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Abstract 
 
A number of studies on analogical transfer to algebra word 
problems have demonstrated that adapting a known solution 
to nonisomorphic problems of the same type is challenging, 
and that most instructional aids do not alleviate this difficulty. 
We designed a non-interactive intervention intended to 
encourage students to formulate situation models for base and 
target, and to ground their equations in these representations. 
One of our experimental groups had to simulate the situation 
models via manipulating physical objects. The other group 
had to perform internal simulations. Both conditions 
outperformed a control group not required to run simulations, 
yielding comparable advantage. Situation model elaboration 
proved more effective when targets posed more difficulty of 
equational assimilation. The implications of these findings for 
the design of instructional interventions are discussed.  

Keywords: transfer; solving problem; algebra word 
problems; analogy  

Introduction 
Solving a problem by analogy entails transferring a solution 
from a known problem (the base problem: BP) onto a new 
problem whose solution is unknown (target problem: TP). 
In learning environments, the solution to a BP serves as 
scaffolding for the application of a general method until the 
student has gained the fluidity required to apply this general 
methods directly (Holyoak, 2005; Koedinger & Nathan, 
2004). In a series of studies of near transfer in task-
completion problems, Reed, Dempster and Ettinger (1985) 
investigated to what extent college students can use a 
worked out example—which could be consulted at any 
time—to solve TPs that maintain structural differences with 
it (i.e., when the base equation needs to be adapted to fit the 
TP). Whereas in the absence of structural differences 70% 
of the students successfully transferred the base solution, in 
their presence the rate of success dropped to 12%. In 
subsequent studies, Reed and colleages developed a series 
of instructional aids to help students assimilate these 
variations into the base equation (e.g., construction of tables 
for relating quatities to variables, Reed & Ettinger, 1987; 
provision of explicit rules for incorporating the variations, 

Reed & Bolstad, 1991; and instruction on unit cancellation, 
Reed 2006). In general, the successive instructional aids 
aimed at aleviating this difficulty proved unsuccessful (see 
Reed, 1999 for a revision). 

A possible account of transfer difficulties 
According to Nathan, Kintsch and Young (1992) and 
Kintsch (1998), solving algebra word problems ideally 
implies forming a text base of propositions that capture the 
meaning of the problem story. Together with a set of 
inferences drawn from general knowledge, this text base 
allows for the construction of a situation model that 
represents the situation depicted in the problem. In the 
situation model, objects and their interactions are 
represented qualitatively, without consideration of the exact 
magnitudes stated in the text. After a situation model has 
been built, students apply several subschemas to construct a 
quantitative problem model that captures the algebraic 
structure of the problem, and ultimately leads to an equation 
that affords calculation of the unknowns. Consider the 
following problem: 

Problem: Fred can paint a wall in 8 hours, while Bob 
can paint it in 5 hours. Fred starts painting the wall one 
hour before Bob, and then they keep painting it together. 
If painting started at 12, at what time will it be finished? 

The situation model should display a painter that starts 
painting a wall on his own before a second painter joins. 
This situation model should also picture them painting 
together, albeit at different rates, until they jointly finish the 
task. Construction of the problem model is hypothesized to 
unfold in the following manner:  Once the pertinence of the 
“r x t = w” subschema is aknowledged (r = rate, t = time, w 
= work), its variables should be substitued first with the 
values for Bob, and next with the values for Fred, the latter 
requiring the inference that Freds’ t equals Bobs’ t plus 1 h, 
thus inviting the "t2 = t1 + 1 h" subschema. Construction of 
the problem model will also demand the inference that once 
the task gets completed, the sum of the parts advanced by 
both painters will equal the whole wall, leading to the 
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application of the "T1 + T2 = T" subschema. Nathan et al. 
(1992) termed these two key inferences support relations. 

Nathan et al. (1992), as well as Greeno (1989), consider 
that novices, as opposite to experts, don’t ground equations 
in situation models, thus failing to notice, for instance, when 
a problem’s solution—albeit mathematically correct—leads 
to a semantically absurd situation (Paige & Simon, 1966).  
With these ideas in mind, Nathan et al. (1992) developed 
ANIMATE, a learning environment that provides a set of 
subschemas intended to help students build equations for 
encounter problems. Once an equation has been built, 
ANIMATE runs a schematic—but quantitatively faithful—
simulation of a situation, as determined by such equation. 
This way the students can check the simulations derived 
from their problem model against the situation model they 
had built on their own, and ultimately modify their problem 
models when these representations diverge. Nathan et al. 
(1992) compared a training using ANIMATE against two 
control conditions: one trained in the construction of 
problem models without situational support and the last one 
receiving neither kind of support. Students trained with 
ANIMATE ouperformed both control conditions in a series 
of tasks including formulation of support relations, building 
equations for problems, fixing wrong equations, and even 
inventing word problems to fit abstract equations. 

The main objective of the present study was to investigate 
whether a stimulation to ground equations in situational 
models—a key feature in the ANIMATE environment, but 
absent in most interventions developed by Reed and cols.—
would also aid transfer to TPs with structural variations. In 
the present experiment, which followed a traditional near 
transfer paradigm, both the learning context and the 
superficial content of the problems were kept constant.  

The second objective of our experiment was to determine 
whether a prompting to construct situation models was more 
effective when carried out with physical objects as 
compared to an internal simulation. Across domains as 
diverse as text comprehension (Glenberg, Gutierrez, Levin, 
Japuntich & Kaschak, 2004), memory for instructions 
(Engelkamp, 1999) and metaphor comprehension (Wilson & 
Gibbs, 2007), psysical and internal simulations yielded 
comparable beneficial effects. Following the lack of 
difference observed in the above studies, we predicted that 
concrete and imagined simulations of situation models 
would equally promote transfer to target problems 
introducing structural variations.  

The third objective in this study was to investigate if the 
type of situation model stimulation interacts with the degree 
of difficulty posed by a given variation. In the following 
section we present the BP and the three TPs used in this 
study, and flesh out a theoretical analysis of their relative 
difficulty of equational assimilation. We hypothesized that a 
stimulation to control the problem model from situation 
model would be more beneficial in those cases in which the 
structural differences introduced by a TP posed greater 
difficulties of equational assimilation.  

Interaction between situation model simulation and 
the type of variations introduced by the TPs. 
Below we present a BP and three TPs, each introducing a 
different type of structural variation: 
BP: Peter can paint a wall in 10 hours, while John can paint 
that same wall in 15 hours. If they start painting the wall 
together at 12, at what time will it be finished?   
TP with speed variation (TPspeed): Ned can paint a wall 
in 8 hours, while Louis takes twice as long to paint the same 
wall. If they start painting the wall together at 12, at what 
time will it be finished?  
TP with work variation (TPwork): Bob can paint a wall in 
20 hours, while Mark can paint that same wall in 12 hours. 
One third of the wall has been painted by other painters. If 
Bob and Mark start painting the remainder at 12, at what 
time will it be finished?  
TP with time variation (TPtime): Fred can paint a wall in 
8 hours, while Bob can paint that same wall in 12 hours. 
They mostly paint it together but, overall, Bob paints one 
more hour than Fred. If painting started at 12, at what time 
will it be finished?  
    The following model represents the BP, as well as their 
structural variations. In the model (see Figure 1) knowledge 
is represented as a propositional web of nodes (concepts) 
and predicates (attributes and relations). Concepts appear in 
rectangles, operations and relations between concepts 
appear in circles, while numerical values—or the procedures 
needed to obtain them—are represented with ovals. Vertical 
lines indicate permitted substitutions. While the highest level 
corresponds to the upper principle “w1+w2= wtotal”, the 
intermediate level corresponds to the variables r and t which, 
when multiplied, conform the left terms of such principle. 
The lower level refers to the known and unknown quantities 
and to the procedures needed to obtain them. 

 
 
 
  
 
 
 
 
 
 
 
                     
 
 

 
 
 
Figure 1. Representation of the equational structure of task-
completion problems, according to the model proposed by 
Reed (1987). Note. tt: total time; pt: painter.  
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Across levels, dotted lines are used to denote the 
variations introduced by TPwork, TPtime and TPspeed, 
whose intrinsic difficulties of equational assimilation we 
now turn to analyse. In the following analysis, we will 
assume that the difficulty posed by a given variation is 
determined by the degree of comprehension of the 
equational structure that its assimilation demands.  

The speed variation. In TPspeed, calculation of the speed of 
one of the painters only requires knowing the time it would 
take him to finish the task on his own, which comes from 
doubling the time taken by the other painter. Given that no 
knowledge of the equational structure is involved in this 
variation, we predicted that a simulation of situation models 
wouldn’t result in an increased transfer performance.                 

The work variation. In TPwork, there are two different 
ways of assimilating this variation: 1) r1 x t + r2 x t  = 1 - 1/3 
and 2) r1 x t + r2 x t  + 1/3 = 1. Either alternative only 
presupposes comprehension of the upper level of the 
equational structure (i.e., w1 + w2 = wtotal). We thus 
predicted that the simulation of situation models would 
result in a moderate increase in transfer performance.  

The time variation. In TPtime there are three ways to 
assimilate the structural variation in the problem’s equation: 
1) r1 x t + r2 x t + r2 x 1 h = 1;     2) r1 x t + r2 x t = 1- r2 x 1h 
and 3) r1 x t + r2 x (t + 1 h) = 1. To assimilate this variation 
the student will need to understand that the extra hour spent 
by one of the painters should result, at the upper level of the 
equational structure, in a third chunk of painted wall (e.g.,  
“w1 + w2 + w3 = 1”). To derive this extra term it is necessary 
to multiply r2 by 1 h, which also demands comprehension of 
the intermediate level (i.e., “r2 x t2 = w2”). Given that all three 
alternatives demand comprehension of the upper and 
intermediate levels of the equational structure, we predicted 
that the simulation of situation models would result in 
higher beneficial transfer than to simulations in TPwork.  

 
We ran a complementary study to verify that adaptation 

was more difficult for TPtime than for TPwork and more 
difficult for TPwork than for TPspeed. An independent 
group of eighteen 12th graders at Estación Limay High 
School (the same population as in the experiment reported 
here) received the BP and its solution (see Figure 2 below). 
They were asked to solve each of the TPs, based on the BP 
and its solution. They had to speak aloud their thoughts 
during the process, and their responses were tape-recorded. 
Data analysis was limited to trials in which students showed 
comprehension of the BP and its solution procedure, the TP 
and the differences between them (to assess to what extent a 
variation poses a challenge to the analogical subprocess of 
adaptation, it is necessary to control that the previous 
analogical subprocesses of representation building and 
mapping had been successfully performed). Transfer 
performance was 70% for TPspeed, 53% for TPwork and 
17% for TPtime, thus confirming the theory-driven 
predicton about the transfer difficulty of the TPs. 

Experiment 
The present experiment compared transfer performance 
across three instructional conditions. While the Concrete 
Simulation Group (cSG) had to simulate situation models 
via manipulating physical objects, the Imagined Simulation 
Group (iSG) was asked to run mental simulations of 
situation models. The group with no Simulation (nSG) was 
not asked to run simulations of the situation models during 
any phase of the experiment. All groups passed through 
three distinct phases: pretest, instruction and transfer. The 
pretest was included to identify participants that could come 
up with a solution to the BP. During the instructional phase, 
participants were given an instruction on how to solve it. 
During the transfer phase all groups had to solve a TP 
identical to the BP—included to serve as reference of 
maximal transfer performance—and the three problems 
presented in the previous section. Both simulation groups 
were encouraged to: 1) simulate the situation model of the 
BP, 2) produce a quantitive situation model of the BP and 
connect it with equation presented for that problem, 3) 
simulate the situation model of each of the three TPs, and 4) 
compare all TPs with the BP in terms of their situation 
models. For every simulation that these groups had to 
perform, the nSG had to carry out a non-simulative task that 
was equivalent to it in terms of the reconsideration of 
problem information it produced. 

Method 

Participants and design. Sixty 12th year students at Estación 
Limay School in Rio Negro, Argentina, volunteered to 
participate in the experiment. They were randomly assigned 
to each of the three groups (20 to the cSG, 20 to the iSG and 
20 to the nSG). In this 3 x 3 design, the independent variable 
type of simulation (concrete, imagined and no simulation) 
received between-subjects manipulation. The independent 
variable difficulty of equational assimilation (low, medium 
and high) received within-subjects manipulation.  
 
Materials and Procedure. At pretest, participants were 
given 5 min to solve the BP. During the instructional phase, 
participants were handed an instruction similar to the one 
typically used by Reed and colleages (see Figure 2 below) 
and were given 5 min to study it. Next they answered a 
series of oral and written questions that were intended—in 
the case of the simulation groups—to link equational terms 
to their respective situation model representations. During the 
transfer phase participants received the TPs in 
counterbalanced order, and were asked to apply the learned 
equation with the modifications they deemed necessary. 
Instruction material could be consulted during TPs solution. 
Even though they were not required to solve the unknown 
values, they had to state how such values—if calculated—
should yield an answer to the problems (e.g., for TPtime, 
“we should solve the equation for t, then add 1 hour to that 
value and finally add the resulting time to 12 hours”). We’ll 
first describe the procedure of the cSG and then present the 
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differences between cSG and the other groups. Upon 
completion of the pretest, participants were presented with a 
white rectangle vertically attached to its base and with two 
toy painters.   They were asked to read aloud the BP at a 
very slow pace. After each sentence was completed, the 
experimenter asked them to simulate its content with the 
given materials.          Finally, participants were asked to use 
both painters to represent the complete situation, from 
beginning to end. During the instructional phase participants 
were given 5 min to study the solution to the BP (see Figure 
2 below): 

 
Solution: this problem is a work problem in which two 
people work together to complete a task. The amount of 
task completed by each person is found multiplying his 
rate of work by the amount of time he works, as follows: 

Rate of work x Time of work = part of work done 
Because Peter takes 10 h to paint the wall, he finishes 
1/10 of the wall in 1 h. In t h he finishes 1/10 x t. John 
finishes 1/15 of the wall in 1 h. In t h he paints 1/15 x t. 
The following table summarizes this information: 

 
 
Worker 

Rate of 
work (part 
of task/h) 

Time of 
work  
(h) 

Work done 
(part of 

task) 
Peter 
John 

1/10 
1/15 

t 
t 

1/10 x t 
1/15 x t 

 
If the task is finished, the sum of the fractional part 
finished by Peter and the fractional part finished by John 
must equal 1; (1/10) x t + (1/15) x t   = 1 

Solving for t yields the following:  (1/10 + 1/15) x t = 1                                              
then   (3/30 + 2/30) x t = 1; Finally, t = 30/5 h =6h. 
Answer: if they started at 12, then they finish at 6.    

 
Figure 2. Instructions for solving task completion problems 
(adapted from Reed et al., 1985)  
 

After receiving instruction on how to solve the BP, 
participants had to produce a quantitive situation model of 
the BP. They were given 20 small boxes, each one 
containing several magnetized stripes that represented 
decimal fractions of the wall (e.g., 1/2s, 1/3s... until 1/20s). 
They were asked to take advantage of these tools and of the 
known solution to  BP in order to represent the situation 
unfolding on an hour-by-hour fashion. After completing this 
simulation, participants received a sheet of paper on which 
they had to answer several questions intended to promote a 
connection between the equation and its corresponding 
quantitive situation model. First, they were asked to show 
both in the wall and in the equation the painted part that 
corresponded to each painter (e.g., “1/10 x 6 h” for the first 
painter), telling the exact amount of wall completed by each 
painter. Second, they had to indicate the part of the equation 
in which the total work was represented (i.e., the “1” in the 
right term). During the transfer phase participants were 
asked to simulate a TP in the same way as was done with 

the BP. Next, they were asked to simulate the BP once 
again, representing any difference they deemed relevant 
between the BP and such TP. Participants were given 6 min 
to solve each TP. This sequence was repeated for each of 
the three TPs. All simulations were videotaped.    

Situation model simulations in the iSG were identical to 
that of the cSG, except for the fact that were carried out 
internally. Even though participants were presented with the 
set of materials used by the cSG—and were also encouraged 
to use them for representing the problems—these materials 
were removed from their sight before the mental simulations 
were run. They were asked to close their eyes before each 
simulation.  

Concerning the nSG, the procedure was similar to that of 
the simulation groups except for the fact that each 
simulative task was replaced by a non-simulative task that 
was equivalent to the former in terms of the reconsideration 
of problem information it produced. For instance, when 
simulation groups had to run the qualitative simulation of 
the problems, the nSG had to reread the problem text; or 
when the simulation groups had to construct the quantitative 
situation models, the nSG had to indicate how many times 
each painter painted his hourly portion of the wall, as well 
as indicate the times at which they began and finished the 
task. Neither group received feedback while performing 
either simulative or non-simulative tasks. Interventions were 
exclusively oriented to foster comprehension of the base 
equation in terms of its quantitative situation model and to 
encourage simulation and comparison of base and target 
situation models. 

Results 
As all participants failed to solve BP at pretest, no 

participants were excluded from the data analysis. Solutions 
to TPs were scored as correct only when: 1) the participant 
correctly incorporated in the corresponding equation all the 
data directly or indirectly available in the problem text, such 
that the equation could be solved for the unknown value, 
and 2) the participant successfully stated how the solution of 
the equation should yield an answer to the problem.   

Across TPs, transfer to problems with structural variations 
averaged 68%, which clearly surpasses the performance 
typically observed by Reed and colleages with this kind of 
problems. Due to high rate of success in TPspeed (95%) our 
subsequent analysis of the advantages of the simulation of 
situation models on analogical transfer will be limited to 
performance in TPwork and TPtime. To assess the effects of 
the difficulty of equational assimilation (TPwork: medium, 
TPtime: high) and of the type of situation model simulation 
(cSG, iSG and nSG) on analogical transfer, we computed a 
2 x 3 mixed analysis of variance (ANOVA) with repeted 
measures on the difficulty of equational assimilation. Main 
effects were observed for both the difficulty of equational 
assimilation F(1, 60) = 31.933, MSE = .104, p < .0001  and 
the type of situation model simulation, F(2, 60) = 10.476, 
MSE = .222, p < .0001. An interaction between both factors 
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was also found to be significant, F(2, 60) = 3.433, MSE = 
.104,  p < .05.  

Paired comparisons revealed that the cSG (83% of correct 
answers) outperformed the nSG (38%), p < .001 (Bonferroni 
adjustments). The iSG (75% correct) also outperformed the 
nSG, p < .001. These data thus confirmed our hypothesis 
that promoting situation model simulaton aids transfer of a 
base solution to structurally different target problems. 
Bonferroni comparisons also revealed that performance in 
both simulation groups did not differ reliably, p > .05, thus 
confirming our prediction that situation model simulation 
via physical manipulation would not differ from internal 
simulation in facilitating transfer to target problems. 

Our third hypothesis was that the advantage of situation 
model simulation in promoting transfer would be higher for 
problems that posed a greater challenge of equational 
assimilation. We performed two separate 2 x 2 ANOVAS 
with repeated measures on the factor difficulty of equational 
assimilation: one pitting nSG against iSG, and the other 
pitting nSG against cSG. 

Figure 2. Proportion of correct solutions for the three 
simulation conditions of the experiment on each TP. Note: 
0: identical; s: speed; w: work; t: time. 

 
The 2 x 2 ANOVA with type of situation model 

simulation (no simulation and imagined simulation) as 
between-subjects factor and difficulty of equational 
assimilation (medium and high) as within-subjects factor 
revealed a significant interaction between these factors, F(1, 
40) = 5.712 MSE = .107, p < .05. Bonferroni adjustments 
showed that the iSG reliably ouperformed the nSG in TPtime 
(65% vs. 10%), p < .001 but not in TPwork (85% vs. 65%), p 
> .05. Contrasts for paired samples revealed that performance 
in TPwork was higher than in TPtime both within iSG, t(19) = 
2.179, p < .05, and within nSG, t(19) = 4.819, p < .0001. In a 
similar vein, the 2 x 2 ANOVA with type of simulation (no 
simulation and concrete simulation) as between-subjects 
factor and difficulty of equational assimilation (medium and 
high) as within-subjects factor revealed a strong tendency 
towards interaction between these factors, F(1, 40) = 3.931, 
MSE = .114, p = .055. Bonferroni comparisons showed that 
the cSG reliably ouperformed the nSG both in TPtime (70% 
vs. 10%), p < .001, and in TPwork (95% vs. 65%), p < .05. 

Contrasts for paired samples showed that performance on 
TPwork was higher than on TPtime both within cSG, t(19) = 
2.517, p < .05, and within nSG, t(19) = 4.819, p < .0001. The 
observed interactions support the thesis that the advantage of 
situation model elaboration is higher for problems implying 
greater difficulty of equational assimilation. Analysis of the 
simulations carried out by the cSG revealed that in 95% of the 
trials participants correctly simulated the qualitative situation 
model of the TPs as well as their relevant differences with 
that of the BP. The quantitative simulation of the BP and its 
solution was carried out successfully in 90% of the trials.  

Discussion 
Authors like Greeno (1989), Nathan et al. (1992) and others 
have proposed that novices—as opposed to experts—fail at 
formulating correct solutions to algebra word problems 
partly because they neither elaborate situation models for 
problems, nor do they relate them to their equations. These 
authors tend to agree with the idea that, in most cases, this 
deficit is due to a lack of disposition originated by current 
instruction rather than to the lack of cognitive capabilities. 
We considered that if these assertions are right, then a 
simple stimulation to elaborate situation models would also 
aid transfer to problems demanding assimilation of 
structural differences—a task that proved inmune to several 
interventions developed by Reed and colleagues. On the one 
hand, the situation models generated by the cSG showed 
that students can easily build them for the base and target 
problems and compare them in order to pinpoint their 
differences. On the other hand, the fact that both simulation 
groups outperformed a control group that did not receive 
any kind of prompting to simulate situation models 
demonstrated that analogical transfer to nonisomorphic 
target problems can be enhanced by encouraging elaboration 
of situation models. Importantly, the fact that performance in 
iSG was comparable to performance in cSG further suggests 
that transfer performance can be boosted by rather austere 
interventions, not even requiring the manipulation of concrete 
materials. It should be noted, however, that the mathematical 
background of our students was probably superior to that of 
the population typically evaluated by Reed and colleagues. 
It seems likely that a strong mathematical background is 
required to take advantage of a situational scaffolding such 
as the one provided in the present study. It should be noted 
that the situation models of the problems used in this study 
were rather simple. Perhaps with problems requiring more 
complex situation models (e.g., mixture problems) students 
will need assistance along the process of elaborating them.  

A second objective of our experiment was to test the 
hypothesis that a physical simulation wouldn’t differ from 
an internal simulation at promoting analogical transfer. Such 
prediction was derived from previous results obtained by 
Glenberg et al. (2004) on text comprehension, Engelkamp 
(1998) on memory for actions and Wilson and Gibbs (2007) 
on metaphor comprehension. The fact that transfer 
performance in the concrete simulation group was not 
reliably superior to performance in the imagined simulation 
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group thus confirmed such prediction. However, the 
observed lack of difference shouldn’t be readily generalized 
to problems with more complex situation models. It seems 
reasonable that with problems with situation models more 
prone to overloading working memory, a concrete 
simulation might turn out to be more beneficial. 

 The influence of the type of variation introduced by 
target problems has received little attention within the study 
on analogical problem solving, specifically within studies 
dealing with mathematical and statistical problems. Data 
from our independent group showed that transfer to target 
problems of a certain type could be more or less difficult, 
depending on the depth to which a given variation demands 
comprehension of the equational structure. Concerning the 
implications of these results for the design of instructional 
materials (e.g., textbooks), more attention should be drawn 
to the proper selection of problems to be included in their 
expository and practice sections. The variations of a worked 
out example should be selected so as to demand the analysis 
of different parts and aspects of the equational structure, 
thus promoting a flexible use of the structure being learned. 
However, more studies are needed to further understand 
qualitative differences among problem variations, as a 
determinant of success in transfer to nonidentical problems. 

Concerning the implications of these results for the 
broader study of analogical problem solving, the data 
obtained here run contrary to the thesis that the analogical 
subprocess of adaptation is intrinsically difficult. Like in 
Minervino, Trench and de la Fuente (2005), data from our 
independent group showed that adaptation can be relatively 
easy for certain problems—sometimes as easy as repeting 
the base procedure—and that performance at adaptation is 
not always inferior to performance at mapping and 
inferencing.  

Our third hypothesis proposed that the advantages of a 
stimulation to elaborate situation models would depend on 
the difficulty of assimilating a given variation in the base 
equation. Interactions between the difficulty of equational 
assimilation and the presence of situation model simulations 
were observed when pitting the no simulation condition 
against the imagined and the concrete simulation ones. Our 
simulations thus proved more beneficial for problems with 
higher difficulty of equational assimilation. 

 In future studies it would be interesting to investigate the 
efect of the idealized/concrete character of the objects 
employed during the simulations. As in Goldstone and Son 
(2005), it is likely that a progression from concrete to 
idealized simulation materials will also prove beneficial for 
transfer to algebra word problems with variations in content. 
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