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Abstract

A number of studies on analogical transfer to algebra word
problems have demonstrated that adapting a known solution
to nonisomorphic problems of the same type is challenging,
and that most instructional aids do not alleviate this difficulty.
We designed a non-interactive intervention intended to
encourage students to formulate situation models for base and
target, and to ground their equations in these representations.
One of our experimental groups had to simulate the situation
models via manipulating physical objects. The other group
had to perform internal simulations. Both conditions
outperformed a control group not required to run simulations,
yielding comparable advantage. Situation model elaboration
proved more effective when targets posed more difficulty of
equational assimilation. The implications of these findings for
the design of instructional interventions are discussed.
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Introduction

Solving a problem by analogy entails transferring a solution
from a known problem (the base problem: BP) onto a new
problem whose solution is unknown (target problem: TP).
In learning environments, the solution to a BP serves as
scaffolding for the application of a general method until the
student has gained the fluidity required to apply this general
methods directly (Holyoak, 2005; Koedinger & Nathan,
2004). In a series of studies of near transfer in task-
completion problems, Reed, Dempster and Ettinger (1985)
investigated to what extent college students can use a
worked out example—which could be consulted at any
time—to solve TPs that maintain structural differences with
it (i.e., when the base equation needs to be adapted to fit the
TP). Whereas in the absence of structural differences 70%
of the students successfully transferred the base solution, in
their presence the rate of success dropped to 12%. In
subsequent studies, Reed and colleages developed a series
of instructional aids to help students assimilate these
variations into the base equation (e.g., construction of tables
for relating quatities to variables, Reed & Ettinger, 1987;
provision of explicit rules for incorporating the variations,

Reed & Bolstad, 1991; and instruction on unit cancellation,
Reed 2006). In general, the successive instructional aids
aimed at aleviating this difficulty proved unsuccessful (see
Reed, 1999 for a revision).

A possible account of transfer difficulties

According to Nathan, Kintsch and Young (1992) and
Kintsch (1998), solving algebra word problems ideally
implies forming a text base of propositions that capture the
meaning of the problem story. Together with a set of
inferences drawn from general knowledge, this text base
allows for the construction of a situation model that
represents the situation depicted in the problem. In the
situation model, objects and their interactions are
represented qualitatively, without consideration of the exact
magnitudes stated in the text. After a situation model has
been built, students apply several subschemas to construct a
quantitative problem model that captures the algebraic
structure of the problem, and ultimately leads to an equation
that affords calculation of the unknowns. Consider the
following problem:

Problem: Fred can paint a wall in 8 hours, while Bob
can paint it in 5 hours. Fred starts painting the wall one
hour before Bob, and then they keep painting it together.
If painting started at 12, at what time will it be finished?

The situation model should display a painter that starts
painting a wall on his own before a second painter joins.
This situation model should also picture them painting
together, albeit at different rates, until they jointly finish the
task. Construction of the problem model is hypothesized to
unfold in the following manner: Once the pertinence of the
“r x t =w” subschema is aknowledged (r = rate, ¢ = time, w
= work), its variables should be substitued first with the
values for Bob, and next with the values for Fred, the latter
requiring the inference that Freds’ ¢ equals Bobs’ ¢ plus 1 h,
thus inviting the "t2 =tl + 1 h" subschema. Construction of
the problem model will also demand the inference that once
the task gets completed, the sum of the parts advanced by
both painters will equal the whole wall, leading to the
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application of the "T1 + T2 = T" subschema. Nathan et al.
(1992) termed these two key inferences support relations.

Nathan et al. (1992), as well as Greeno (1989), consider
that novices, as opposite to experts, don’t ground equations
in situation models, thus failing to notice, for instance, when
a problem’s solution—albeit mathematically correct—leads
to a semantically absurd situation (Paige & Simon, 1966).
With these ideas in mind, Nathan et al. (1992) developed
ANIMATE, a learning environment that provides a set of
subschemas intended to help students build equations for
encounter problems. Once an equation has been built,
ANIMATE runs a schematic—but quantitatively faithful—
simulation of a situation, as determined by such equation.
This way the students can check the simulations derived
from their problem model against the situation model they
had built on their own, and ultimately modify their problem
models when these representations diverge. Nathan et al.
(1992) compared a training using ANIMATE against two
control conditions: one trained in the construction of
problem models without situational support and the last one
receiving neither kind of support. Students trained with
ANIMATE ouperformed both control conditions in a series
of tasks including formulation of support relations, building
equations for problems, fixing wrong equations, and even
inventing word problems to fit abstract equations.

The main objective of the present study was to investigate
whether a stimulation to ground equations in situational
models—a key feature in the ANIMATE environment, but
absent in most interventions developed by Reed and cols.—
would also aid transfer to TPs with structural variations. In
the present experiment, which followed a traditional near
transfer paradigm, both the learning context and the
superficial content of the problems were kept constant.

The second objective of our experiment was to determine
whether a prompting to construct situation models was more
effective when carried out with physical objects as
compared to an internal simulation. Across domains as
diverse as text comprehension (Glenberg, Gutierrez, Levin,
Japuntich & Kaschak, 2004), memory for instructions
(Engelkamp, 1999) and metaphor comprehension (Wilson &
Gibbs, 2007), psysical and internal simulations yielded
comparable beneficial effects. Following the lack of
difference observed in the above studies, we predicted that
concrete and imagined simulations of situation models
would equally promote transfer to target problems
introducing structural variations.

The third objective in this study was to investigate if the
type of situation model stimulation interacts with the degree
of difficulty posed by a given variation. In the following
section we present the BP and the three TPs used in this
study, and flesh out a theoretical analysis of their relative
difficulty of equational assimilation. We hypothesized that a
stimulation to control the problem model from situation
model would be more beneficial in those cases in which the
structural differences introduced by a TP posed greater
difficulties of equational assimilation.

Interaction between situation model simulation and
the type of variations introduced by the TPs.

Below we present a BP and three TPs, each introducing a
different type of structural variation:

BP: Peter can paint a wall in 10 hours, while John can paint
that same wall in 15 hours. If they start painting the wall
together at 12, at what time will it be finished?

TP with speed variation (TPspeed): Ned can paint a wall
in 8 hours, while Louis takes twice as long to paint the same
wall. If they start painting the wall together at 12, at what
time will it be finished?

TP with work variation (TPwork): Bob can paint a wall in
20 hours, while Mark can paint that same wall in 12 hours.
One third of the wall has been painted by other painters. If
Bob and Mark start painting the remainder at 12, at what
time will it be finished?

TP with time variation (TPtime): Fred can paint a wall in
8 hours, while Bob can paint that same wall in 12 hours.
They mostly paint it together but, overall, Bob paints one
more hour than Fred. If painting started at 12, at what time
will it be finished?

The following model represents the BP, as well as their
structural variations. In the model (see Figure 1) knowledge
is represented as a propositional web of nodes (concepts)
and predicates (attributes and relations). Concepts appear in
rectangles, operations and relations between concepts
appear in circles, while numerical values—or the procedures
needed to obtain them—are represented with ovals. Vertical
lines indicate permitted substitutions. While the highest level
corresponds to the upper principle “w;+w,= wtotal”, the
intermediate level corresponds to the variables » and ¢ which,
when multiplied, conform the left terms of such principle.
The lower level refers to the known and unknown quantities
and to the procedures needed to obtain them.

&) |
work done work done total work
st JF nd
bv 1% pt. \_/ bv 2™ pt. to be done
Work

-, variation

Time

variation

Figure 1. Representation of the equational structure of task-
completion problems, according to the model proposed by
Reed (1987). Note. tt: total time; pt: painter.
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Across levels, dotted lines are used to denote the
variations introduced by TPwork, TPtime and TPspeed,
whose intrinsic difficulties of equational assimilation we
now turn to analyse. In the following analysis, we will
assume that the difficulty posed by a given variation is
determined by the degree of comprehension of the
equational structure that its assimilation demands.

The speed variation. In TPspeed, calculation of the speed of
one of the painters only requires knowing the time it would
take him to finish the task on his own, which comes from
doubling the time taken by the other painter. Given that no
knowledge of the equational structure is involved in this
variation, we predicted that a simulation of situation models
wouldn’t result in an increased transfer performance.

The work variation. In TPwork, there are two different
ways of assimilating this variation: 1) ry xt+rxt =1-1/3
and 2) 1y x t + r, x t + 1/3 = 1. Either alternative only
presupposes comprehension of the upper level of the
equational structure (i.e., w; + w, = wtotal). We thus
predicted that the simulation of situation models would
result in a moderate increase in transfer performance.

The time variation. In TPtime there are three ways to
assimilate the structural variation in the problem’s equation:
Drxt+nxt+trpxlh=1; 2)rixt+rnpxt=1-ryx1h
and 3) r; x t+ 1, x (t+1 h) = 1. To assimilate this variation
the student will need to understand that the extra hour spent
by one of the painters should result, at the upper level of the
equational structure, in a third chunk of painted wall (e.g.,
“w; + wy + w3 = 17). To derive this extra term it is necessary
to multiply r, by 1 h, which also demands comprehension of
the intermediate level (i.e., “r> X t, = w,”). Given that all three
alternatives demand comprehension of the upper and
intermediate levels of the equational structure, we predicted
that the simulation of situation models would result in
higher beneficial transfer than to simulations in TPwork.

We ran a complementary study to verify that adaptation
was more difficult for TPtime than for TPwork and more
difficult for TPwork than for TPspeed. An independent
group of eighteen 12" graders at Estacion Limay High
School (the same population as in the experiment reported
here) received the BP and its solution (see Figure 2 below).
They were asked to solve each of the TPs, based on the BP
and its solution. They had to speak aloud their thoughts
during the process, and their responses were tape-recorded.
Data analysis was limited to trials in which students showed
comprehension of the BP and its solution procedure, the TP
and the differences between them (to assess to what extent a
variation poses a challenge to the analogical subprocess of
adaptation, it is necessary to control that the previous
analogical subprocesses of representation building and
mapping had been successfully performed). Transfer
performance was 70% for TPspeed, 53% for TPwork and
17% for TPtime, thus confirming the theory-driven
predicton about the transfer difficulty of the TPs.

Experiment

The present experiment compared transfer performance
across three instructional conditions. While the Concrete
Simulation Group (¢SG) had to simulate situation models
via manipulating physical objects, the Imagined Simulation
Group (iSG) was asked to run mental simulations of
situation models. The group with no Simulation (nSG) was
not asked to run simulations of the situation models during
any phase of the experiment. All groups passed through
three distinct phases: pretest, instruction and transfer. The
pretest was included to identify participants that could come
up with a solution to the BP. During the instructional phase,
participants were given an instruction on how to solve it.
During the transfer phase all groups had to solve a TP
identical to the BP—included to serve as reference of
maximal transfer performance—and the three problems
presented in the previous section. Both simulation groups
were encouraged to: 1) simulate the situation model of the
BP, 2) produce a quantitive situation model of the BP and
connect it with equation presented for that problem, 3)
simulate the situation model of each of the three TPs, and 4)
compare all TPs with the BP in terms of their situation
models. For every simulation that these groups had to
perform, the nSG had to carry out a non-simulative task that
was equivalent to it in terms of the reconsideration of
problem information it produced.

Method

Participants and design. Sixty 12" year students at Estacion
Limay School in Rio Negro, Argentina, volunteered to
participate in the experiment. They were randomly assigned
to each of the three groups (20 to the ¢SG, 20 to the iSG and
20 to the nSG). In this 3 x 3 design, the independent variable
type of simulation (concrete, imagined and no simulation)
received between-subjects manipulation. The independent
variable difficulty of equational assimilation (low, medium
and high) received within-subjects manipulation.

Materials and Procedure. At pretest, participants were
given 5 min to solve the BP. During the instructional phase,
participants were handed an instruction similar to the one
typically used by Reed and colleages (see Figure 2 below)
and were given 5 min to study it. Next they answered a
series of oral and written questions that were intended—in
the case of the simulation groups—to link equational terms
to their respective situation model representations. During the
transfer phase participants received the TPs in
counterbalanced order, and were asked to apply the learned
equation with the modifications they deemed necessary.
Instruction material could be consulted during TPs solution.
Even though they were not required to solve the unknown
values, they had to state how such values—if calculated—
should yield an answer to the problems (e.g., for TPtime,
“we should solve the equation for #, then add 1 hour to that
value and finally add the resulting time to 12 hours”). We’ll
first describe the procedure of the ¢SG and then present the
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differences between c¢SG and the other groups. Upon
completion of the pretest, participants were presented with a
white rectangle vertically attached to its base and with two
toy painters. They were asked to read aloud the BP at a
very slow pace. After each sentence was completed, the
experimenter asked them to simulate its content with the
given materials. Finally, participants were asked to use
both painters to represent the complete situation, from
beginning to end. During the instructional phase participants
were given 5 min to study the solution to the BP (see Figure
2 below):

Solution: this problem is a work problem in which two
people work together to complete a task. The amount of
task completed by each person is found multiplying his
rate of work by the amount of time he works, as follows:

Rate of work x Time of work = part of work done

Because Peter takes 10 h to paint the wall, he finishes
1/10 of the wall in 1 h. In ¢ h he finishes 1/10 X ¢. John
finishes 1/15 of the wall in 1 h. In ¢ h he paints 1/15 X ¢
The following table summarizes this information:

Rate of Time of ~ Work done
work (part work (part of
Worker of task/h) (h) task)
Peter 1/10 t 1/10 x ¢
John 1/15 t 1/15x ¢

If the task is finished, the sum of the fractional part
finished by Peter and the fractional part finished by John
must equal 1; (1/10) x ¢ + (1/15) x ¢ =1

Solving for ¢ yields the following: (1/10 + 1/15) x ¢ =1
then (3/30 + 2/30) x ¢ = 1; Finally, t = 30/5 h =6h.
Answer: if they started at 12, then they finish at 6.

Figure 2. Instructions for solving task completion problems
(adapted from Reed et al., 1985)

After receiving instruction on how to solve the BP,
participants had to produce a quantitive situation model of
the BP. They were given 20 small boxes, each one
containing several magnetized stripes that represented
decimal fractions of the wall (e.g., 1/2s, 1/3s... until 1/20s).
They were asked to take advantage of these tools and of the
known solution to BP in order to represent the situation
unfolding on an hour-by-hour fashion. After completing this
simulation, participants received a sheet of paper on which
they had to answer several questions intended to promote a
connection between the equation and its corresponding
quantitive situation model. First, they were asked to show
both in the wall and in the equation the painted part that
corresponded to each painter (e.g., “1/10 x 6 h” for the first
painter), telling the exact amount of wall completed by each
painter. Second, they had to indicate the part of the equation
in which the total work was represented (i.e., the “1” in the
right term). During the transfer phase participants were
asked to simulate a TP in the same way as was done with

the BP. Next, they were asked to simulate the BP once
again, representing any difference they deemed relevant
between the BP and such TP. Participants were given 6 min
to solve each TP. This sequence was repeated for each of
the three TPs. All simulations were videotaped.

Situation model simulations in the iSG were identical to
that of the ¢SG, except for the fact that were carried out
internally. Even though participants were presented with the
set of materials used by the cSG—and were also encouraged
to use them for representing the problems—these materials
were removed from their sight before the mental simulations
were run. They were asked to close their eyes before each
simulation.

Concerning the nSG, the procedure was similar to that of
the simulation groups except for the fact that each
simulative task was replaced by a non-simulative task that
was equivalent to the former in terms of the reconsideration
of problem information it produced. For instance, when
simulation groups had to run the qualitative simulation of
the problems, the nSG had to reread the problem text; or
when the simulation groups had to construct the quantitative
situation models, the nSG had to indicate how many times
each painter painted his hourly portion of the wall, as well
as indicate the times at which they began and finished the
task. Neither group received feedback while performing
either simulative or non-simulative tasks. Interventions were
exclusively oriented to foster comprehension of the base
equation in terms of its quantitative situation model and to
encourage simulation and comparison of base and target
situation models.

Results

As all participants failed to solve BP at pretest, no
participants were excluded from the data analysis. Solutions
to TPs were scored as correct only when: 1) the participant
correctly incorporated in the corresponding equation all the
data directly or indirectly available in the problem text, such
that the equation could be solved for the unknown value,
and 2) the participant successfully stated how the solution of
the equation should yield an answer to the problem.

Across TPs, transfer to problems with structural variations
averaged 68%, which clearly surpasses the performance
typically observed by Reed and colleages with this kind of
problems. Due to high rate of success in TPspeed (95%) our
subsequent analysis of the advantages of the simulation of
situation models on analogical transfer will be limited to
performance in TPwork and TPtime. To assess the effects of
the difficulty of equational assimilation (TPwork: medium,
TPtime: high) and of the type of situation model simulation
(cSG, iSG and nSG) on analogical transfer, we computed a
2 x 3 mixed analysis of variance (ANOVA) with repeted
measures on the difficulty of equational assimilation. Main
effects were observed for both the difficulty of equational
assimilation F(1, 60) =31.933, MSE = .104, p <.0001 and
the type of situation model simulation, F(2, 60) = 10.476,
MSE = 222, p < .0001. An interaction between both factors
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was also found to be significant, F(2, 60) = 3.433, MSE =
104, p <.05.

Paired comparisons revealed that the ¢SG (83% of correct
answers) outperformed the nSG (38%), p <.001 (Bonferroni
adjustments). The iSG (75% correct) also outperformed the
nSG, p < .001. These data thus confirmed our hypothesis
that promoting situation model simulaton aids transfer of a
base solution to structurally different target problems.
Bonferroni comparisons also revealed that performance in
both simulation groups did not differ reliably, p > .05, thus
confirming our prediction that situation model simulation
via physical manipulation would not differ from internal
simulation in facilitating transfer to target problems.

Our third hypothesis was that the advantage of situation
model simulation in promoting transfer would be higher for
problems that posed a greater challenge of equational
assimilation. We performed two separate 2 X 2 ANOVAS
with repeated measures on the factor difficulty of equational
assimilation: one pitting nSG against iSG, and the other
pitting nSG against cSG.

1 +~—a

—

0.9 1 —s—concrete
0.8 - simulation
0.7 { group
0.6 { —=— imagined
0.5 - simulation
0.4 { group
0.3 1 no simulation
0.2 - group
0.1 {

0

TPO TPs TPw TPt

Figure 2. Proportion of correct solutions for the three
simulation conditions of the experiment on each TP. Note:
0: identical; s: speed; w: work; ¢: time.

The 2 x 2 ANOVA with type of situation model
simulation (no simulation and imagined simulation) as
between-subjects factor and difficulty of equational
assimilation (medium and high) as within-subjects factor
revealed a significant interaction between these factors, F(1,
40) = 5.712 MSE = .107, p < .05. Bonferroni adjustments
showed that the iSG reliably ouperformed the nSG in TPtime
(65% vs. 10%), p <.001 but not in TPwork (85% vs. 65%), p
> ,05. Contrasts for paired samples revealed that performance
in TPwork was higher than in TP#ime both within iSG, #(19) =
2.179, p < .05, and within nSG, #19) =4.819, p <.0001. In a
similar vein, the 2 x 2 ANOVA with type of simulation (no
simulation and concrete simulation) as between-subjects
factor and difficulty of equational assimilation (medium and
high) as within-subjects factor revealed a strong tendency
towards interaction between these factors, F(1, 40) = 3.931,
MSE = .114, p = .055. Bonferroni comparisons showed that
the cSG reliably ouperformed the nSG both in TPtime (70%
vs. 10%), p <.001, and in TPwork (95% vs. 65%), p < .05.

Contrasts for paired samples showed that performance on
TPwork was higher than on TP#ime both within cSG, #19) =
2.517, p < .05, and within nSG, #19) = 4.819, p <.0001. The
observed interactions support the thesis that the advantage of
situation model elaboration is higher for problems implying
greater difficulty of equational assimilation. Analysis of the
simulations carried out by the ¢SG revealed that in 95% of the
trials participants correctly simulated the qualitative situation
model of the TPs as well as their relevant differences with
that of the BP. The quantitative simulation of the BP and its
solution was carried out successfully in 90% of the trials.

Discussion

Authors like Greeno (1989), Nathan et al. (1992) and others
have proposed that novices—as opposed to experts—fail at
formulating correct solutions to algebra word problems
partly because they neither elaborate situation models for
problems, nor do they relate them to their equations. These
authors tend to agree with the idea that, in most cases, this
deficit is due to a lack of disposition originated by current
instruction rather than to the lack of cognitive capabilities.
We considered that if these assertions are right, then a
simple stimulation to elaborate situation models would also
aid transfer to problems demanding assimilation of
structural differences—a task that proved inmune to several
interventions developed by Reed and colleagues. On the one
hand, the situation models generated by the ¢SG showed
that students can easily build them for the base and target
problems and compare them in order to pinpoint their
differences. On the other hand, the fact that both simulation
groups outperformed a control group that did not receive
any kind of prompting to simulate situation models
demonstrated that analogical transfer to nonisomorphic
target problems can be enhanced by encouraging elaboration
of situation models. Importantly, the fact that performance in
iSG was comparable to performance in ¢cSG further suggests
that transfer performance can be boosted by rather austere
interventions, not even requiring the manipulation of concrete
materials. It should be noted, however, that the mathematical
background of our students was probably superior to that of
the population typically evaluated by Reed and colleagues.
It seems likely that a strong mathematical background is
required to take advantage of a situational scaffolding such
as the one provided in the present study. It should be noted
that the situation models of the problems used in this study
were rather simple. Perhaps with problems requiring more
complex situation models (e.g., mixture problems) students
will need assistance along the process of elaborating them.
A second objective of our experiment was to test the
hypothesis that a physical simulation wouldn’t differ from
an internal simulation at promoting analogical transfer. Such
prediction was derived from previous results obtained by
Glenberg et al. (2004) on text comprehension, Engelkamp
(1998) on memory for actions and Wilson and Gibbs (2007)
on metaphor comprehension. The fact that transfer
performance in the concrete simulation group was not
reliably superior to performance in the imagined simulation
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group thus confirmed such prediction. However, the
observed lack of difference shouldn’t be readily generalized
to problems with more complex situation models. It seems
reasonable that with problems with situation models more
prone to overloading working memory, a concrete
simulation might turn out to be more beneficial.

The influence of the type of variation introduced by
target problems has received little attention within the study
on analogical problem solving, specifically within studies
dealing with mathematical and statistical problems. Data
from our independent group showed that transfer to target
problems of a certain type could be more or less difficult,
depending on the depth to which a given variation demands
comprehension of the equational structure. Concerning the
implications of these results for the design of instructional
materials (e.g., textbooks), more attention should be drawn
to the proper selection of problems to be included in their
expository and practice sections. The variations of a worked
out example should be selected so as to demand the analysis
of different parts and aspects of the equational structure,
thus promoting a flexible use of the structure being learned.
However, more studies are needed to further understand
qualitative differences among problem variations, as a
determinant of success in transfer to nonidentical problems.

Concerning the implications of these results for the
broader study of analogical problem solving, the data
obtained here run contrary to the thesis that the analogical
subprocess of adaptation is intrinsically difficult. Like in
Minervino, Trench and de la Fuente (2005), data from our
independent group showed that adaptation can be relatively
easy for certain problems—sometimes as easy as repeting
the base procedure—and that performance at adaptation is
not always inferior to performance at mapping and
inferencing.

Our third hypothesis proposed that the advantages of a
stimulation to elaborate situation models would depend on
the difficulty of assimilating a given variation in the base
equation. Interactions between the difficulty of equational
assimilation and the presence of situation model simulations
were observed when pitting the no simulation condition
against the imagined and the concrete simulation ones. Our
simulations thus proved more beneficial for problems with
higher difficulty of equational assimilation.

In future studies it would be interesting to investigate the
efect of the idealized/concrete character of the objects
employed during the simulations. As in Goldstone and Son
(2005), it is likely that a progression from concrete to
idealized simulation materials will also prove beneficial for
transfer to algebra word problems with variations in content.
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