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Abstract

How do differences in prior conceptual knowledge affect the
nature and rate of learning? To answer this question, we built
a computational model of learning, called SimStudent, and
conducted a controlled simulation study to investigate how
learning a complex skill changes when the system is given
“weak” domain-general vs. “strong” domain-specific prior
knowledge. We measured SimStudent’s learning outcomes as
the rate of learning, the accuracy of learned skills (test scores),
and the fit to the pattern of errors made by real students. We
found that when the “weak” prior knowledge is given, not
only the accuracy of learned skills decreases, but also the
learning rate significantly slows down. The accuracy of
predicting student errors increased significantly — namely,
SimStudent with the weak prior knowledge made the same
errors that real students commonly make. These modeling
results help explain empirical results connecting prior
knowledge and student learning (Booth & Koedinger, 2008).

Keywords: Computational model of learning; machine
learning; SimStudent; weak prior knowledge; patterns of
student errors; mathematics education.

Introduction

In this paper, we present an innovative application of a
synthetic student for modeling the error-prone process of
student learning in a complex problem-solving domain.

Previous studies have shown that student
misconceptions or flaws in their prior knowledge not only
directly cause errors in solving problems (VanLehn & Jones,
1993), but may also affect learning. For instance, Booth
and Koedinger (2008) demonstrated that particular
limitations in prior knowledge (e.g., treating terms in an
equation as though terms and numbers were equivalent
concepts) were correlated with particular strategic errors
later in instruction (e.g., subtracting 4 from both sides of x-
4=13). The presumed causal connection is that the nature of
student prior knowledge changes the learning process and
thus leads to differences in the problem-solving knowledge
that is acquired. But what is this learning process and how
is it affected by differences in prior knowledge?

A classic result from Chi, Feltovich, and Glaser’s study
(1981) that experts categorize problems with deep solution-
relevant features while novices categorize problems with
shallow, perceptually apparent, features is also relevant to
our endeavor. Also, Novick and Holyak (1991) found that
domain expertise is a significant predictor of analogical
transfer, but general analogical reasoning skill is not. We are
ultimately interested in understanding how a novice goes

from only being aware of shallow features to learning to
encode problems in terms of deep features. Our strategy
toward tackling this important question is to create a
computational model of the learning process in complex
math and science domains and to use fine-grain data from
student learning over time to constrain model development.
Our first steps involve demonstrating how a computational
model of learning can learn when given shallow (or “weak™)
knowledge, how such learning is slower than when deep (or
“strong”) knowledge is available, and how learning based
on shallow/weak knowledge better predicts patterns of real
student errors.

In this study, we focus on the process of learning
problem-solving skills from examples, where students
generalize examples to inductively learn skills to solve
problems. We are particularly interested in errors that are
made by applying incorrect skills, and our computational
model explains the processes of learning such incorrect
skills as incorrect induction from examples. A number of
models of student errors have been proposed (Brown &
Burton, 1978; Langley & Ohlsson, 1984; Sleeman, Kelly,
Martinak, Ward, & Moore, 1989; Weber, 1996; Young &
O'Shea, 1981). Our effort builds on the past works by
exploring how differences in prior knowledge affect the
nature of the incorrect skills acquired and the errors derived.

We hypothesize that incorrect generalizations are more
likely when students have weaker, more general prior
knowledge for encoding incoming information. This
knowledge is typically perceptually grounded and is in
contrast to deeper or more abstract encoding knowledge.
An example of such perceptually grounded prior knowledge
is to recognize 3 in x/3 simply as a number instead of as a
denominator. Such an interpretation might lead students to
learn an inappropriate generalization such as “multiply both
sides by a number in the left hand side of the equation” after
observing x/3=5 gets x=15. If this generalization gets
applied to an equation like 4x=2, the error of multiplying
both sides by 4 is produced. We call this type of
perceptually grounded prior knowledge ‘“weak” prior
knowledge in a similar sense as Newell and Simon’s weak
reasoning methods (1972). Weak knowledge can apply
across domains and can yield successful results prior to
domain-specific instruction.  However, in contrast to
“strong” domain-specific knowledge, weak knowledge is
more likely to lead to incorrect conclusions.

The goal of the present paper is to investigate an impact
of the prior knowledge on learning problem-solving skills
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using a computational model of inductive learning. We have
implemented the proposed learning model as an interactive
machine-learning agent, called SimStudent that learns skills
through tutored problem-solving. To test the hypothesis
about the impact of “weak” prior knowledge on learning, we
conducted a controlled simulation study by giving
SimStudents different types of prior knowledge and
measuring learning outcomes as well as a fit to human
students’ error patterns.

In the rest of the paper, we first analyze typical errors
that human students commonly make. The analysis is based
on student-tutor interaction log data collected from a
classroom study. We then provide a brief overview of
SimStudent, mostly focused on its learning algorithms to
present how prior knowledge affects the SimStudent
learning. Finally, we describe an empirical simulation study
to test our hypotheses where SimStudents are trained with
different kinds of prior knowledge to measure the impact of
prior knowledge on learning outcome.

Student Errors

For the current study, we used a dataset collected from a
classroom study where students learned Algebra I with a
commercially available Cognitive Tutor (called the Algebra
Tutor hereafter) developed by Carnegie Learning Inc. The
classroom study was conducted to investigate how students’
prior knowledge affect the way students develop
misconceptions (Booth & Koedinger, 2008).

While students were learning equation solving with the
Algebra Tutor, the interaction between the individual
students and the Algebra Tutor was recorded and stored in a
free, open-resource repository, called DataShop (Koedinger,
Cunningham, Skogsholm, & Leber, 2008) that shares
experimental data collected from in vivo studies conducted
in LearnLab participating schools maintained by the
Pittsburgh Science of Learning Center (www.learnlab.org).
This section describes the student-tutor interaction log data
used and the analysis of errors made by students.

Data

There were 71 students involved in the classroom study. A
total of 19,683 transactions between the students and the
Algebra Tutor were recorded. A transaction represents
either (1) a student’s attempt at a step with possible
feedback from the Tutor, or (2) a student’s request for a hint
with the actual hint message provided by the Tutor. During
tutoring, students had to perform a step correctly to proceed
to the next step, but students could make multiple mistakes.
They could also ask for a hint when they could not perform
a step correctly. The Tutor first provided an abstract hint,
but then students could have asked for a more detailed hint
if necessary, until the Tutor finally provides very specific
instruction on what to do next (e.g., “enter 3x in the
highlighted cell”), the so-called “bottom-out hint.”

The transactions in which students made an attempt at a
step were coded as “Correct” if the Tutor recognized the
attempt as a correct behavior, “Bug” if the attempt was

Table 1: The three most common error schemata. The
problem schema is an abstracted form of an equation with A,
B, and C representing numbers and v representing a variable.
An error schema represents the error pattern by using letters
from the problem schema

Error Schema | Frequency | Problem Schema

multiply by A 73 ANh=C, Alv=-C,
-C=A/v, C=A/v, Av=C,

v/-A=-C, C=v/-A, ...

divide by A 42 -Av=C, -Av=-=C,
C=-Avy, -C=-Av,

vIA=-C, C=V/A, ...

add -B 32 C=-B+Av, -B+(-Av)=-C,
C=Av+(-B), -B+(-Av)=C,

-C=-B+Av

recognized as a known type of error by the Tutor, or “Error”
otherwise. =~ There were a total of 11040 “Correct”
transactions, 2010 “Bug” transactions, and 1097 “Error”
transactions in the dataset. The remaining transactions were
hint requests.

Error Analysis

To analyze errors made by students, we categorized the total
of 3107 Bug and Error transactions by abstracting an error
itself as well as the equation on which the error was made.

We abstracted errors and equations by replacing
numbers and variables with letters. For example, when a
student made an error to “multiply by 3” for “3/x=-4,” the
equation was represented as “A/v = -B” and the error was
represented as “multiply by A.” We call the abstracted form
of error and equation the Error Schema and Problem
Schema. Table 1 shows the three most common error
schemata observed in the dataset.

SimStudent

SimStudent is an application of programming by
demonstration (Cypher, 1993) with an underling inductive
logic programming technique (Muggleton, 1991) that
generalizes examples of correct and incorrect skill
applications to learn individual skills and their applications
sufficient to solve problems.

For SimStudent, generalization for a particular skill
application is done by providing a pragmatic explanation on
“when” the skill should be applied on “what” part of the
problem and “how” a step is made. A generalization of a
skill application is then represented in the form of
production rule. The what- and when-parts of an
explanation compose the condition part (left-hand side) of
the production rule. The how-part composes the action part
(right-hand side) of the production rule.

Learning Algorithms

During tutoring, SimStudent accumulates positive examples
of a particular skill application when (1) the Tutor provides
a bottom-out hint on a step on which the skill is applied, or
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(2) SimStudent correctly applies the skill. On the other
hand, SimStudent accumulates negative examples for a skill
application when (1) SimStudent applies the skill
incorrectly and gets negative feedback from the Tutor, or (2)
when a tutor provides a hint on a different skill — the context
where that skill was applied becomes an implicit negative
example for all other skills. SimStudent composes a
production rule for each individual skill so that the
production rules agree all positive examples and do not
agree any of the negative examples.

To compose production rules, SimStudent uses two
types of prior knowledge: feature predicates and operators.
Feature predicates are boolean functions used to test
whether a particular condition holds in a given situation. For
example, a feature predicate isPolynomial(P) returns the
boolean value true when P is a polynomial expression.
Feature predicates are used to compose conditionals in the
left-hand side of the production rules. Operators are general
string manipulation functions. For example, an operator
getCoefficient(T) returns a coefficient of the term T when T
is a variable term. Operators are used to compose a right-
hand side action sequence to generate the target step in an
example.

Manipulating Prior Knowledge

Students often make errors by treating numbers and
variables superficially without taking the surrounding
context into account. For example, when a student says
3x+2 becomes 5x, he/she may have added 3 and 2 to get 5
and concatenated x to it. Such behavior can be explained as
if the student had recognized the tokens 3 and 2 in the
expression as numbers and since there is a “+” in between,
the student adds these numbers together.

The error analysis mentioned in the previous section
showed that indeed, many of the common errors made by
students can be explained in this way. Namely, students
often rely exclusively on “shallow” features that are more
directly perceived in the input rather than taking the broader
context into account to infer a deep feature. An example of
use of shallow features is the mental equivalent of “fo get a
number in front of a variable” instead of “to get a
coefficient of a variable term.” We model such a shallow
features with the “weak” operators, as opposed to the
“strong” domain dependent operators.

In general, a particular example can be modeled both
with weak and strong operators. For example, suppose a
step x/3=5 gets demonstrated to “multiply by 3.” Such step
can be explained by a strong operator getDenominator(x/3),
which returns a denominator of a given fraction term and
multiply that number to both sides. On the other hand, the
same step can be explained by a weak operator
getNumberStr(x/3), which returns the left-most number in a
given expression. In this context, the operator
getNumberStr() is considered to be weaker than the operator
getDemonimator(), because a production rule with
getNumberStr() explains broader errors. For example,
imagine how we could model the error schema for “multiply

by A.” This error schema can be modeled with
getNumberString() and multiply() — get a number and
multiply both sides by that number. Without the weak
operator, we need to have different (disjunctive) production
rules to model the same error schema for different problem
schemata — getNumerator() for A/v=C and getCoefficient()
for Av=C.

Based on the above observations, we have hypothesized
that we can simulate how students’ learning incorrect skills
from tutored problem-solving by providing SimStudent with
weak operators. The next section describes an empirical
study to test this hypothesis.

Error Analysis Study

Method

SimStudent was tutored on how to solve linear equation by
interacting with Carnegie Learning Algebra I Tutor like
human students learn with the Tutor interactively. That is,
SimStudent was posed a problem and asked to solve it.
When SimStudent performed a step, the Tutor provided
flagged feedback on the correctness of the step performed.
SimStudent attempted to apply rules until a step is
performed correctly. If SimStudent failed to perform a step
correctly, then SimStudent asked the Tutor for a hint. The
Tutor then provided a bottom-out hint by demonstrating
how to perform the step.

There were two experimental conditions: a Strong Prior
Knowledge condition, in which SimStudent was given only
strong prior knowledge, and a Weak Prior Knowledge
condition, in which some of the strong operators were
replaced with weak operators. Specifically speaking, the
strong operators to get a coefficient, to get a name of a
variable in a variable term, to get a denominator, and to get
a numerator were omitted. Instead, SimStudent was given
weak operators such as to get a first number, to get a first
number with sign, and to get a first alphabet letter.

There were also 12 student conditions to control a
difference in training problems. In each student condition,
there were 13 to 20 training problems. Those training
problems were randomly extracted from the same dataset
used to analyze student errors in the previous section.

To measure learning gain, the production rules learned
by SimStudent were tested on the 11 test problems each
time a tutoring was done on a single training problem. A set
of 11 test problems were also selected from the same dataset
from which the training problems were extracted, but they
were semi-randomly selected so that four of the most
commonly observed error schemata shown in Table 2 were
included.

Notice that since the test problems were extracted from
a classroom study where (human) students solved the test
problems. Thus, some of the steps in the test problems were
correct and some were incorrect. To assess the accuracy of
the model, we asked SimStudent to predict what action
could be made for each intermediate state recorded in a test
problem. Namely, we gave SimStudent intermediate states
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Table 2: A list of the four most commonly observed error
schemata appeared in the 11 test problems. In the Error and
Problem Schemata, the letters A, B, and C shows a number
whereas the letter v shows a variable.

Error Schema | Problem Schema

add A -A=B+Cv, A-Bv=C,-Av+B=C
subtract A -A+Bv=-C,Av=B,A=-Bv-C
multiply A -Av=B,A/lv=B,Av=B

divide A -Av=-B,-Av+B=-C,v/A=-B

in a test problem one at a time and (using a terminology in a
literature of production system) asked SimStudent to
computed a conflict set for each state of the given test
problem. We then used an existing Carnegie Learning
Algebra I Tutor to evaluate the correctness of individual rule
applications in the conflict set.

In each of the 12 student conditions, SimStudent was
trained on 113 steps in average (the number of actual
training problems varies). Test problems have 140 correct
and 28 incorrect steps. For the current study, we only
analyzed skills for addition, subtraction, division, and
multiplication.

Measurements

To measure the learning outcome, we have conducted both
qualitative and quantitative assessment for the production
rules learned.

For a quantitative assessment, we computed a step
score for each step in the test problems as follows: 0 if there
is no correct rule application made, otherwise it is a ratio of
the number of correct rule applications to the number of all
rule applications allowing SimStudent to show all possible
rule applications on the step.

For a qualitative assessment, we are particularly
interested in errors made by applying learned rules as well
as the accuracy of prediction. Given a step S performed by a
human student at an intermediate state N, SimStudent is
asked to compute a conflict set on N. Rule application R;
(i=1, ...,n)is coded as follows:

True Positive: R; yields the same step as S, and S is a
correct step.

False Positive: R; yields a correct step that is not same
as S (S may be incorrect).

False Negative: R; yields an incorrect step that is not
same as S (S may be correct).

True Negative: R; yields the same step as S and S is an
incorrect step.

Results

Impact of Prior Knowledge on Learning

Both the Weak Prior Knowledge (Weak-PK) and Strong
Prior Knowledge (Strong-PK) conditions learned skills and
the performance on test problems improved as learning
proceeded. Figure 1 shows average step score, aggregated

across the test problems and student conditions. The X-axis
shows the number of training iterations.

The Weak-PK and Strong-PK conditions had similar
success rates on test problems after the first 8 training
problems. After that, the performance of the two conditions
began to diverge. On the final test after 20 training problems,
the Strong-PK condition was 82% correct while the Weak-
PK was 66%, a large and statistically significant difference
(t = 4.00, p < .001). Further, we fit simple power law
functions to the learning curves (converting success rate to
log-odds) and observed that the slope (or rate) of the Weak-
PK learning curve (.78) is smaller (or slower) than that of
the Strong-PK learning curve (.82). To test whether this
learning rate difference is significant, we subtracted the two
functions in their log-log form and verified in a linear
regression analysis that the coefficient of the number of
training problems (which predicts the difference in rate) is
significantly greater than 0 (p <.05).

While it is obvious that differences in prior knowledge
can yield to differences in initial performance (as might be
measured by a pre-test), this demonstration shows how
differences prior knowledge can also affect the rate at
which learning occurs.
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Figure 1: Average step score after each of the 20 training
problems for SimStudents with either strong or weak prior
knowledge.

Impact on Prior Knowledge on Error Prediction

Figure 2 shows a number of true negative predictions made
on the test problems for each of the training iterations.
Surprisingly, the Weak PK condition did make as many as
22 human-like errors on the 11 test problems. On the other
hand, the Strong PK condition hardly made human-like
errors.

To understand how well SimStudent predicted human-like
errors, we computed an accuracy of error prediction, called
Error Prediction score, as True Negative / (True Negative +
False Negative) on incorrect steps in test problems. Figure 3
shows the average of Error Prediction score for each of the
training iterations.

As can be seen in the figure, the Error Prediction score
improved for the Weak PK condition as learning proceeded.
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the same errors made both by SimStudent and human
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Figure 3: Average of Error Prediction score after each of the
20 training problems for SimStudents with either strong or
weak prior knowledge.

This implies that SimStudent made more human-like errors
than non-human like errors when trained on more problems.
This observation further implies that the proposed model
predicts that it is difficult to get rid of human-like errors
when the learner does not have Strong prior knowledge.

Table 3 shows the types of human-like errors made by
SimStudent and the corresponding type of equations on
which the error was made on the test problems.

Although that SimStudent with Weak PK did actually
make many human-like errors is an encouraging result,
knowing the contents of production rules that SimStudent
learned (which reveals the cause of the errors) provides us
more knowledge about the impact of Weak PK on learning.
The next section shows qualitative analysis of production
rules learned with the Weak prior knowledge.

Production Rules Learned

Recall that we gave the Weak PK conditions three weak
operators — first-number, first-number-with-sign, and first-
alphabet. All human-like errors shown in Table 3 can be

explained using those operators. For example, an error to
“add B” for “A = B+Cv” can be learned as the follows:

IF right-hand side (RHS) is polynomial
THEN  get a first number from RHS, and
add that number to both sides

The italicized operation corresponds to a weak operator of
first-number. This rule might be learned from A=-B+Cv
gets “add B.”

Probably the most striking finding is that SimStudent
sometimes learned correct production rules by combining
weak operators.

In one student condition, SimStudent first learned a
skill to divide as “when the left-hand side (LHS) has a
coefficient and RHS is a constant number then divide both
sides by the first number with sign in LHS,” which is
represented as a production rule as follows:

IF LHS has a number before alphabet, and
RHS is constant number

THEN get a first number with its sign from LHS, and
divide both sides with it

This production rule generated a human-like error to “divide
A” for “v/A=B” during tutoring. SimStudent then revised
the rule as follows:

IF LHS consists of a number and an alphabet
THEN get the first alphabet from the LHS, and
compute a quotient of LHS divided by the
alphabet, and
divide both sides with the quotient

The first two operations in the action part of this production
rule are basically extracting a coefficient of a variable term.
Namely, SimStudent eventually learned how to take a
coefficient of a variable term by combining given weak
prior knowledge. This observation suggests that SimStudent
can also model students learning prior knowledge for future
learning. This must be further investigated this in the future
studies.

Table 3: Errors and problem schemata that appeared during
the test as shown in Figure 2.

Error Schema | Problem Schema | Freqency
add B A=B+Cy 55
add A -AvitB=C 52
add A A-Bv=C 44
add C AvtB=C 23
add C Av+tB =-C 23
add A -A=B+Cy 22
subtract A -A+Bv=C 20
subtract A -AvitB=C 20
divide A v/IA=B 14
multiply A Alv=B 11
multiply A Av=B 2
subtract C Av+B =-C 1
subtract A A =Bv+C 1
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Discussion

In this paper, we showed that SimStudent can be treated as a
computational model of human learning, and demonstrated
the ability to model the error-prone process of student
learning in a complex problem-solving domain. The
fundamental hypothesis is that when students rely on more
perceptually grounded, shallow prior knowledge then they
are more likely to learn incorrect skills.

We have seen the impact of Weak prior knowledge on
learning in two ways: (1) although SimStudent learns skills
with the Weak prior knowledge, the rate of learning slows
down and the accuracy of learned skills is not as good as the
ones learned with the Strong prior knowledge, and (2) the
Weak prior knowledge leads SimStudent to learn
qualitatively different production rules than the ones learned
with the Strong prior knowledge. With the Weak prior
knowledge, SimStudent often learned incorrect production
rules that produced the same errors the human students
made.

In prior comparisons of SimStudent with real student
data (Matsuda, Cohen, Sewall, Lacerda, & Koedinger,
2007), we found that SimStudent started off behind real
students (perhaps because real students have equation
solving experience prior to using the tutor), but then quickly
passed them. Namely, in these prior runs of SimStudent,
which used only strong prior knowledge, the learning rate
was too fast relative to human students. The current weak-
PK version of SimStudent is not only producing plausible
student errors but is learning at a slower rate that may well
better correspond with the learning rate of real students. We
will explore such a comparison in future work.

In the study shown in this paper, we controlled prior
knowledge only for the operators to manipulate algebraic
expressions. We also noticed that human students often pay
attention only to surface (shallow) features of the problems.
Such skewed perception on features can be modeled as
weak feature predicates for SimStudent. An impact of
having perceptually grounded weak feature predicates along
with the weak operators on learning must be tested in the
future studies.

In the current study, we have designed weak operators
based on the observation of errors made by human students.
One way to increase a cognitive fidelity of the proposed
computational model is to provide more human-like “weak”
prior knowledge. Analyzing students’ misconceptions and
beliefs in conceptual knowledge (as opposed to the
procedural skills represented as production rules) would
provide insight into designing such human-like “weak”
prior knowledge. Such an attempt would also lead us to
better understanding on how and why prior knowledge
affects not only solving problems but also learning
procedural skills.
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