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Abstract

This paper investigates the role of transformations and
similarity in a perceptual task, the same-different paradigm.
Representational Distortion (RD) theory measures similarity
by the complexity required to ‘distort” compared object
representations. In an experiment, participants compared
pairs of geometric shapes that varied across two dimensions
(shape and color). We then modelled data using a variety of
model of similarity. RD yielded accurate fits and compared
favourably with various models of Structural Alignment.
Results highlighted the relationship between transformations
and low-level stimulus properties.
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Introduction

Acting intelligently in our environment will often involve
similarity. This may be in determining whether an object is
a particular sort or not, thus, allowing us to interact
appropriately with it; or inferring that a particular property
of an object will be shared by other objects that are similar
to it. Broadly speaking, similarity between past instances
and novel experiences helps render the mass of information
inherent to the world more coherent and manageable. The
significance of similarity in cognitive psychology and
perceptual theory is reflected in the many phenomena that
assume a central role for similarity: categorization,
induction, linguistic knowledge, memory retrieval and
object recognition, and more.

Traditionally, similarity theory has been dominated by
two opposing accounts: the spatial account and the featural
account. On the spatial account (Shepard, 1957), objects are
represented as points within a multidimensional space. The
distance between objects in this internal, psychological
space reflects their similarity. Alternatively, the contrast
model (or featural account), proposed by Tversky (1977),
conceptualizes objects as mentally represented feature-sets.
Here, similarity is a function of the common and distinctive
features possessed by the comparison objects.

Despite empirical support, particularly in similarity-based
models of categorization (Nosofsky, 1986; Osherson, 1989),

these traditional models have fundamental limitations: the
simple and very specific representations they posit make
them seem incompatible with the inherent structure of real
world objects. Characterizing objects and scenes by feature
sets or dimensions may provide some basic level of
description but will fundamentally underplay the relations
between these attributes, that is, their structural properties
(Biederman, 1985; Gentner, 1983, 1989; Hahn, Chater &
Richardson, 2003; Markman and Gentner, 1993a). This
limitation has given rise to a number of novel similarity
accounts that are able to tolerate a wider range of
representations, including structured representations. In the
current paper we investigate one such account,
Representational Distortion (henceforth RD; or the
Transformational Approach).

RD suggests that similarity between two objects is best
understood in terms of the complexity of ‘transforming’ or
‘distorting” our representation of one into our representation
of the other (Hahn et al. 2003). Objects that are similar will
require simpler transformations, objects that are dissimilar
will require complex ones. In experimental contexts,
transformational ~ complexity = has typically  been
operationalized simply by the number of instructions
required to complete the overall transformation (Hahn et al.
2003; Hodgetts et al. 2009).

In support of the account, Hahn et al. (2003) found that
transformation distance predicted similarity ratings across a
range of materials (dot patterns, simple geometric shapes
and Lego bricks). Hodgetts et al. (2009) presented
participants with objects that consisted of a pair of shapes
that varied on one dimension or two dimensions (color
and/or shape; see Figure 1).

Object 1 Object 2

A A

Figure 1: An example of thle stimuli used by Hodgetts et
al. (2009).

The set of transformations governing these materials,
posited by Hodgetts et al., accurately predicted similarity
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ratings (r = -0.86) and forced choice responding (r = -0.95).
Furthermore, these fits compared favorably to competitor
models:  Goldstone’s  (1994)  Similarity Interactive
Activation and Mapping model (SIAM) and Gentner’s
(1989) Structure Mapping Engine (SME). Finally, Hahn,
Close and Graf (2009) manipulated transformation direction
and found attendant effects on ratings of similarity. They
presented participants with short animations of one object
morphing into another. Subsequently, similarity ratings for
identical comparisons of objects drawn from this morph
continuum were higher when the direction of the
comparison (i.e., “how similar is A to B?” vs. “how similar
is B to A?”) was congruent with the direction of the
preceding animation than when it was in opposition to it.

This evidence for RD has been based wholly on explicit
similarity judgments (direct ratings or forced choice). Here,
we provide the first test of RD on an implicit similarity task.
Both explicit measures such as ratings, and implicit
measures, such as confusability, reaction times, or matching
errors have their benefits. While ratings offer, in quite
unambiguous terms, an individual’s subjective assessment
of similarity, they less readily tap into similarity assessment
as a process, and it is unclear how results obtained with
ratings extend to similarity as it functions in a wide range of
cognitive tasks such as categorization, inductive reasoning
and so on. Consequently, it is important to determine
whether there is a place for structure and transformations
above and beyond direct measures of similarity.

Parallels between similarity research and perceptual
theory provide some grounds for believing that there is. For
example, the speed and ease of object recognition has been
commonly  associated  with  the transformational
relationships between objects (Bundesen & Larsen, 1975;
Graf, 2007; Tarr & Pinker, 1989). As we navigate our
environment, the pattern of retinal stimulation undergoes
constant transformation. Under these circumstances we
manage to maintain object constancy regardless of such
changes, suggesting that our visual system has mechanisms
and representations attuned to visual transformations (e.g.,
rotation, dilation). As similarity in RD also refers to a
distance from an original object’s identity (particularly in a
directional similarity comparison), this parallel seems both
relevant and justified. Studies into apparent motion have
also provided evidence that, along with spatio-temporal
proximity parameters, similarity and transformation distance
are key factors in facilitating motion correspondence
(Bundesen, Larsen & Farrell, 1983; Farrell, 1983; Shepard
& Judd, 1976).

However, it would be desirable to manipulate structure-
based transformations more directly. To this end, we used a
speeded same-different (or ‘perceptual matching’) task for
assessing similarity implicitly. Previous studies that used the
same-different task have observed response patterns that
correspond to underlying object similarities. For example,
the speed of a different judgment is considered to
correspond to the underlying similarity between compared

items in the sense that a fast different response indicates low
similarity and vice versa (Cohen & Nosofsky, 2000).

Despite the prominent similarity-element of this
paradigm, the relationship between specific similarity
models and same-different performance has been relatively
under-explored (for exemplar-retrieval see Cohen &
Nosofsky, 2000; for a theoretical contrast see Frost & Gati,
1989; Goldstone & Medin, 1994). The study most relevant
to the present paper was conducted by Goldstone and Medin
(1994) who used a same-different task to test the dynamic,
time-course characteristics of the similarity model SIAM.
SIAM belongs to the class of Structural Alignment models
(henceforth SA; Gentner, 1983; Markman & Gentner,
1993a, 1993b). The SA framework assumes that similarity
is determined in a manner akin to analogical mapping where
features and relations are placed into correspondence.
Specifically, SIAM calculates similarity by aligning
features, objects and relations in one scene with those in
another through a process of interactive activation. There
are two kinds of matches in SIAM that dynamically govern
the model’s behavior in this context: 1) matches in place
(MIPs) and 2) matches out of place (MOPs). A match in
place is a feature match between objects that correspond,
whereas a MOP is a feature match between objects that do
not correspond. Optimally, and with sufficient time, SIAM
will make correspondences that maximize the number of
MIPs, that is, make correspondences that are globally
consistent with other correspondences. Initially, however,
MIPs and MOPs are equally salient meaning that locally
consistent matches will strongly influence similarity at short
deadlines; over time MIPs will grow in salience and
principally determine similarity.

Goldstone and Medin’s (1994) data supported SIAM’s
predictions for thirteen stimuli that varied along four
dimensions.  Specifically, MIPs had an only marginally
larger influence on similarity than MOPS at shorter
deadlines but a much larger influence at longer deadlines.
This provides the first evidence for a structural model of
similarity using a speeded same-difference task.

In the present study, we used the same basic paradigm to
test RD.

Experiment

For our experiment, we used the stimulus set and coding
scheme of Hodgetts et al. (2009; for example see Figure 1).
These stimuli have a long tradition as a tool for
developmental, and comparative (non-human animal)
research into feature binding and the representation of
structure (Cheries, Newman, Santos & Scholl, 2006; Kaldy
& Leslie, 2003; Larkey & Markman, 2005). Specifically,
comparisons within this domain consist of two pairs of
geometric shapes that can vary on two dimensions (shape
and color).

For each comparison, features can be arranged in 14 ways
on each dimension and combined to create all possible
comparisons (resulting in 196 -14 x 14- possible comparison
pairs).
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Figure 2: An example of transformations being carried out.
This comparison has a transformation distance of 3.

3

As in Hodgetts et al. (2009), we used a random subset of
all possible combinations (78 comparisons). This should
provide a sufficient estimate of the entire population. The
three transformations that govern similarity in this domain
take the base pair and modify it as follows': 1) Create —
taking the base pair we apply this operation to create a new
feature that is unique to the target pair; 2) Apply — this
operation takes an object or entity that is currently available
(by being present in the base or by having been created via
step (1) and applies it to one or both of the objects in the
target pair. 3) Swap — this swaps features between a pair of
objects or swaps the object in its entirety (i.e. on both
dimensions).

Figure 2 provides a schematic demonstration of this
coding scheme. As stated above, these three operations have
provided compelling fits on two explicit measures.
Furthermore, superior fits were found relative to SIAM and
SME, without the need to resort to free parameters (for a
detailed account of this coding language see Hodgetts et al.
2009).

In the experiment, participants took part in a sequential
same-different task whereby the entire random subset of 78
comparisons made up the different trials. Unlike Goldstone
and Medin (1994) we did not impose response deadlines;
instead participants were urged to respond as quickly as
possible. Primarily, this experiment will indicate whether
the coding language, that has performed well with ratings
data, will successfully extend to an implicit measure of
similarity i.e., response-time.

Participants 30 participants took part in the experiment.

Materials Trials were sequentially presented ona 19” LCD
monitor with a refresh rate of 60 Hz. The shapes were
created using the AutoShape function on Microsoft
Publisher. Each shape was 2.5cm wide x 2.5cm tall.
Shapes within a pair were separated by a horizontal distance
of 0.5cm. The screen location of pairs on a given trial was
determined by randomly combining predetermined values
on each screen axis (i.e., 10, 20, 30, 40, 50, 60, 70, 80 and

! In a directional similarity comparison (i.e., ‘how similar is B to
A’ as opposed to ‘A and B are similar’), the term ‘base’ refers to
the referent object or A.

90). The stimulus duration for a given pair was 833ms (50
frames) with an Inter-stimulus Interval (ISI) of 16ms (1
frame). A response could be given at the onset of the second
stimulus pair.
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Figure 3: Graph depicting the relationship between
transformation distance and reaction time (r = -0.55).

All stimuli were presented in both directions (i.e., each
participant saw both object 1 in Figure 1 followed by object
2, and vice versa) resulting in 156 different trials. The ‘same
trials” were generated by pairing each composite pair with
itself resulting in 128 same trials. Trial order was
randomized. Participants could indicate ‘same’ by pressing
Z on the keyboard and ‘different” by pressing M. A
‘different’ response was given if pairs differed on a single
dimension or on both. After a response was given, the
screen was erased and a new pair was randomly selected for
the next trial. No response deadline was imposed but
participants were urged to respond as quickly as possible.

Results

For analysis, we looked at the correct responses for the
different trials, averaged across the two directions. Reaction
times three standard deviations above and below the overall
mean were removed. We then correlated reaction time with
transformation distance. As similarity is a decreasing
function of RT, RTs should decrease with increasing code
length, as longer codes reflect greater dissimilarity.

The graph in Figure 3 depicts the expected negative
relationship between reaction time and transformation
distance. A bivariate correlation between the number of
transformations and reaction time for the different trials was
found to be significant using Pearson’s r (r = - 0.55, p
<0.01). Without free parameters, transformational distance,
as specified by the coding scheme, accounted for 31% of the
variance in reaction time for different responses (R*= 0.31).

Comparing models of structural alignment

To correspond with Hodgetts et al. (2009), we also modeled
this data using two models of SA: SIAM (Goldstone,
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1994b) and SME (Gentner, 1983). Previous tests of SIAM
and SME indicate moderate to good fits for similar stimuli
in ratings tasks (Larkey & Markman, 2005).
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Figure 4: a) The relationship between the number of MIPs
and reaction time and b) reaction time and SIAM.

For SME we correlated the number of matches in place
(MIPs) with the similarity data®. The graph in Figure 4
shows the relationship between RT and the number of MIPs.
A positive relationship is clearly evident and this
relationship is born out statistically (r = 0.55, p <0.05;
Pearson’s r). The variance accounted for by MIPs alone is
31% (R?=0.305). The r value and the accounted variance
are identical to RD for a basic MIP counting approximation
of SME.

As in previous experiments, SIAM was modeled using its
default parameters. Contrary to Hodgetts et al. (2009) and
Larkey and Markman (2005), SIAM provides a poorer
account of the data than SME (a more constrained SA
model). The graph in Figure 4 illustrates the significant
positive relationship between SIAM’s predictions and RT
for correct different trials (r = 0.49, p <0.01; Pearson’s r).

2 The number of MIPs is an approximation of SME performance
(as used by Larkey & Markman, 2005). This method is
understandable given the model’s strict adherence to the one-to-
one constraint.  This, however, will slightly underestimate the
influence of MOPs in the similarity computation.

With an R? value of 0.24, it also fails to fit the data as well
as RD. It is possible that SIAM could achieve comparable
fits with different parameter settings but such a gain would
likely be offset when the number of free parameters is taken
into account.
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Figure 5: Variance accounted for by MIPs/MOPs when they
are weighted differentially. Increments on x-axis correspond
to percentage weight increases in steps of 10, i.e., tick mark
‘3’ corresponds to a weighted average that is 30%
MOP/70% MIP. The dotted line represents the variance
accounted for by RD.

MIP/MOP weighting

SIAM’s model outputs are optimal alignments that reflect
behavior in the absence of time pressure and therefore may
underestimate the relative effects of MIPs and MOPs (these
are outputs after 100 cycles, once the model has settled).
SIAM, when response deadlines are considered,
differentially weights MIPs and MOPs over the time course,
with MOPs having a comparable influence at shorter
deadlines when compared with MIPs (Goldstone & Medin,
1994). In essence, this is achieved by running fewer cycles
and stopping the model earlier in the computation when
MOPs have a greater influence on similarity. Even though
time course is not manipulated here, it seemed valuable in
this comparison to see how, in general, any MIP/MOP
model would fare against these data. Figure 6 demonstrates
the variance accounted for by a model that counts
differentially weighted MIP and MOPs, considered over the
entire range of possible weightings between the two. The
marker on the y-axis signifies the variance accounted for by
transformation distance alone. Based on our -earlier
approximation, SME corresponds to the far right of Figure
5, that is, the region where MIPs alone influence the
comparison.

As seen in the graph, differentially weighting MIPs and
MOPs has a profound effect on overall fit. For this task, the
optimal fit is where MIPs are weighted at 80% and MOPs
are weighted at 20%. At this point, the weighted MIP/MOP
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model exhibits a slightly better fit than that provided by RD.
Again, however, model complexity needs to be factored into
the comparative evaluation, given that the weighted
MIP/MOP model has one free parameter.

Discussion

The results of the current experiment provide moderate
support for the notion that similarity is determined by the
complexity to transform object representations. The RD
model, based on three simple operations, achieved
significant data fits when correlated with reaction time.
Furthermore RD managed to account for 31% of the
variance. When compared with models of SA, RD
compares favorably but not superiorly; RD and SME fitted
the data equally well. This contrasts with the findings of
Hodgetts et al. (2009) who observed vastly superior data fits
for RD compared to SME for both similarity ratings and
forced choice tasks.

To date, evidence for RD has solely been based on direct
similarity measures; whilst these provide important insight
into transformations, it is crucial that these effects extend
beyond direct measures, particularly given the prominence
of transformations in the perception literature (though we do
not assume that subjective assessments are poor reflections
of perceived similarity; they merely represent one out of a
number of possible similarity measures - for comparisons of
both implicit and explicit measures, see Desmarais &
Dixon, 2005). As implied above, the significant fits for RD
are consistent with vision research that has long assumed a
central role to transformations in the speed and ease of
object recognition (see Graf, 2007). Given the evidence that
the visual system is sensitive to transformational
relationships, it seems plausible that the cognitive system
may share this sensitivity when dealing with object
identities via similarity comparisons. The conclusions are,
however, necessarily tentative until the matching fits of
SME and RD are disentangled.

The fact that SME performs comparably is an issue that
must be addressed.  Even though MIP counting is
commonly used a measure of SME (largely because of its
simplicity), it underestimates the influence of MOPs.
Therefore, a more complex version of SME could yield
different fits, for better or for worse. The graph in Figure 5
emphasizes the complexity of this issue; differential
weightings of MIPs and MOPs profoundly affect model
performance. In one area of the parameter space,
MIP/MOPs do better than RD, indicating that a weighted
instantiation of SA could yield superior fits; although none
of the formal models do so. However, it does go in RD’s
favor that it provides accurate fits without free parameters.
Although no response deadlines are imposed, there is still
pressure to respond quickly. For SA, certain weightings
may well simulate responding under certain time course
conditions. For example, the 0.2 weighting of MOPs may
suit the time conditions of this task specifically, i.e., non-
optimal but without time pressure. RD, in this context, has
no time course prediction in that the coding language only

provides a static, endstate prediction, albeit a fairly accurate
one. However, identifying transformations clearly has a
time course associated with it.

Base Target

Figure 6: Identical vs. swapped case.

Crucially, for a given transformation, all the features to-
be-transformed must be initially identified. If task
parameters, or participant factors, do not allow for the
sufficient processing of ‘what’ and ‘where’ information of
both objects, then certain transformational relationships
may not be recognized at all. MOPs, being non-optimal
alignments, will be equally salient to MIPs when time
pressure is high. Participants are also likely to quicken
responding given the fast rate of stimulus presentation.
Development of a fully specified process model to
supplement RD as a similarity metric consequently seems
an interesting question for future research.

Considered purely at the level of similarity metric,
counting MIPS, however, also has some fundamental
shortcomings. MIPs, in this domain, are not assessed with
reference to location, just shape and color®. This gives rise
to a number of counter-intuitive predictions where the
relational attributes are manipulated but the similarity,
according to MIPs, is preserved. This is epitomized by the
two comparisons in Figure 6. According to SME, these two
comparisons share an equal number of MIPs (2), as the
matching squares and triangles align in each case. For RD,
one involves a swap transformation and is therefore less
similar.  Therefore, these swapped cases should be
associated with faster reaction times, as they are less similar
under a transformational model.

In Figure 7 we present a bar graph highlighting these
problematic items for SME. The left hand bar shows the
mean reaction time for an item that RD predicts to be highly
similar (AB/AB, color; AB/BA, shape) as only one
transformation is required to change one into the other (i.e.,
swap (shape)). SME, however, predicts only moderate
similarity. The remaining two bars show reaction times for
items where RD and SME make matching predictions
(middle bar = both predict moderate similarity; right bar =
both predict low similarity). The graph highlights SME’s
problems with these swapped cases. In other words, even
though the performance of SME and RD were quantitatively

® The version of assessing MIPS and MOPS used here follows
Larkey & Markman (2005). We also considered a MIP model that
referred to structure i.e., features were only aligned if they
occupied the same relative position in a pair. This variation fared
worse than the model used here.
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equal overall, there do seem to be systematic mismatches
between SME’s predictions and the data.
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Figure 7: Graph showing RTs for three items when MIPs
and RD make different predictions (left bar) and matched
predictions (middle/right bar).Finally, this particular
evidence for the role of swaps suggests that structural
transformations are being represented, even in this
perceptual-matching task.

Summary

In this paper, we have presented promising evidence for a
transformational account of similarity. Although model
accuracy was equal to SME, significant fits were still found
in an implicit task. This provides an important extension to
prior research that has consistently related transformation
complexity and similarity for direct similarity judgments.
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