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Abstract

Young human learners possess a remarkable ability to make
inductive inferences from sparse data. Recent research
suggests that children’s generalizations are sensitive to the
process by which data are generated (i.e., teacher-driven vs.
learner-driven sampling; Xu & Tenenbaum, 2007). In general,
sampling process and properties of objects are tightly coupled,;
knowing how the data were sampled can inform your
inference about property extensions, and vice versa. In real-
world situations, however, both the extension of novel
properties and the sampling process may be ambiguous.
These situations commonly arise when children are learning
socially from adults. How do children confront the challenge
of simultaneously inferring both the property extension and
the sampling process from a small amount of data? Here we
present a Bayesian model showing how this joint inference
problem can be solved. Consistent with the predictions of the
model, two behavioral experiments suggest that toddlers
(mean: 16 months) can use the relationship between a sample
and a population to infer both the sampling process and the
extent to which a non-obvious object property should be
generalized.
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Previous developmental research suggests that young
children have a remarkable ability to make inferences from
small amounts of data. Children can learn object kinds,
causal properties, and word meanings from just a few trials
of evidence (Carey & Bartlett, 1978; Gopnik, Sobel, Schulz,
& Glymour, 2001; Mandler & McDonough, 1996). Indeed,
even infants can generalize a non-obvious property of an
object (e.g., squeaking) to a similar-looking object after just
a single exposure (Baldwin, Markman, & Melartin, 1993).
However, the process by which data are generated can
influence the learner’s inferences. Strikingly, even 8-month-
olds are sensitive to sampling processes: they expect that a
blind-folded draw from a bin of balls should result in a
sample representative of the population (Xu & Garcia,
2008). Recent research suggests different sampling contexts
are particularly important when learning in social contexts.
For example, three- and four-year olds generalize a label for
a novel object more conservatively when the exemplars are
sampled by a knowledgeable teacher than when they are

chosen by the learners themselves (Xu & Tenenbaum, 2007).

Another recent study showed that children can even make
sophisticated inferences about mental states of others given

a goal-directed, non-random sampling process. When an
agent (i.e., a squirrel puppet) deliberately draws a non-
representative sample of toys from the population,
preschoolers infer that the agent has a preference for the
sampled objects (Kushnir, Xu, & Wellman, 2008). Recent
modeling work on preference learning shows that children
can make these inferences by assuming that the agent selects
the samples based on their subjective utility of each example
(Lucas, Griffiths, Xu, & Fawcett, 2008). Note, however, that
in these studies, the sampling process was specified by
information about the person drawing the sample: the agent
drawing the sample was either a knowledgeable adult or the
child herself (Xu & Tenenbaum, 2007), was blindfolded or
had visual access (Xu & Garcia, 2008), or was clearly
intentionally selecting specific objects (Kushnir et al., 2008)

Frequently however, the sampling process may be less
obvious; the learner may need to make inferences about
both the sampling process and the properties of objects.
Consider an example where mom pulls a few blue toys out
of a box of blue and yellow toys and squeaks the blue toys.
Did she select just the blue ones because only the blue toys
squeak? Or did she sample from the whole box and just
happened to pull out all blue toys that squeak? How can the
child tell, and how is this inference about the sampling
process linked to their inference about the property of the
yellow toy?

Problems of this nature are much more difficult, because
inferences about sampling process and property extension
are tightly coupled: inferences about one should affect
inferences about the other, but you need to infer both
simultaneously. This chicken-and-egg problem comes up
particularly in social contexts, where children are learning
from other people. Because the cues to the appropriate
sampling process may be ambiguous or too subtle for young
learners to catch, they might not be able to use information
about the sampling process to learn the extension of a
demonstrated property from a few samples of evidence.

This challenge poses an interesting question: how do
young children confront a situation in which both variables
need to be inferred? Here we provide a simple Bayesian
model that captures how this joint inference problem can be
solved. We then present the first empirical evidence that
toddlers (mean: 16 months) can engage in these joint
inferences to determine both the nature of the sampling
process and the extension of non-obvious object properties.

1282



Samplmg Process Property Extensnon
(S) (T)
Sequence of Data YeIIow Balls Squeak"
(D) (Y)

Figure 1: A simple Bayes net describing the joint
inference problem in the current study.

We end with a discussion of the relationship between the
model predictions and behavioral results, and its
implications for the mechanisms that support inductive
generalization in early childhood.

A Bayesian Model

Our example forms the basis for our experiment. Children
saw an experimenter pull either one or three blue balls from
a box filled with blue and yellow balls. They were shown
that the blue ball(s) squeaked when squeezed. The question
was whether children would expect this property to
generalize to the yellow ball. We measured these
expectations based on the toddler’s exploratory behavior:
after observing the data of one or more squeaking balls,
children were given a yellow ball, which did not in fact
squeak. We recorded the number of times the children tried
to squeeze the yellow ball. The more times they squeeze, the
more we can attribute to them the expectation that the
yellow balls squeak. We varied the number of balls
observed, as well as the proportion of blue and yellow balls
in the box. These factors determine how likely the observed
sample appears to be under different joint hypotheses about
the sampling process and the property’s extension, and we
will study how children’s inferences in different situations
relate to an ideal Bayesian analysis.

The joint inference problem facing children in this
situation can be described in terms of a simple Bayes net
(Figure 1). The learner observes data D = n examples of
blue balls that squeak, which are drawn from a box
containing a fraction () of blue balls and 1-8 yellow balls.
Because the task does not provide explicit cues about the
sampling process, the learner needs to make inferences
about both the sampling process S and the property
extension T purely from data D. For simplicity, we consider
only three possible values for T (t;: the property applies only
to blue balls; t,: only to yellow balls; t3: to all balls) and two
possible values for S (s;: randomly sampling from just the
squeaking set of balls, specified by T; s;: randomly
sampling from the whole box).

The learner’s goal is to predict Y, the proposition that
yellow balls squeak. Y depends directly on T, not S or D;
given that we know the set of balls that squeak, the observed
data or the process by which the data were sampled is
irrelevant to predicting whether the yellow balls squeak.
However, inferences about T from D must take into account
the different possible values of S; formally, our Bayesian

analysis must integrate out S in scoring each value of T.
Because the data are inconsistent with hypothesis t,, only
two hypotheses for T are relevant; t; predicts that yellow
balls squeak while t; predicts that they do not. Following
Tenenbaum and Griffiths (2001), the evidence for one of
these hypotheses over the other can be measured by the
likelihood ratio:

P(D|t3)

_ _P@its, )
PDIE)

~ P(n|ty, B)

We posit that children's exploratory behavior -- how much
they squeeze the yellow ball, expecting a squeak -- will be
monotonically related to L. This analysis makes predictions
that are independent of the prior probabilities children
assign to t; or ts3, removing a degree of freedom that would
otherwise need to be measured or fit empirically to their
behavior.

These likelihoods can be computed by integrating out the
sampling process:

P(lt,f) = ) P(lt,s, BP(s).

s; €S

To evaluate these likelihoods we need the following four
conditional probabilities:

P(nlt;, s, B8) = 1.

P(nlty,s;, ) = B
P(n|ts, s1,B) = B
P(n|ts, s2, B) = B".

Let o denote the prior probability P(s;), that the

experimenter is sampling from just the squeaky balls; P(s,)
=1 - a. We then have:

P(n|ty, B)

> P(lts, 5 HPG)
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P(n|t3, s1, BIP(s1) + P(nlts, sz, BIP(s2)
Bra+ (1 - 0)

= ﬁn_

The likelihood ratio, measuring the evidence in favor of the
proposition that yellow balls squeak, is then:

_ P(nlts, B)

"~ P(nlty, B)

_ p"
Tp(l-aw)+a”
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Experiment 1

In this behavioral experiment we asked whether toddlers
could solve this joint inference problem. Children saw an
experimenter draw blue balls from a box and were then
given the yellow ball to play with. We varied the parameters
n and f to provide: 1) evidence that could have been
generated in either sampling processes (Blue_3balls
condition: n = 3, f = 0.75), or 2) evidence for a very
suspicious coincidence that might suggest a non-random

sampling process (Yellow_3balls condition: n = 3, # = 0.25).

As we show in the results section, our Bayesian analysis
predicts very different strengths of evidence in these two
cases.

Methods

Participants Thirty toddlers (mean: 15 months, 24 days;
range: 13 to 18 months) were recruited from a local
children’s museum, and randomly assigned to Blue_3balls
condition or Yellow_3balls condition.  Children were
excluded from analysis if they did not complete the
procedure due to fussing out or if they did not interact with
the target object at all. Three children were excluded and
replaced for these reasons.

Materials Two foam-board boxes were constructed (30 X
45cm x 30 cm). Each box had a hidden compartment in the
back. One box contained 12 blue balls and 4 yellow balls
(henceforth the Blue Box), and the other contained 4 blue
balls and 12 yellow balls (henceforth the Yellow Box). The
front side of the boxes was transparent, and all 16 balls were
visible through the transparent window. The blue balls had a
squeaking mechanism inside. The squeaking mechanism
was removed from the yellow balls so that they were inert.
Additionally, the yellow balls had a wooden handle with a
bell-shaped object at the end (providing an additional
‘banging’ affordance so the child could readily engage in a
behavior other than squeezing the balls). Thus the objects
were perceptually similar (an adult would categorize them
all as ‘dog toys’) but not identical. The boxes had a small
opening at the top, allowing the experimenter to pull out the
balls from the hidden compartment. Thus even when the
balls were pulled from the box, the view from the front of
the box (showing all 16 balls) stayed constant.

Procedure Children were tested individually in a quiet lab
room at the Children’s Museum. The child sat on a
highchair or on a small stool; the parent sat behind the child,
out of the child’s line of sight. A box (Blue or Yellow box
depending on condition) sat on a low table in front of the
child. Children saw the Blue Box (blue:yellow = 3:1) in
Blue_3balls condition, and the Yellow Box (blue:yellow =
1:3) in Yellow_3balls condition. The experimenter drew the
child’s attention by pointing to the transparent window and
the contents of the box. . In all conditions, the experimenter
had informational access to the contents of the box.
However, her action was identical across conditions: there
was no way to tell whether she was sampling from a specific

Yellow_1ball
(Exp. 2)

Blue_3balls
(Exp. 1)

Yellow_3balls
(Exp. 1&2)

Figure 2. A

schematic
experimental procedures in Experiments 1 and 2.

drawing of the

subset of balls in the box or sampling from all objects in the
box. Each time she pulled out a ball, she squeezed the ball
so that it squeaked and then set that ball on the table. She
repeated this procedure to pull out a total of three blue balls
in both conditions. The experimenter then pulled out a
yellow ball and put it in front of the child. The child was
allowed to play freely with the ball for 30 seconds.

Results & Discussion

We coded both the number of children who squeezed the
yellow ball and the number of times each child tried to
squeeze the ball during the 30 seconds of free play. The data
was coded either by the first author or a second coder. An
additional coder, blind to the experimental conditions
recoded all of the data. Inter-coder reliability averaged 94%.

Under the Bayesian framework described earlier, children
might consider the following four joint hypotheses about the
sampling process and property extension:

H1: sampling = squeaking set (s,), property = blue (t,)
H2: sampling = whole box (s,), property = blue (t,)
H3: sampling = squeaking set (s,), property = all (t3)
H4: sampling = whole box (s,), property = all (t3).

In Yellow_3balls condition, when three blue balls (n = 3)
are pulled and squeaked from a box that contains only %
blue balls (8 = 0.25), the sample is very unlikely under the
random sampling assumption; the data support s;. This
inference is tightly coupled to the property extension. If the
experimenter is selecting the balls from the squeaking set
only, the data are most consistent with the hypothesis that
just the blue balls have the squeaking property. Therefore,
the joint hypothesis H1 makes the observed sequence of
data more likely than any of the three other alternatives. In
Blue_3balls condition, however, the data do not
discriminate between s; and s,: a random sampling process
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could generate three blue balls from the Blue Box. If the
sampling process could have been random, the data also do
not provide evidence that only the blue balls squeak, as
opposed to all the balls. Therefore, children should attempt
to squeak the yellow ball less often in Yellow_3balls
condition than in Blue_3balls condition.

The experimental results confirmed our prediction: mean
number of squeezes was significantly fewer in
Yellow_3balls than in Blue_3balls condition (2.53 vs. 0.87;
t(28) = 2.45, p < 0.05, see Figure 3). Consistent with this
result, fewer children squeezed the ball in Yellow_3balls
than in Blue_3balls condition (33% vs. 80%; x* (1, N=30) =
8.89, p < .005). These results suggest that toddlers’
inferences about the sampling process and property
extension led them to constrain their generalization of the
squeaking property to the blue ball in Yellow_3balls
condition, whereas children in Blue_3balls condition were
willing to generalize the property to both balls. This is
consistent with our model predictions: assuming that two
sampling hypotheses (sl and s2) are equal a priori (a= 0.5),

the likelihood ratio L = EE:?Q is 0.59 for Blue_3balls
1
(n=3, p =0.75), and 0.03 for Yellow_3balls condition (n=3,

B =0.25) (see Figure 3).

Experiment 2

Experiment 1 suggests that toddlers can infer both the
sampling process and extension of a novel object property
from data, even when the sampling process is otherwise
ambiguous. The results are consistent with the predictions
provided by our Bayesian analysis. However, it is possible
that the children were simply sensitive to the ratio of objects
in the box. Note that the blue balls were the majority of
objects in the box in Blue_3balls condition (blue:yellow =
3:1) and the minority in Yellow_3balls condition (blue:
yellow = 1:3). If children assumed that properties of the
majority-object could be generalized to the minority-object,
they would generalize the squeaking property to the yellow
ball in Blue_3balls condition and not in Yellow_3balls
condition.

In Experiment 2, we addressed this alternative
explanation by running a condition (Yellow_1ball condition)
in which we draw just one blue ball out of the Yellow Box.
Even though % of the balls in the box are yellow, a single
blue ball could be drawn from this box as a result of a
random sampling process. This single piece of data does not
discriminate between s; and s, and it also does not provide
strong evidence for either t; or t;. Because we wanted to
replicate our results internally and ensure that the children
really would constrain their squeezing when the sample was
non-representative, we also ran another condition in which
three blue balls were drawn from the Yellow box
(Yellow_3balls replication, identical to Yellow_3balls
condition in Experiment 1). The prediction is that the
children restrict their generalization of the squeaking
property to the blue ball significantly more in Yellow_3balls
replication than in Yellow_1ball condition (i.e., the results

Behavioral Results
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Figure 3: The Likelihood ratios predicted by the
model (top) and the mean number of squeezes
from Experiments 1 & 2 (bottom).

of Yellow_3balls replication should replicate Yellow_3balls
condition in Experiment 1, while the results of
Yellow_1ball condition should mirror Blue_3balls condition
in Experiment 1).

Methods

Participants Thirty-four toddlers (mean: 15 months, 14
days; range: 13 to 18 months) were recruited from a local
children’s museum and randomly assigned to Yellow_1ball
condition or Yellow_3balls replication. The same criteria as
in Experiment 1 were used to exclude children from analysis:
seven toddlers were excluded and replaced for these
reasons. Two additional children were excluded and
replaced, one due to experimental error and one due to
parental interference.

Materials The same materials as in Experiment 1 were used.

Procedure The experimental procedure was identical to that
of Yellow_3balls condition in Experiment 1 except that in
Yellow_1ball condition, only one blue ball was drawn from
the box. Yellow_3balls replication was an exact replication
of Yellow_3balls condition.

Results & Discussion

The results were coded as in Experiment 1. The results were
consistent with our predictions: there was a trend for
children to squeeze less often in Yellow_3balls replication
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than in Yellow_1ball condition (2.12 vs. 1.12; t(32) = 1.48,
p = 0.14, see Figure 3)* and significantly fewer children
squeezed the ball in Yellow_3balls replication than in
Yellow_1ball condition (41% vs 82%; %° (1, N=34) = 6.1, p
< .05). These results were also consistent with our model
predictions. Assuming a = 0.5 as in Experiment 1, the

likelihood ratio L= ~CI%8) 45 040 for Yellow 1ball
P(n|t1.8)

condition (n=1, # = 0.25) and 0.03 for Yellow_3balls
replication (n=3, § = 0.25) (see Figure 3). Also as predicted,
the results of Yellow_1ball condition mirrored those of
Blue_3balls condition (number of children squeezing: 82%
vs. 80%, p = ns; mean squeezes: 2.53 vs. 2.12, p = ns) and
Yellow_3balls  replication  replicated  Yellow_3balls
condition (number of children squeezing: 33% vs. 41%, p =
ns; mean squeezes: .83 vs.1.12, p = ns).

Thus although blue balls were the minority object in both
conditions of Experiment 2, children were willing to
generalize the property to the yellow ball when the blue ball
was potentially randomly sampled from the box
(Yellow_1ball condition). When the sample was unlikely to
be randomly generated (Yellow_3balls replication), children
constrained their generalization. Note further that the
toddlers squeaked the ball more often in Yellow_1ball
condition than in Yellow_3balls replication, even though
they actually saw a ball being squeaked more often in
Yellow_3balls replication (three times) than in
Yellow_1ball condition (once). Therefore, children’s
tendency to squeak the ball was unrelated to the number of
times they actually saw the target action but was well
predicted as a joint inference about the sampling process
and the property extension.

General Discussion

In the current study we presented a formal Bayesian account
that captures how the sampling process and extension of
object properties can be simultaneously inferred from a
small sample of data. We also provided evidence that 16-
month-olds can correctly solve this joint inference problem
in the way that is consistent with the model’s predictions.

In learning a concept, object label, or an object property
from sampled examples, there are at least two possible
sampling processes that give rise to an observed set of
positive examples. To decide whether to generalize an
object label or property to beyond the examples given, it is
important to know how the examples are generated. In the
context of the current study, the hypothesis that the
experimenter is sampling from just the squeaking set of
balls (sy) represents a kind of ‘pedagogical’ sampling or
‘preference-based’ sampling: the experimenter knows which
balls squeak, and is deliberately choosing just those balls

! One child in Yellow_3balls replication was an outlier -
squeezing the ball 3 standard deviations more than the mean (7 vs.
1.12 squeezes). Excluding that child from the analyses, the
difference in the mean number of squeezes between conditions C
and D is then also significant (2.12 vs. 0.75; t(31) = 2.35, p <
0.05).

either because she wants to show them to the child or
because she likes them. Tenenbaum and Griffiths (2001)
referred to this mode of sampling as ‘strong sampling’ in
which the examples are sampled from just the property’s
extension, as opposed to ‘weak sampling’” where the
exemplars are drawn from all available objects
independently of their properties and the sampled objects
happen to have that property by chance.

Previous work by Xu and Tenenbaum (2007) shows that
3- and 4-year-olds can infer which sampling mode is more
appropriate given the pragmatics of the learning situation. In
this study, children were given a set of objects spatially
sorted according to their basic and subordinate categories.
When a knowledgeable speaker provided three examples of
objects from the same subordinate category and paired them
with a label by saying “this is a blicket” (teacher-driven
condition), children restricted their generalization of this
label to a very specific set of objects that are similar to the
exemplars. However, when only the first example was given
by the teacher and the two additional examples were drawn
by the children themselves from the same subordinate
category (learner-driven condition), they generalized the
label more broadly at the basic category level. These results
suggest that children readily recognize the difference in
sampling processes and apply the appropriate sampling
assumption in order to support their generalization.

The authors provide a Bayesian analysis to explain their
results. In the teacher-driven condition, an example of three
objects from the same subordinate category is a highly
suspicious coincidence had the teacher been sampling from
the whole set of objects. Under strong sampling assumption,
the size principle (Tenenbaum & Griffiths, 2001) strongly
favors a smaller set of objects (i.e., the same subordinate
category) as the population from which the teacher was
sampling from. In the learner-driven condition, however,
only the first example was given by strong sampling and the
subsequent examples were drawn by the children under
weak sampling. Although the learner observes the same
object-label pairings as in the teacher-driven condition, the
likelihoods of observing the data given different hypotheses
about the concept extension do not provide strong evidence
for subordinate-level interpretation of the label over the
basic-level interpretation.

Note that, however, the evidence for the appropriate
sampling context was given by the pragmatics of the task in
this study: a knowledgeable adult was sampling in the
teacher-driven condition, and children were implicitly
encouraged to choose examples just from the same
subordinate category as the first example in the learner-
driven condition. In real-world learning situations, the
process by which the data is generated may not be as
obvious: for example, the behavior of the agent may fail to
distinguish sampling from a subset of the population versus
sampling from a whole population (as in the current
experiment) or the social cues that might indicate the
sampling process may be too subtle for young learners who
may not yet have a fully-fledged theory of mind (Gopnik &
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Astington, 1988; Wellman, Cross, & Watson, 2001;
Wimmer & Perner, 1983). The current study shows for the
first time that children as young as 16 months old can infer
the sampling process purely from observing the sample.

Our model suggests that children use the number of
samples(n) and the proportion of blue and yellow balls in
the population(f) to make joint inferences about the
sampling process and property extension. In future work,
one might parametrically vary n and g to see whether
children’s responses vary accordingly, or present different
data sequences that might suggest other sampling processes
(thus varying a, which was set to 0.5 in our model).

A related but alternative possibility is that children solve
the problems in our study, not as a simultaneous inference,
but by first inferring the sampling process and then using
this information to infer the property extension. Because
they infer that the experimenter intentionally selected three
blue balls to show that they squeak, they might conclude
that just the blue balls have the property. Although the
underlying processes are similar to what our model has
proposed, future work might distinguish between these
possibilities.

We found that the mean number of squeezes across
conditions was consistent with the model predictions.
However, it is still unclear how exactly this behavioral

measure correlates with the likelihood ratios from the model.

Here we assumed that the mean number of squeezes might
reflect the strength of children’s belief that the yellow ball
has the squeaking property: because the yellow ball was
inert, children might perseverate to the degree that they are
convinced that the vyellow ball should squeak. The
likelihood ratios reflect the strength of evidence that the
sample provides for discriminating the two hypotheses
about property extension (all balls squeak vs. only blue balls
squeak). Although it is reasonable to assume that these two
measures might be highly correlated, note that the
differences between the group means in the number of
squeezes were mainly driven by the children who did not
squeeze at all. Note, further, that the all-or-none measure of
whether a child squeezed or not showed the same qualitative
pattern as the mean number of squeezes. Further research in
both computational modeling and behavioral experiments
should aim to clarify what aspects of the behavior the model
is predicting.

Our findings bear on the theoretical stance that humans
are rational learners from very early in development.
Inferring both the property extension and sampling process
is one of the chicken-and-egg problems that children
frequently encounter in real-world learning situations. Our
study suggests that young learners possess a powerful

mechanism to support inductive inference in early childhood.

Through this mechanism, children can not only make
generalizations from sparse data but can also, even in the
absence of explicit social cues, do so by inferring and
integrating the processes by which the data are generated.
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