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Abstract

Cognitive activity modulates the distribution of human re-
sponse latencies in different ways, and this is a central tool in
experimental psychology. An issue that has received little at-
tention is the ‘baseline’ state of these latencies, against which
different cognitive modulations could be compared. A recent
theory predicts that the right tails of human response latency
distributions should follow a power-law with a constant scal-
ing parameter of two, independently of the task or participants
under study. We demonstrate this through the analysis of six
large-size databases of human latencies. This finding intro-
duces a fundamental constant that describes the ‘resting state’
of the cognitive system, and opens the possibility of directly
measuring the amount of information processing performed in
a task or condition.

Keywords: Reaction Time; Power law; Bayesian inference;
Complex system

Introduction
Response latencies [RLs] – the times taken to initiate or com-
plete an action or task – are one of the most widely used
measures to investigate the mechanisms subserving human
cognitive processes. The right tails of RL distributions have
received little attention in experimental psychology. This is
because such very long RLs have traditionally been consid-
ered irrelevant for psychological tasks as they are likely to re-
flect ‘contingent’ neural events unrelated to the experiment.
Therefore, current standard practice recommends discarding
very long RLs as outliers (e.g., Luce, 1986; Ratcliff, 1993).
In this study, we show that these right tails provide crucial
information about the ‘baseline’ level of RLs against which
cognitive processes can be compared. This finding introduces
a fundamental constant of the cognitive system that links be-
havioral measures to their neurophysiological bases.

A pervading assumption in the literature is that RLs follow
a distribution whose right tail decreases exponentially (Luce,
1986). RLs are ultimately by-products of the workings of
the brain, and further, of the firing patterns of heavily inter-
connected neurons. From this perspective, exponential tails
would be a rather surprising outcome for RL distributions.
They would imply that the RLs were generated by a Poisson
process, that is, they would be independent events, despite the
interconnections between the neurons that generated them.

More in line with the probably correlated origins of behav-
ioral events, two recent theories have predicted that the right
tails of RLs distributions should follow a power-law (Holden,
Van Orden, & Turvey, 2009; Moscoso del Prado Martı́n,
2009). This is to say that for all times t greater than a cer-
tain tmin, their probability density function should be that of a

Pareto distribution:

p(t) =
α−1
tmin

(
t

tmin

)−α

, α > 1, t ≥ tmin, (1)

where α is referred to as the scaling parameter, and it corre-
sponds to the slope of the straight line that is formed by the
density function when plotted on log-log scale. A more pre-
cise theoretical proposal (Moscoso del Prado Martı́n, 2009)
is that RLs arise as the result of the ratio of two correlated
normal variables: The excitability of the response effector,
and the strength of the signal that excited it. Therefore the
distribution of RLs should follow a normal ratio distribution
(NRD; Fieller, 1932). This has the further implication that
the power-law right tail should have a value of the scaling pa-
rameter of exactly two (Jan, Moseley, Ray, & Stauffer, 1999;
Sornette, 2001).1 Such a precise tail behavior would hold ir-
respective of the properties of the task. It would constitute a
complete description of the RL distribution in this region, in
the strong sense of having zero degrees of freedom. The scal-
ing parameter value would therefore represent a fundamen-
tal constant of the cognitive system. Furthermore, it would
group RLs with other well-known natural systems with iden-
tical properties, such as Ising models of ferromagnetic mate-
rials close to their critical temperature (Jan et al., 1999) or the
intervening times between major earthquakes (Mega et al.,
2004).

Materials
RLs in the far tails are by definition very rare. Obtain-
ing estimates of the distributions in this region requires very
large numbers of – ideally untruncated – responses. For-
tunately, massive databases of human responses collected
on the internet are currently becoming available, offering
enough long RLs as to enable inferences on their tail dis-
tribution. We analyzed six such large-scale datasets of hu-
man responses across experimental tasks and modalities, and
at different time ranges. The datasets included ocular fixa-
tion and blink durations during reading (The Dundee Corpus)
(Kennedy, 2003), spontaneous ocular fixation durations while
participants were inspecting photographs (DOVES database)
(van der Linde, Rajashekar, Bovik, & Cormack, 2008), and
a sample of different web-collected experiments extracted
from the PsychExperiments web site (?, ?; McGraw, Tew,
& Williams, 2000). This last set included two-choice deci-
sion reaction times to both auditory (tones) and visual (col-

1See Moscoso del Prado Martı́n (2009) for details on this theory.
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ors) stimuli, reaction times of participants performing a men-
tal rotation task, and the times that participants took to exit a
virtual maze.

The data from PsychExperiments correspond in their
greater part to latencies of psychology students performing
the experiments during in-class sessions, but some residual
component of latencies originating from persons ‘trying out’
the system is also present. In order to minimize in as a much
as possible the distortion of the distributions introduced by
users testing the system, only RLs from participants whose
number of responses in the database corresponds exactly the
number of stimuli in the experiment, were kept. In addition,
all RLs with values equal or smaller than zero, or for which
some field of the downloaded file was contained an incosis-
tent value (e.g., an incorrect task descriptor, etc.) were re-
moved prior to the analyses.

The experimental RLs were measured to a precision of
1 msec.(Tew & McGraw, 2002), except for the ocular RLs
from DOVES, which had a precision of 5 msec. (i.e., the eye-
tracking equipment used a sampling rate of 200 Hz.). A simi-
lar discretization was perfomed on the artificially generated
datasets, simulating an experimental resolution of 1 msec.
relative to a median of 9,278 msec. estimated by maximum
likelihood.

Right Tails

The solid dots in the left panel of Figure 1 plot (in log-log
scale) the histograms of the latencies in each of the datasets,
aggregated across participants. Notice that all six distribu-
tions show a very similar pattern: The probabilities of the
faster latencies rise to a peak, from which they decrease, grad-
ually approaching a straight line. This straight line is the char-
acteristic signature of a power-law distribution. Importantly,
as predicted, the straight line components seem remarkably
parallel across the six datasets, with a slope of approximately
minus two (black dot-dashed lines). The right panel in Fig-
ure 1 further stresses this apparent invariance. It plots the
corresponding distributions when the times have been divided
by their medians. In this way, the principal scale-dependent
component of the distributions – the location of their modes
– is removed. After this simple normalization, we can distin-
guish three phases in the distributions. The early times rise
to a peak, following very different patterns for each dataset.
From the mode up to somewhere between five and forty times
the median, there is a transition phase where the distributions
gradually approach a power-law. The precise speed of conver-
gence to the power-law varies depending on the properties of
the participant and the task (Moscoso del Prado Martı́n, 2009;
Holden et al., 2009). From this point onwards – as shown by
the inset panel in the figure – the distribution of latencies is
approximately the same, regardless of the particular exper-
imental task. To confirm that this pattern holds when one
considers only single-participant data, the figures also plot
the histogram of the responses of an individual participant in

the Dundee dataset (open red circles).2 Finally, in order to
illustrate the theoretical prediction across the whole range of
latencies, the figure also includes the theoretical density that
would be predicted by an instance of the NRD with arbitrary
parameters (black solid lines), and how the histogram from a
sample of such would look like (grey open circles).

The histograms in Figure 1 seem consistent with the
hypothesis that the right tails of latency distributions fol-
low a power-law with a scaling parameter of two, and
most certainly discard the traditional assumption of a light,
exponential-type tail. However, other heavy-tailed distribu-
tions could also produce histograms with this appearance, and
this has given rise to disagreements with respect to the pre-
cise nature of heavy tails in some datasets (Barabási, 2005;
Barabási, Goh, & Vazquez, 2005; Stouffer, Malmgren, &
Amaral, 2005; Oliveira & Barabási, 2005). Therefore, we
need to compare our hypothesis with other possible distribu-
tions with similar right tails. Both log-normal and stretched-
exponential (i.e., Weibull) tailed distributions also give rise
to very heavy tails (Limpert, Stahel, & Abbt, 2001; Mitzen-
macher, 2004; Clauset, Shalizi, & Newman, 2007; Stouffer
et al., 2005), and both have been proposed as plausible theo-
retical or empirical models for latency distributions (Logan,
1992; Luce, 1986). In addition, as we predict that the power-
law should have a scaling parameter of exactly two, any other
power-law with an arbitrary scaling parameter – not necessar-
ily, but also including two – could be an alternative descrip-
tion (Holden et al., 2009).

Model Comparison Method
For an objective rationale to choose among the four possi-
ble explanations for the heavy tails, we used pairwise Bayes
factors. These require the computation of the log-likelihoods
for each candidate hypothesis. Our proposed distribution is
fully specified, in the sense that it has no free parameters,
thus the computation of the log-likelihood for a a fixed value
of tmin is straightforward. However, the other three candi-
date hypotheses have either one (for the general power-law
case) or two free parameters (the log-normal and Weibull tail
cases). Therefore, estimation of their log-likelihoods requires
integration over all possible values of the nuisance param-
eters, assuming some prior distribution of the later. This
was achieved by numerical integration, assuming truncated
uninformative (i.e., Jeffreys’) priors for the free parameters.
The truncation was designed to be as benevolent as possi-
ble to the three alternative hypotheses. With this goal we
restricted the integration space to plausible values of the pa-
rameters: For the general power-law hypothesis, we assumed
that the scaling parameter should take a value greater than
one and smaller than six, as power-laws with scaling para-
maters greater than four are hardly ever encountered in nat-
ural phenomena (Clauset et al., 2007; Mitzenmacher, 2004;

2We chose participant for whom the database contained the
largest number of events (participant “sd”), but the same pattern held
across participants.
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Figure 1: Histograms of the latencies in second in the six datasets plotted in log-log scale. The solid dots represent the six
datasets aggregated across participants. The open red circles plot the histogram from a single participant from the Dundee
dataset. The open grey circles plot a sample from an arbitrary instance of the NRD, whose density corresponds to the solid
black lines. The dot-dashed black lines illustrate a slope of -2. Both panels represent the same data either on the true time scale
(left panel), or in the time scale normalized by the corresponding median (right panel). The inset on the right panel magnifies
the power-law right tail of the distributions.

Newman, 2005). For the Weibull hypothesis, we assumed
that the value of its shape parameter shoud never be above
one, as this would imply an exponential tail or lighter, which
cannot correspond to the pattern observed in the histograms.
Finally, both the Weibull location and the log-normal loca-
tion and scale parameters were restricted to values that would
make the datapoints correspond to an actual right tail (i.e.,
their mode should fall to the left of tmin) and have a peak
within the range of RLs. Note that these constraints actu-
ally increase the likelihood of the alternative hypotheses be-
yond the under-specification than is found in the literature.3

Therefore, our estimates of the evidence in support of our
theory were conservative, slightly favoring the other possible
hypotheses.

Therefore, our estimates were conservative with respect to
our target hypothesis. The threshold value tmin was chosen by
visual inspection of the histograms in Figure 1. In addition,
these choices were validated by assessing whether the chosen
value would be close to the one that would minimize the value
of the Kolmogorov-Smirnoff statistic between the sample of
RLs and a general power-law (Clauset et al., 2007), which
in all cases suggested similar values. Note however, that this
objective method can be problematic when one considers the
additional upper truncation that is present in our data.

An additional problem that affects the comparison of the
different theories is the right-truncation that is present in the

3For instance, power-laws with scaling parameter values as high
as ten have been proposed in the RL literature (Holden et al., 2009).
However, loosening our constrain on the values of the parameters
led to significant increases of the evidence in favor of our theory.

data. This introduces a bias in favor of lighter tails: It fa-
vors either of the non-power-law distributions, or the general
power-law with a high value of the scaling parameter. In both
of the eye movement datasets, fixations are determined by
computer algorithms that rely on aspects such as their dura-
tion, therefore implicitly introducing both left and right trun-
cations. In the internet collected datasets, there is officially
no right truncation in the data. However, most responses will
be subject to an implicit upper bound dictated by the duration
of the class. The residual of responses longer than one class
session are very likely to originate in users testing the system,
system failures in the client, etc.. To attenuate this problem,
we assumed that all datasets had been right-truncated at the
maximum RL observed. For the web collected datasets this
is still an under-estimation of the real truncation point, leav-
ing some advantage for the non-power-law distributions, and
over-estimating the scaling parameter for power-laws.

Estimation of the evidence
For any two candidate models M1 and M2, if t = (t1, . . . , tN)
are the latencies in the dataset that are longer than tmin, the
evidence in favor of M1 over M2 is:

E(M1,M2|t) = 10log10
p(M1|t)
p(M2|t)

= 10log10
p(M1)
p(M2)

+10log10
p(t|M1)
p(t|M2)

,(2)

where the second step is achieved by application of Bayes’
Theorem, and p(t|Mi) is the likelihood of the datapoints for
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model Mi. If a-priori we consider both models equally proba-
ble, the evidence reduces to the difference in log-likelihoods:

E(M1,M2|t) = 10 [log10 p(t|M1)− log10 p(t|M2)]
= 10 [`(t|M1)− `(t|M2)] , (3)

We used decimal logarithms and the scaling factor of 10 so
that the resulting evidence would be measured in decibels.

For the power-law with a pre-determined scaling parameter
α = 2, the computation of ` is straightforward:

`(t|α = 2) = log10

N

∏
i=1

p(ti|tmin,α = 2)

=
N

∑
i=1

log10 p(ti|tmin,α = 2), (4)

where p(ti|tmin,α = 2) is the density function of a discrete
power-law (normalized for an upper truncation at max{t}).

For an hypothesis M with free parameters θ = (θ1, . . . ,θk),
the marginal log-likelihood of the hypothesis is given by:

`(t|M) = log10

Z
V (θ)

p(t,θ|M)dθ

= log10

Z
V (θ)

p(t|θ,M)p(θ|M)dθ, (5)

where V (θ) is the volume defined by the parameters, p(θ|M)
is the prior on θ and:

p(t|θ,M) =
N

∏
i=1

p(ti|θ,M), (6)

where p(ti|θ,M) is given by the density function of M.
For each hypothesis, we estimated the integral in (5 )nu-

merically using a Montecarlo technique. We sampled 105

points from the prior distribution p(θ|M), computed the like-
lihood of t using the sampled values of θ, and took the mean
result as the marginal likelihood. For each of the three distri-
butions, we used discrete versions of their densities (Clauset
et al., 2007) truncated between tmin and max{t}.

In order to minimize numerical errors, all the computations
above where performed in logarithmic scale.

Results and Discussion
Table 1 summarizes the posterior evidence supporting the hy-
pothesis that the right tails follow a power law distribution
with a scaling parameter of exactly two over each of the other
three candidate hypotheses. Notice, that for four out of the six
aggregated datasets and for the individual participant analy-
sis, the evidence supports our hypothesis over the three com-
peting candidates (i.e., positive values in the table). In the re-
maining two cases (negative values, highlighted in bold), the
best candidate distribution was still a power-law, albeit one
with an arbitrary value of the scaling parameter. In both of
these cases, it seems like the optimal value of the scaling pa-
rameter estimated under a general power-law hypothesis has
a value above two (last row in the table).
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Figure 2: Histograms (in log-log scale) of the RLs in the
Maze dataset (black solid dots) and of the simulated artifi-
cial dataset (grey open circles). The solid black line plots the
fit to the data of the distribution from which the simulated
points were sampled.

The model comparison method was particularly stringent
on our target hypothesis. The implicit truncation present in
the data could lead to the over-estimation of the scaling pa-
rameter that was found for two of the datasets. To investigate
this possibility, we fitted an NRD to the RLs in the Maze
dataset, as this was the one for which our theory appeared to
show a worse performance. From the fitted distribution, we
obtained a sample of the same size as the Maze dataset, sam-
pling only points below 50 times the median (this is equiva-
lent to an upper truncation at around eight minutes). The sam-
ple was discretized to simulate a measurement resolution of
one msec. Fig. 2 compares the original data with the sample
and the fitted distribution. Although these simulated data are
undoubtedly originating from a power-law distribution with
true scaling parameter of exactly two, applying the hypothe-
sis testing procedure revealed a very similar pattern to what
was observed in the maze data (see the last column of Ta-
ble 1). All three alternative hypotheses seemed more proba-
ble than our target theory due to the advantage that truncation
gives them. Given the quality of the fit in Figure 2, it seems
likely that the same distortion took place in the Maze data. In
sum, all datasets were consistent with our theoretical predic-
tion. The theory was the better of the four candidate theories
for the majority of the datasets studied, all of which showed
power-law behavior with a scaling parameter value close to
two.

Power-laws are often interpreted as evidence for Self-
Organizing Criticality [SOC; cf., (Bak & Paczuski, 1995)],
but several other mechanisms could also give rise to power-
laws without the explicit need for self-organization (Newman,
2005; Sornette, 2001). In the domain of human RLs, some
authors have argued for the presence of SOC using evidence
for 1/ f ‘pink’ noise in the frequency spectra of RLs (Gilden,
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Table 1: Posterior evidence (in decibels) favoring the power-law with true scaling parameter value α = 2 over the alternative
hypotheses for each of the datasets analyzed, as well as for the artificially generated data simulating the Maze RLs. Positive
values indicate support for the power-law with α = 2, while negative values indicate evidence in favor of each of the alternative
hypotheses. The first two rows indicate the value of tmin in relation to the corresponding median, and the number of points above
this threshold found in each dataset. The last row indicates the posterior estimate of α if ones assumed the general power-law
hypothesis to be true.

Dundee DOVES Tones Colors Rotation Maze Dundee Artificial(whole set) (participant “sd”)

tmin/median(t) 10 10 5 5 40 10 5 10
Number of t ≥ tmin 33 57 133 544 31 458 27 366

Log-Normal (general) 5.5 dB 2 dB -6.5 dB 13.5 dB 13 dB -257.5 dB 9 dB -15 dB

Weibull (general) 2 dB 2 dB 31 dB 43 dB 26 dB -241.5 dB 11.5 dB -7 dB

Power-Law (general) 2 dB 3 dB -22.5 dB 9.5 dB 5.5 dB -261 dB 5.5 dB -21 dB
‘optimal’ value of α 2.56 1.82 2.50 1.92 2.27 2.99 2.17 2.48

Thornton, & Mallon, 1995; Van Orden, Holden, & Turvey,
2003; Thornton & Gilden, 2005), but this evidence is cur-
rently subject to discussion (e.g., Wagenmakers, Farrell, &
Ratcliff, 2005; Farrell, Wagenmakers, & Ratcliff, 2006).

The fixed scaling parameter of two is common to a pro-
totypical model of a system that is known to be in a critical
state: The Ising model of a magnet (Jan et al., 1999). As ours,
this model is also described by an NRD, originating from the
fractional change in magnetization (∆m/m). At a small en-
vironment around the critical temperature, the Ising model
exhibits power-law behavior, but very small deviations from
the critical temperature restrict the power-law to the very far
tails (Jan et al., 1999). This is very much what we observe in
human RLs. The power-law behavior settles at the extreme
right tails, between five and forty times the median RL in a
particular task. Rather than evidence for SOC, our results in
fact argue for a system that has been pushed slightly away
from its critical point. This suggests that, at rest, the system
is likely to be in a state which could be characterized as SOC,
but the presentation of stimuli disturbs this criticality. This
picture is consistent with recent work on electro-physiology.
Human (and animal) neural oscillations are generally at a crit-
ical state, characterized by both power-laws and 1/ f noise
patterns, but transient synchronization of neural assemblies
during cognitive processing can temporarily disturb this crit-
icality (Buzsáki & Draguhn, 2004).

Figure 3 illustrates this last point further. The plot breaks
down the histograms of the responses of the Dundee dataset
into three groups. The first one, plotted in red, corresponds
to the durations of actual ‘cognitively motivated’ fixations at
the text during reading. Notice that although the NRD fit to
this data is very good, at the far-right the distribution has not
yet settled at the power-law. At the other extreme, the pur-
ple dots plot the histogram of the duration of blinks during
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Figure 3: Histograms (in log-log scale) of the text fixation
durations (red dots), out of screen fixation durations (yellow
dots), and blink durations (purple dots) from the Dundee cor-
pus. The solid lines illustrate the prediction that would be
made by an NRD distribution fit to each subset. The dash-
dotted black line illustrates a power law with scaling param-
eter 2.

reading. Discounting some minor cognitive influences, these
blinks are in a large proportion truly spontaneous events, such
as the ones that the system could produce in a resting state.
Accordingly, blinks reach the stable power-law much earlier
than text fixations. At an intermediate point, the yellow dots
plot the histogram of the duration of fixations that focused
at some point out of the screen. Many of these are likely to
be motivated by external events, such as a movement in the
room, a noise, etc., but they will also have an important spon-
taneous component. These durations converge faster than the
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text ones as they are more likely to be spontaneous events. At
the same time, they show a much slower convergence than the
blinks due to their stronger cognitive component. In all three
cases, an NRD provides a very good account of the data, from
the early to the very late times.

Conclusion
It comes as no surprise that human behavior, given its neu-
ral origins, should be best described by a complex system.
The precise characterization of the critical or resting state of
the cognitive system defines the baseline against which cog-
nitive processes can be compared, analogous to the baselines
defined for electro-physiological (Buzsáki & Draguhn, 2004)
and haemodynamic activity in the brain. Measuring the mag-
nitudes of deviations from this resting state elicited by differ-
ent conditions can provide a direct measure of the amounts
of information processing they involve, considered here as a
relaxation in return to the critical state.
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