. In the grouped condition, the trials supporting
an association between one state of the cause and effect
(gray cells in Figures 1 and 2) are grouped together, and
those supporting the opposite association (white cells in
Figures 1 and 2) are grouped together. In the ungrouped
condition, these two types of observations are inter-mixed.
Although overall contingency is identical between the two
conditions, participants may be more likely to infer an
interacting unobserved factor and an efficacious observed
cause in the grouped rather than ungrouped condition. We
examined whether grouping of observations would result in
higher causal efficacy ratings (Experiment 1) and higher
ratings that an observed cause interacts with an unobserved
factor (Experiment 2).

Experiment 1

Experiment 1 compares the grouped and ungrouped
conditions across three levels of contingency. We predicted
that people would infer stronger causal efficacy of observed
causes in the grouped than in the ungrouped condition.

Methods

Thirty-six undergraduates from Yale University completed
the study for payment at $10 per hour. Participants first read
the following cover story:

On the following screens you will see machines with a
lever that can be set to two positions and you will see the
toys that the machines produce (e.g. square or triangle
blocks). The position of the lever and the shape of the
blocks change over time. I would like you to determine
whether the position of the lever affects the shape of the
blocks. Though the following scenarios may look similar,
please pay attention because there are differences. Also,
please note that if the lever affects the blocks, it happens
immediately.

Next, participants saw six scenarios created by crossing
Grouping (grouped vs. ungrouped) x Contingency (AP=.25,
.5, or .75).1 The six scenarios were ordered in a Latin square
design (grouped by contingency) such that each of the six
scenarios appeared first for some participants.

During each scenario, participants viewed a video of a
lever changing (between left or right) and blocks changing
between two shapes (e.g., square or triangle). Each of these
binary values will be denoted as 0 and 1 henceforth (e.g., 00
trial means a lever set to the left and the shape being
square). Each scenario had 16 trials, each of which
appeared for 2 seconds followed immediately by the next
for each of the three contingencies. C and E represent the
cause (lever) and effect (shape of block), respectively.

! AP is the probability of an effect when a cause is present minus
the probability of the effect when the cause is absent (Jenkins &
Ward, 1965). For these stimuli, since the lever and shape of blocks
do not have presence/absence states, AP was defined as
p(e=1|c=1)-p(e=1|c=0). For the data summarized in Figure 2, the
absolute value of this definition is unchanged if 0/1 are swapped.
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Experiment 1

1 ——Trial Number ———» 16
AP=.25: Grouped
Cclij0f1jo0j1fojof1foj1{0f1]|0f1]0O]1
EJ0[(1]0j1f/0J1]0f1]0]1[0]1]0f1]O0f1
ujojojojofojoj1f1j1j1f1j1j1f1f1j1
AP=.25: Ungrouped
clojif1joj1f{oj1fof1j0f1foj1fo]jO]1
EJ0/0]1f{1]1/0]|0J0J1f{1]1{0]0OJOf1f1
Uj1{0j1j0f1]1]j0f1)1j0[1]1]0f1]0f1
AP=.50: Grouped
Cl1j{0[1]0]jOf1]0]1[{0O)1]0Of1]0]1[0O]1
EJ0[1]0j1{0J1]0f1]0]|1[0J1]0f1]0Of1
ulojojofoj1f1f1j1j1f1j1f1j1j1f1f1
AP=.50: Ungrouped
Clij{0f0O)1]j0f1]1]0[1]0]jOf[1]0]1[0]|1
E11]1]0{1]0/0f1]0J1f{1]0[1]0]0fO0Of1
Ujifoj1j1f{1j0j1f1)1j0f1]1]j1f{0f1]|1
AP=.75: Grouped
cjlijofoj1jof1jof1foj1fof1j0f1]j0]1
EJ0[1]0j1{0]J1]0f1]0][1[0]J1]0f1]O0f1
ulofoj1j1f1j1j1f1j1j1f1j1j1f1f1j1
AP=.75: Ungrouped
clijof1joj1foji1fof1j0f0of1|0f1]j0]1
E]11/0J1{0]J0J0f1]0J1f{0OJ1f{1]|O]J1f{0Of1
Ujifi1j1j1foj1j1f1j1j1f{oj1j1f1f1j1

Experiment 2
11— Trial Number——— > 20

AP=0: Grouped

Clij{of1)0]j1f1]0]1|{0j0O]1|{0j0O]1]|OJ1]1[0|0O]|1
EJ1{0J1]0f1j0)1]|0J1]0f1{0]1]0Of1]0f1[{0])1]0
Uj1f1|1)1{14(0)0j0J0]1f{1[{1]0j0f0]0Of1[{1]0]0O
AP=0: Ungrouped
Cclojof1)1j0f1]j0]|0f0O]1]0Of1|1]1]|1]0]1|[0f1]0
EJ0(1]0J1f1]1)1{0)1]1{0|/0]0jOf1]1[{1/0])0]O0
U|1(0J0j1f{0]1]0f1]0]|1f{1]/0])0|jO[1]0f1[1]0]1

Figure 2: Summary of Stimuli in Experiments 1 and 2.
Note: “U” represents an unobserved, interacting factor not
shown to participants. Cells are gray when U=0.

In the grouped conditions, 01 and 10 trials (i.e., gray cells
in Figure 2) appeared in one cluster, (e.g., trials 1-6 for
AP=.25)), and 11 and 00 trials (i.e., white cells in Figure 2)
appeared in another cluster. In the ungrouped conditions, the
four types of trials were intermixed. In Figure 2, the “U”
column shows what the value of an unobserved factor
would need to be in order to postulate that the observed
cause and unobserved factor interact to produce the effect.
As illustrated here, in the ungrouped condition, one must
infer a highly unstable unobserved factor to infer an
interaction, which would be very difficult for participants.

Because people often base causal efficacy ratings more on
initial than final trials (e.g., Dennis & Ahn, 2001), the trials
were presented in the reverse order for half the participants.
After each scenario, participants answered one causal
efficacy question, “To what extent does the lever affect the
shape of the blocks?” on a sliding scale from “The lever did
not affect the shape at all” to “The lever strongly affected
the shape of the blocks,” later recoded to 0-100 for analysis.

Results

Participants’ average causal efficacy ratings for the six
scenarios are presented in Figure 3. The pattern of results is
consistent regardless of the order of the six scenarios and
regardless of whether the order of trials within a scenario
was reversed; all analyses collapse across these factors.

As can be seen in Figure 3, the most dramatic finding is
that participants gave higher causal efficacy ratings for the
grouped than ungrouped conditions. This is presumably
because, in the grouped conditions, participants inferred the
lever to influence the shape of the block through an
interaction with an unobserved variable. In a 2 (grouping) x
3 (contingency) repeated-measures ANOVA, the main
effect of grouping was significant, F(1,35)=75.90, p<.01,
np2=.69. Furthermore, the main effect of contingency was
significant, F(2,70)=7.23, p<.01, np2=.17, but there was no
significant interaction, F(2,70)<l1.

100
D Grouped Ungrouped
> 75 T
3 T T T
o T 73.4
= L
U 50 1—64.1 62.9 40.6
5 28.2
20.4
© 254
0
.25 .50 .75

Contingency: AP
Figure 3: Causal Efficacy Ratings and Std. Errors in Exp. 1.

Follow-up tests reveal that for each of the three
contingencies, participants gave higher causal efficacy
ratings for the grouped than ungrouped conditions, all
r’s(35)>5.48, all p’s<.0l. To determine the effect of
contingency, the same ANOVA as above was run testing for
a linear effect of contingency. A significant linear effect was
found, F(1,35)=13.59, p<.01, nP2=.28; participants gave
higher causal efficacy ratings for higher contingency levels.
There was no interaction between the linear effect of
contingency and grouping, F(1,35)=1.33, p=.26, np2:.04. In
summary, these results suggest that if observations are
ordered such that reasoning about an interacting,
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unobserved factor is more feasible, learners judge the causal
efficacy of the observed cause to be greater than if not.

Yet, a possible alternative explanation for the current
findings is that the grouping may have allowed participants
to focus only on one set of data (e.g., 10 and 01 trials) and
ignore the contradicting data (e.g., 11 and 00 trials). If so,
participants would have inferred that the observed cause
influenced the effect alone, rather than in combination with
an unobserved cause. Since we asked questions only about
the observed causes, as in almost all previous causal
learning experiments, we cannot tell whether the current
results were obtained due to the participants’ inferences
about an interaction with unobserved causes. The next
experiment addresses this issue.

Experiment 2

In Experiment 2, we explicitly asked participants about their
belief in an interaction. In this way, Experiment 2 attempts
to demonstrate more explicitly that the stronger causal
efficacy judgments found in Experiment 1 were due to
participants’ inferring an interaction with an unobserved
cause. As explained in the Introduction, when observations
are grouped so as to encourage participants to initially
believe that the observed cause is causally responsible for
the effect, they would likely attribute the subsequent
contrary evidence to an interaction with an unobserved
factor. Even when the overall contingency is zero
(Experiment 2, grouped condition), if participants infer an
interaction between the observed and unobserved causes,
they may still judge the observed cause to influence the
effect; it influences the effect in combination with the
unobserved factor, not alone. However, when participants
cannot easily infer that the observed and unobserved causes
interact (ungrouped conditions), they should judge the
observed cause to be less efficacious; after all, there is no
contingency. Also, importantly, participants in both
conditions should understand that the observed cause does
not influence the effect alone. In the grouped condition, it
influences the effect in combination, and in the ungrouped
condition, it does not influence the effect at all.

Methods

There were twenty-nine participants
population as Experiment 1.

Experiment 2 only had two conditions, grouped and
ungrouped. In the grouped condition, three groups of 00 and
11 trials and three groups of 01 and 10 trials alternated,
while in the ungrouped condition, the four types of trials
were more intermixed, as shown in Figure 3. The amount
of grouping in the grouped condition is much less than in
Experiment 1, offering a more rigorous test of participants’
ability to infer an interaction. The two conditions comprised
identical data with zero contingency, and both were
presented to all participants in a counterbalanced order.

The presentation of the scenarios was the same as in
Experiment 1 except for the following changes. The number
of trials was increased to 20. In order to avoid any potential

from the same

ambiguities about the trial order, each scenario also had a
header present for the entire scenario stating, “Below you
will see one machine tested for twenty consecutive trials.”
A picture of a machine was also present for all 20 trials, and
a different picture was used for the two conditions.

After each scenario, to understand the relationship
between their beliefs about the interaction and the main
effects of the observed cause, we had participants rate their
agreement with three causal efficacy statements from 1
(“Absolutely Disagree”) to 9 (“Absolutely Agree”). The
statements were:

1) “The lever alone influenced the shape of the blocks.”

2) “A combination of the lever and some other factor

influenced the shape of the blocks.”

3) “The lever had no influence on the shape of the

blocks.””

Results

Participants thought that the lever influenced the shape of
the blocks in combination with an unobserved factor more
in the grouped than ungrouped scenario, #28)=4.20, p<.01
(left panel of Figure 5). Restated, grouping increased
participants’ inferences of an interaction.

When participants did not believe in an interaction (i.e.,
ungrouped condition), they seemed to use the zero
contingency as evidence that the lever did not influence the
effect. Thus, participants gave significantly higher ratings
that the cause did not influence the effect in the ungrouped
compared to grouped conditions, #28)=3.65, p<.01 (middle
panel of Figure 4). In fact, in both the grouped, r(29)=-.51,
p<.01, and ungrouped conditions, 7(29)=-.50, p<.01, there
were significant negative correlations between judgments of
an interaction and judgments that the lever had no influence.

Participants also understood that the lever did not
influence shape alone (right panel of Figure 4), and there
was no difference between conditions, #29)=.88, p=.39.
These findings are consistent with our accounts: In the

% These three questions essentially ask participants to choose
between the three causal models (C—E, C—E<-U, and U—E;
C=cause [lever], E=effect [shape], U=unobserved factor). Note
that no two of these questions are exact opposites of one another.
For example, if a person believes that C alone influences E
(agreement with Question 1), he/she should disagree that C and U
combine to produce E (disagreement with Question 2). However, if
a person believes that C does not influence E (agreement with
Question 3), he/she should disagree with both Questions 1 and 2.
These questions are designed to allow participants to show which
of the three options they agree more with, and participants may
potentially be agnostic across the three.

? Afterwards, participants predicted the shape of the block given
that the lever was set to the left/right. These questions tested
hypotheses that are not the main focus of the current report and are
compared with between-subject conditions not reported here. Thus,
they will not be further discussed. We do not think they had any
effect on the current results as the findings are consistent with a
between-subjects analysis of questions answered prior to the
unreported questions. Thus, they will not be further discussed.
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grouped condition, participants understood that the lever
influenced shape in combination with an unobserved factor,
not alone. In the ungrouped condition, participants believed
that the lever had little influence in combination or alone.
Because grouping had no effect on judgments of whether
the lever influenced shape alone, it seems that inferences
about the unobserved factor rather than grouping per se
were responsible for the results in Experiment 1.

To summarize, although participants observed zero
contingency, they could reason that the observed cause was
causally efficacious by way of interacting with another
factor that was not even observed. Such sophisticated
inferences were more common in the grouped than in the
ungrouped condition.

> 9

% 8 D Grouped Ungrouped
22 _

< 7

T
1
1
1
1
1
129
> 2.6
o I
2o 1
o ® X
QD
£8 :
Combination of | Lever  , Lever alone
lever and other 1+ hadno 1 influenced
factor influenced, influence |,  shape.
shape. 1 onshape. 1
1 1

Figure 4: Causal Efficacy Ratings and Std. Errors in Exp. 2.

General Discussion

In two experiments, we demonstrated that when data are
grouped reflecting a stable unobserved cause, people could
infer that an observed cause interacted with an unobserved
factor to produce an effect. They further rated observed
causes that they believed to participate in an interaction as
more efficacious than causes that they did not believe
participate in an interaction but had the same contingency.

How did participants infer an unobserved interacting
cause? In the grouped conditions, there was an initial group
of observations that would allow people to suspect that the
observed cause was causally efficacious (e.g., Steps 1-4 in
Figure la). Then, when the direction of the relationship
changed (e.g., Steps 5-8 in Figure la) participants may
interpret this change as evidence of an interaction with an
unobserved cause.

Is inferring such an interaction rational? On one hand,
inferring an unobserved cause may be an irrational form of
motivated reasoning; that is, in order do perpetuate an initial
hypothesis (e.g., the switch influences the light) in the face
of contrary evidence, the learner concocts an interacting
cause to dismiss that evidence. On the other hand, such an
inference is based on the assumption that unobserved

background causes are stable and do not change erratically
(e.g., the status of an unobserved cause is the same through
Steps 1-4, and Steps 5-8 in Figure la), which may be a
reasonable and rational assumption to make in the real
world. Indeed, when previous researchers have discussed
the value of intervening upon a cause (as opposed to
passively observing the changes of the cause) for causal
learning, their arguments have relied upon a similar
assumption that interventions are not confounded with
changes to other variables (Pearl, 2000; Woodward, 2003).
If this assumption reasonably approximates our
environment, the kind of inferences shown in the current
study may guide learners toward accurate answers.

Why did participants provide such high causal efficacy
ratings for the grouped conditions? For example, in a
grouped condition in Experiment 1, the average causal
efficacy rating was 64 out of 100 even though AP was only
.25. When judging causal efficacy, participants may have
tried to use periods of stability of the unobserved cause to
calculate the causal efficacy of the observed cause holding
the unobserved factor constant. For example, consider the
AP=.5, grouped condition from Experiment 1, summarized
in Figure 2. For the first four trials, the shape of the block
changes when the lever changes. Then, from Trials 5-16,
the shape also changes when the lever changes. Thus, the
conclusion within both of these periods when the
unobserved cause was likely inferred to be constant is that
the lever influences shape. However, in the ungrouped
condition, our participants likely believed that the
unobserved cause was not constant for very long.
Consequently, they might have used the overall contingency
between the cause and effect to estimate causal efficacy.
Previous studies have shown that when learning causal
relations, people can “condition” on an observed, alternative
cause (e.g., Spellman, 1996). In the current study, it appears
as if people are simultaneously conditioning on both states
of the wunobserved cause. Another way to explain this
phenomenon is that participants may have used the
transitions between trials to infer causal efficacy. In the
grouped conditions, there were many transitions during
which the cause and effect both changed state (e.g., 11 to 00
or 10 to 01). However, in the ungrouped conditions, there
were many trials when the effect changed state without the
cause (e.g., 00 to 01), suggesting that an unobserved factor
changed. There are also many transitions when a change in
the cause failed to produce a change in the effect (e.g., 00 to
10), suggesting that the cause does not influence the effect.
We intend to investigate such inferences in future studies.

Implications for Models of Causal Learning

Existing models of causal learning fail to capture our
participants’ inferences for various reasons. First, the
current study shows that people are sensitive to the temporal
order of events, yet previous studies have largely neglected
temporal order. Even in studies that present trials
sequentially, each trial typically presents a separate case
(e.g., a person taking/not taking medicine and
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developing/not developing heart disease). In the current
study, one machine with one lever is repeatedly tested
across a period of time. Consequently, participants can
make rich inferences about transitions between trials
(explained above) unavailable in the previous experiments.

Yet, existing models cannot account for the role of
temporal information in causal learning. Some models (e.g.,
Jenkins & Ward, 1965) fail because they aggregate over all
trials regardless of order. Consequently, they do not
differentiate between the grouped and ungrouped
conditions. Models that continually update their causal
efficacy estimate after each trial (e.g., Luhmann & Ahn,
2007; Rescorla & Wagner, 1972) fail in a different respect.
When the cause produces the effect, these models would
calculate a positive causal efficacy, and when the cause
inhibits the effect, they would calculate a negative causal
efficacy. Consequently, depending on the stability of the
unobserved cause (how frequently it changes between
producing vs. inhibiting the effect), the causal efficacy
judgments would cycle back and forth indefinitely. Future
models may need to focus on how causes change over time.

Second, existing models also fail to capture inferences
about the interaction between the observed and unobserved
causes. For instance, the power PC theory (Cheng, 1997)
requires that unobserved causes do not interact with
observed causes. Previous attempts to handle interactions
between two observed causes and an effect (e.g., Cheng &
Novick, 1992; Novick & Cheng, 2004) also cannot account
for the current findings. Unless a learner has an a priori
reason for believing that an interaction is taking place, he or
she must first infer whether there is an interaction with an
unobserved variable. Yet none of the existing models are
able to detect interactions with unobserved causes.

Third, the methods used to assess causal efficacy in the
current study offer another significant implication for
models of causal learning. Traditionally, causal efficacy has
been assessed and modeled in a directional manner
(generative or inhibitory causal relationship; e.g., “to what
extent does X cause Y” or “to what extent does X inhibit
Y”’). However, the phenomenon demonstrated in the current
study would not have been captured by questions specifying
the direction. For instance, in the double light switch
scenario in Figure la, sometimes the switch causes the
effect and sometimes it inhibits the effect. If assessed in the
traditional way, a learner would likely say that the observed
variable does not cause the effect. Instead, the current study
measured the overall causal influence of X on Y (regardless
of direction), which is more general and potentially more
sensitive to diverse types of causal relationships such as
interactions. Most models, however, compute directional
causal efficacy, and therefore, cannot capture the type of
causal learning demonstrated in the current study.
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