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Abstract the lettuce before it is requested. If one does not in fact sub
sequently order lettuce, this occasionally produces grror
In daily life, people make rapid, goal-directed movements t Taken together, these two observations (that targets can

interact with their environment. Since these movements are moye, and that people’s prior beliefs about targets matter)

oal-directed, the outcome of the movement is important. A :
glan is typically formulated to make the movementpusing Vi- suggest that when people are asked to point to targets that

sual information about target location before the movenent ~ Can move in a potentially predictable manner, people will tr
initiated. However, in dynamic environments people need to to anticipate where the target is likely to appear, and uise th

t,brﬁ?jli(tif)m% Illocﬁtiv(\)/gu(l)g %2 ggjr?gfti(liglt Q‘?Xﬁfoﬁmg?f% rtrngnrgea(tjg' knowledge to improve the accuracy of their pointing. In this
learn the d)ilétribution of target locations over %ultiplacbes. paper, we explore this topic. _We report an experiment a_nd
In this paper we develop a simple model that describes how @ Simple model developed to investigate the extent to which
people might exploit the sequential structure over a sefes  people exploit the statistical background knowledge teralt
trials to improve rapid visuomotor control. We then present movements under time pressure.
Fow peopic's knowledge of the Iogation of objects i updated
o%vr ?r(iez;gto improve p%int_ing_perform_ance. T#\e m(_)delri)eab Influences on Rapid Pointing
St hen pecple il a7 miSs arges W 125 There are Several ke factors that signicantl nfluenpica
people able to use sequential information but also looktfor i~ POINting performance. The quality of visual information
even when it does not exist. about target location available during the planning stage c
limit pointing precision (Ma-Wyatt & McKee, 2006); simi-
Keywords: visuo-motor control; Bayesian models; sequential  larly, the expected error associated with the reach inflegnc
learning the planning, which in turn relies on visual information abo
where the hand landed relative to the target (Trommershtaus
. et al, 2005). Finally, the well known speed-accuracy trafie-
Introduction for controlling movements (Fitts, 1954) means that timespre
People regularly make goal-directed reaches to interabt wi sure can play an importantrole: without time pressure, f[geop
the world, where the goal or target of these movements is usrave ample time to integrate feedback and refine movements,
ally visually defined. During the course of such a reach, vi-and so will need to rely less on their prior beliefs.
sual information about the target location relative to thad More closely related to the current work is the finding
will necessarily change. In part, this is because the hand ithat people make use of information differently depending o
moving, but it can also be because the target itself is movingvhen it becomes available. In particular, the weight given t
In some cases the target is essentially stationary (egsspr Vvisual informationis increased in the final stages of the@aov
ing the car stereo button) and thus easily predictable.Hn ot ment, most likely because it tends to be the most informative
ers, the motor plan must be adapted during the course of thebout the outcome of the movement (e.g. Sober & Sabes,
movement, because the target can move in an unpredictab®905). Moreover, there is some evidence that people can
fashion (e.g., swatting a mosquito). To be able to reach amptimally integrate multiple sources of sensory input dgri
curately and precisely, people must therefore be able te coda reach. For instance, Kording and Wolpert (2004) demon-
not only the location of the goal, but also be able to respondtrated that if there was increased uncertainty assooiétad
to any changes in information about the goal that might affecnew visual feedback during a reach, observers relied more
the outcome of the reach. heavily on prior beliefs about sensory estimates, intéggat
It makes intuitive sense that people develop beliefs abouthese estimates in a manner consistent with Bayesian-statis
the probability of events occurring, and that these beliefgics. In short, it may be that the visuomotor system can adapt
might be updated as the events actually occur. For examplég changing sources of information over short time scales to
rapid motor control in everyday life appears to show a strongichieve and maintain a consistent level of motor performanc
effect of prior expectation. Consider the visuomotor contr ~ An interesting extension to this line of work is to consider
problems facing the “sandwich artists” at a delicatessen du how the information available to the observer changes over
ing the busiest time of day: most people who order sanda time scale of multiple trials. For example, a recent exper-
wiches will ask for lettuce as one of the ingredients. As aiment by Ma-Wyatt & McKee (2007) investigated people’s
consequence, it is not uncommon for the server to reach faability to could correct their reach in an online fashionthié
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target location changed early in the reach, people were abMu & Cohen 2009). Suppose, for instance, that the predic-
to hit the new target accurately; if the target shifted latthe  tive value of a previous observation decays exponentiaky o
reach, they could ndtHowever, when the shift occurred late, time (as is typical of simple “constant rate of change” pro-
people showed a sensitivity to prior probabilities. Whea th cesses). Then the belief updating method described previ-
target was equally likely to appear at the two possible locaously will overweight old data relative to new data. Thissug
tions, observers pointed to a location approximately équid gests that the knowledge available to the learner aBgyt,
tant from each. When the relative probability of the targetthe probability distribution associated with the next alae
landing at one location was altered, then the mean pointingon, might be better modelled by
location was shifted towards the more likely location.

0 | x ~ Dirichlet(a + f(1),...,a+ f(m)) 4)

Prior Beliefs & Rapid Movements

In view of this literature, it seems likely that people’s ol
tions to rapid visuomotor inference problems are strongly i
fluenced by the prior beliefs they hold about the relative-ik n
lihoods of different outcomes. With this in mind, consider f(k) = Zexp(_,\(n —i))0(x; — ). (5)
the problem faced by a learner who — as part of their partici- =1
pation in an experiment — encounters a series of obsenrgation
T, = (21,...,2,). What prior beliefs might he or she bring In this expressior(-) is the Kronecker delta function that is
to the next trial in the experiment,,.;? Should the learner 1 if its argument is zero and O for all other input values. As a
average across all previous trials in the experiment, ogltei result the observer would predict that
some observations more heavily than others? If the latter is
true, it might be expected that more recent past events are a+ f(k)
more predictive of the current experiences. If this ocdunsy ma+ S0 f(i)
far back in time do people integrate past observations iarord h
to make predictions, and does this change as a function of theor the present purposes, we fix= .01.
statistics of the task itself? In the spirit of recent coiyeithe- ) ) )
ories of sequential prediction (e.g., Brown & Steyvers 2009 Movement Error Given Uncertain Beliefs
Yu & Cohen 2009) we describe a simple Bayesian model thaff an observer has expectations described by Equation 6, how
is applicable to rapid pointing tasks. might he or she construct motor plans for the pointing agtion
. . . and what predictions does that imply about the probability
Bayesian Beliefs & Non-Stationary Worlds that the observer will hit the target? To a first approximatio
Suppose that the object to be tracked may occur at one of we may assume that Fitts’ (1954) law holds, and the time
distinctlocationsz; . .. z,. Lettingdy, = Pr(x = z;) denote  that an observer requires to make a reach to a target of width

the observer’s subjective belief that an objestill appearat located a distancé from the current one scales logarith-
the kth location, we might describe the belief state y= mically,

wheref (k) denotes a time-weighted sum of the relevant ob-
servations that fell in théth location

(6)

Pr(xni1 = 2k | T, A) =

(64, Loy 0.,), and specify a symmetric Dirichlet] prior over t = aj + azlogy(2d/w). (7)
possible values fofl. Formally, the observer should assume )
the following generative model for the first observation, If we assume that the learner starts with a plan to reach to
location/, and then partway through the reach discovers that
x1 ~ Multinomial(1,8) the true target location ig;, then Fitts’ law provides a method
0 ~ Dirichlet(a,...,a) (1) to determine the form of the error probability as a function

of distance. Making some simple assumptions about errors,
If the probabilities remain invariant across trials, thémns ~ Equation 7 suggests a simple model in which the implied hit-
dard Bayesian learning implies that, having observed tte dating probability decays exponentially with distance:
x, the posterior distribution ovetr would become
Pr(hit| ¢) = exp(—¢d(¢, zx)) (8)

whered(¢, z;,) denotes the distance between locatiérsd
wheren;, counts the number of previous occasions on whichz;,. The free parametef in this expression is a function of
atarget fell in locatiorz;. After integrating out his or her un- the original parameters of Fitts’ law (the width is treated
certainty about the exact probabiliti@sthe predicted proba- as fixed, while one of the two remaining degrees of freedom

6| x ~ Dirichlet(a +nq, ..., + ny) (2)

bility that the next observation falls in locatiag is simply disappears because we assume that the observer can hit the
target perfectly given an arbitrarily long time to do so).
Pr(#ni1 = 21 | @n) = T a (3) If the observer knew the target location ahead of time, then
n +mao the choice of motor plan is obvious: aim for the target. Given

the uncertainty about potential locations, the story itk i
In non-stationary environments, this updating method jJnore complex. One possibility is to choose a single plan that

not optimal (e.g., Arulampalam, Maskell & Gordon 2002; " SOMe manner averages over this uncertainty; a second is
to prepare multiple plans (one corresponding to each plessib

IConsistent with previous work, participants appeareddoire  location), and to weight them accordingly. This loosely mim
approximately 150ms to update the movement plan online. ics the distinction between prototype models for categorie

(see Gelman, Carlin, Stern & Rubin, 1995).
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Figure 1. Schematic illustration of the display. Possildeakions
for the final target are shown as white dots, and the axis aldrigh
error was measured is shown by the black arrows. The inteéateed
target appeared at a point equidistant from all five locatiGre.,
the centre of the circle), and the initial fixation point wasdw the
intermediate one.

Figure 2: Time course of a single trial. The fixation dot remesi

on screen until a key is pressed, commencing the trial (Offisg
intermediate target appeared immediately, remaining ogescfor
110ms before disappearing. The final location was revedléaea
290ms mark and vanished at 400ms. The observer was reqaired t
hit this target before the 700ms mark.

(e.g., Reed 1972) and exemplar models (e.g., Medin & Schaf-

fer 1981), with the multiple plan model mapping onto exem-General procedure. The observer rested their chin on a
plar models. Using an exemplar-style multiple plan model,chin rest and was seateéicm away from a touchscreen in

the hit probability becomes a darkened room. On each trial, the observer fixated a central
) . point and made a key press on the keyboard in front of them
Pr(hit|¢,A) = 321, exp(—od(zni1, 2r)) (9) o initiate the presentation of test stimulus. The targes wa

X Pr(zn41 = 25 | @n, A) a high contrast white dot that subtended°® of visual angle
(i.e., the dot was 0.7 cm in diameter). A white dot was pre-
The interpretation of the parameters in this model are asented forl 10ms, after which it disappeared. After a delay of
follows: ¢ governs the ability of the observer to compensatel80ms, another dot appeared in one of five possible locations,
for errors during the course of the reach itself, whilgov-  spread out in an arc as illustrated in Figure 1. The probabil-
erns the extent to which the observer generalizes from olity of the target appearing at any one of these locations was
observations to new ones. Note that when- 0, all obser-  manipulated as outlined below. The target remained on the
vations are weighted equally and the belief updating reslucescreen forl10ms (see Figure 2 for a timeline of an example
to a smoothed running average model (Equation 3). On theial). Observers were instructed to point as rapidly tofthe
other hand, aa — oo, all previous observations are assumednal location of the target as they could, and endpoints were
to be of zero predictive value, and so the observer has a uniegistered by the touchscreen. We measured movement time
form belief distribution on every trial. Only at intermetha as the time between the key press to initiate the trial, aad th
values of\ does the observer show interesting sequential eftime at which the finger touched the screen.
fects. Observers received negative feedback if their touch was too
] slow (>700ms), or too far away from the target locationg®
Experiment of visual angle, orz1.5cm). Because we were interested in

We used a two step paradigm to investigate whether peop|r(i‘.etermining if the qbserver would be able to use inf_ormation
could use sequential dependencies to update their position aPout the sequential dependency of a target location across
formation. If it is the case that people are able to track selfials to alter their motor plan, it was important to ensunatt
quential dependencies across trials, then we should abser{€ach times remained fast, and reasonably consistentsacros
an improvement in performance on consecutive trials, and Jials. We therefore used a points system to encourage ob-
significant cost when the run of sequential dependencies endServers to reach quickly. If the movement time was too slow,
Our aim is to test whether people are able to use this informak20 Points were geducted from the observer's score. If the
tion to improve pointing performance and to estimate oveP0intwas withir2® of the target, the observer wafo points.

how many trials this information is retained. Points won were converted to a cash reward at the end of the
experiment - observers were awarde@)1¢ per point won.
Method Each observer completed several blocks of each of the se-

guential and non-sequential conditions. The order of seque

Eqaér:]'gpe};]gfée 5\/%‘#; gg.ﬁ/eer\;grtshgargrc'gggdo;nthtgzxe)g%;ﬂ | or non-sequential conditions was counterbalanceadsscr
: purp P servers. The order of the blocks for each of the sequen-

(MO, BS and MP); the_o_ther was an author (AM). A ﬁﬂh. tial and non-sequential conditions was randomised for each
observer (PH) also participated, but produced data too/nois

to analyze. Additionally, due to time constraints, MP Com_observer.

pleted only half of the trials. All observers had normal or-co Sequential structure. Each observer completed blocks of
rected to normal visual acuity and no known motor deficits.trials in which the position of the target was either sequen-
All observers gave informed consent to participate in the extially dependent on the location of the target on previoiis tr
periments. als (sequential) or randomly drawn (non-sequential). \ige cr
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from Matlab (Mathworks), using the Psychophysics Toolbox
extensions (Brainard, 1997; Pelli, 1997).

o
2

Results

I
IS

Overview. A brief summary of the data is presented in Ta-
ble 1. As one might expect, the probability of successfully
hitting the target tended to be higher when sequential depen
dencies were present in the data, but the effect was signtifica
only for MO (Bayes factor31:1). For AM, MP and BS, the

o
N

agreement probability
o
w

01 Bayes factors all favored a no-difference model (odds satio
o ‘ ‘ ‘ 1:2.5,1:7.7, 1:14 respectively). In the case of MP and BS thi
0 5 10 15 is not surprising, as both showed very high hit rates in both

‘20 conditions, suggesting that they were probably not under a

Figure 3: The sequential dependencies used in the experi@elid ~ great deal of time pressure.

lines depict the average probability that a target locatiortrial ¢ Modelling details. The specific version of the model that

will fall in the same location as the target on triat = for some lag - A
x. For the autocorrelated data (circles), the agreementpitity is we fit to the data assumes that each observer has a single

50% at lag 1 and then decays exponentially to a chance2edte motor-correction param_eteﬁr tha_t is invariant across C(_)nd!-

In the independent data (squares), the agreement rate mate  tions, but may apply different intertemporal generalizati

level (20%) across all lags. Dotted lines plot one standaxiation ~ rates depending on whether the data have sequential struc-

(over blocks) above and below the mean, so as to convey thialbve ture (\s) or are independent\(). We present the results of

variability between blocks. the model fitting exercise in two ways. In order to provide a
concise summary, Table 1 lists the best fitting parameter val

Table 1: Overall performance for each observer, and thefligsy ues for all four observers (Bayesian MAP estimators under

parameter values (with fixed at .01). In this tablep denotes the uniform priors on{0, 10] for all parameters).

motor-control parameter, whiledescribes the degree to which par- ||jystrative data. To provide a more concrete illustration
ticipants mtegrated older tr!als. The parameter refers to the trials  of the raw data and the model predictions, Figure 4 plots the
with sequential dependencies, axdo the independent trials. Note performance of MO during one representative block of trials

that values of 0 or 10 denote the extreme values for the ogsition, . . : .
and both indicate the absence of interesting sequentiahdigmcies. containing sequential structure, and Figure 5 contain ana

(See main text for details). ogous plots for a block without such structure. The upper
_ ’ panels plot the predicted probability with which the observ
| sequential independent A\, )\ ¢ would hit the target on every trial; white markers denotisri
MO 68.7% 60.1% | .286 .333 .878 when MO succeeded in doing so, and black markers denote
AM 64.2% 59.8% .030 .001 .593 the miss trials. Lower panels plot the location of the target
MP 89.9% 86.8% 153 .001 .136 on every trial, again color-coded by the outcome of that.tria
BS 90.3% 91.9% 148 588 .140 As is clear in both cases, the model tends to predict high hit-

probability on the actual hits and low hit-probability oreth
misses, as one would hope if the model was performing well.

. . _ Model fit. Since space does not permit extensive quanti-
ated the sequential dependencies by generating 1000 0bSgtsi e evaluations, we simply examine how effectively the

vations using a simple hidden Markov model that produced @, qe| is able to predict whether people were likely to hit the

slight bias towards more central locations: from left tditig 546t For each participant, we bin the trials accordiritéo

of screen, the marginal distribution over locations wasd  qqe| predictions as to the likelihood of a hit, and then ¢oun

250 .246 .220 .122], which was broken in to 10 blocks of he nroportion of hits on those trials. As is shown in Figure 6

¥lthough the model fails in some respects, when the model
redicted people were more likely to hit the target, theyewer
fact more likely to do so. Overall, the fits were slightijtbe

the circles in Figure 3. A second set of stimuli without any
sequential structure were produced by randomly permutin

the original items, and breaking the permuted set into 10 NeYg i the sequential dependencies condition (white dbts),
blocks. These are illustrated with the squares in Figure 3. j; ;g interesting that the model performs above chance even
Apparatus. Stimuli were presented onlbin touchscreen in the independent condition (black dots). That is, the rhode
(ELO Touch Systems, Elo Entuitive Systems). This is a stanis only able to distinguish between trials on the basis of the
dard CRT monitor overlaid with a touchsensitive layer. Preslocations of preceding trials, but nevertheless is ableige d
sure from the fingertip triggered a program that calculatectriminate between human hits and misses even when no ac-
the (x, y) position of the finger. The sensitivity of this in- tual sequential dependencies exist. This suggests thptepeo
formation was tested by measuring the variability of the re-are, in effect, “looking” for structure even when none exist
sponse to a regular artificial surface (an unused penciégras  In addition to the overall model fits presented in Figure 6,
touched with care to the same position. The error associategis instructive to examine some key qualitative charaster
with this response was less th@r° in the x andy direc-

tion, and well within the error associated with a finger press  2Model comparisons made using standard beta-binomial model
The experiment was conducted using custom written softwargsee Lee & Pope 2006)
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Figure 4: Performance of observer MO for a block containiag s Figure 5: Performance of observer MO for a block without segu

guential dependencies. White dots corresponds to trialbich the  tial dependencies. As before, white dots corresponds ads timn

target was hit, while misses are shown with black dots. Theelo  which the target was hit, while misses are shown with bladis.do

panel shows the true location on each trial, while the uppexep  The lower panel shows the true location on each trial, whigeup-

shows the predicted probability of a hit according to the etod per panel shows the predicted probability of a hit accordnthe
model.

tics of the data. One such effect relates to the length of the

“run” preceding the current trial. By run length, we mean theServer would be under time pressure and would not have suf-
number of trials that have elapsed since the last time the taficient time to update their plan and therefore reveal, thhou
get was in a different location. So if the last five trials weretheir errors, what those priors were. Accordingly, the ever

in locations 2,1,4,4,4 we have a run length of 3. If the currenall performance should have been kept to moderate levels.
trial is also in target location 4, then the run has continuedThis manipulation was successful for two observers (AM and

If it is in any other location, the run breaks. As is shown in MO); however, since it did not succeed for MP and BS, it may
Figure 7, the length of the run has an influence on the probbe necessary to tailor the time of second target presentatio
ability of hitting the target. The model successfully patsi  individually for each observer.

that as the run length increases, the difference in hit proba

bility between “run continuing” trials and “run break” tt&a General Discussion
gets larger. However, it does not always do so in precisely thThough this work is preliminary, the results of our experitne
right fashion (as is most clear for observer MO). indicate that — consistent with what we expected given previ

. . ous research — people do use prior history about target loca-
Discussion

tions to update hand movements. In terms of the modelling
Overall, it appears that observers do use the sequentiat inf exercise, it is encouraging to note that the simple model pre
mation in the experimental trials to assist rapid reachaih: sented here provides a reasonably good account of individua
observers showed nonzekovalues for the sequential condi- participant behavior on a trial-to-trial basis, not meiielyhe
tion, suggesting they weighted recent information morerhea aggregate. Furthermore, it also predicts specific quiakitigt
ily (only two participants did so in the independent condi-important trends, such as the change in change in hit proba-
tion). Additionally, one out of four observers, induces@si bilities that accompany different lengths of trial runs. thvi
nificant improvement in hit rates. this in mind, future work will seek to extend the model to ac-
When model performance was assessed, we found that dommodate response biases (some locations may be easier to
was able to predict performance reasonably well for all fourreach to than others) and to predict specific landing lonatio
observers, though there were some systematic deviatiahs thrather than just hit probabilities. In the meantime, howgeve
suggest that further model developmentis needed. Morgovethis simple model represents a useful first approximation.
when considered in terms of the key trend evident in data (ef- In terms of the broader research questions, one of the main
fect of run length), the model was able to capture the basigoals in this line of work is to consider the extent to which
patterns shown by the human participants, though not pepeople can integrate information from quite different sesr
fectly. This is encouraging because it suggests that @eiépit and times scales. On the one hand, during a rapid movement
simplicity, the model has captured significant aspects of outhe world is constantly changing both in an allocentric sens
data. (the fly moves before you can swat it) and also an egocen-
In terms of the experiment itself, it is important to note is tric sense (eyes and hands move relative to the positioreof th
that it was designed to have the second target presented ldtedy). On the other hand, in between these rapid movements
in the observer’s reach. This was done to ensure that the olpeople acquire rich conceptual representations of theildwo
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Figure 6: Plots illustrating the extent to which the model d&criminate between hits and misses for all four obsererror bars show 95%
confidence intervals, indicating that the model fails totaegpsome aspects to human performance. Neverthelesspriedations between
model predictions and human performance are reasonaliy(hig: .72 for MO, r = .75 for AM, r = .91 for MP andr = .90 for BS; all
p < .01), indicating that the model is able to capture some of thaldity in human responding.
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Figure 7: The effect of “run length” on performance, brokemd by whether the run continues to the current trial (blaekkars) or whether
the current trial appears in a different location to the fes ones (grey markers). Error bars show 95% confidencevaite The model
predictions (solid lines) are able to partially captures ghattern.

and how it is likely to change (e.g., flies move differently to Ma-Wyatt, A. & McKee, S. P. (2006). Visual uncertainty detémes
mosquitos). It makes sense to think that people can integrat endpoint precision for rapid pointing/ision Research 46, 4675-
these sources of knowledge when needed, and somewhat

re- : . . L
assuring to know that we do. laa-\/\/yatt, A. & McKee, S. P. (2007). Visual information is uke

continuously to determine endpoint precision for rapidhiog.

Experimental Brain Research, 179, 55-64.
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