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Abstract

Reinforcement learning (RL) models of decision-making
cannot account for human decisions in the absence of prior
reward or punishment. We propose a mechanism for choosing
among available options based on goal-option association
strengths, where association strengths between objects
represent object proximity. The proposed mechanism, Goal-
Proximity Decision-making (GPD), is implemented within the
ACT-R cognitive framework. A one-choice navigation
experiment is presented. GPD captures human performance in
the early trials of the experiment, where RL cannot.

Keywords: RL, GPD, reinforcement learning, associative
learning, latent learning, ACT-R, information scent, decision-
making, seeking behavior, navigation, model-tracing.

Introduction

How does a cognitive agent choose a path of actions from
an infinitely large decision-space? Reinforcement learning
(RL) models, which are models of human trial-and-error
behavior, explain how an agent may reduce its decision-
space over time by attending to the reward structure of the
task-environment. However, as goals change, so does the
reward structure of the agent’s world. Relearning the reward
structure for every possible goal may take an extremely long
time. For greater efficiency, a cognitive agent should be able
to learn more about its environment than just the reward
structure, and to exploit this knowledge for achieving new
goals in the absence of prior reward/punishment. For
example, a person may see a hardware store on their way to
the mall, and incidentally learn its location. Some time later,
if they need to go to a hardware store, the person can find
their way to that store, because they know its location.
There had been no reward or punishment for the actions
leading to this hardware store, and so the ability to find its
location cannot be explained solely through the principles of
reinforcement learning.

We propose a mechanism for making decisions in the
absence of prior reward or punishment, and provide initial
tests of its fidelity and efficiency as compared to RL. Given
multiple possible paths of action, the proposed mechanism
chooses the path most strongly associated with the current
goal, regardless of prior reward. Strength of association
between any two items, in turn, depends on experienced
temporal proximity of those items. From here forth we refer
to the proposed mechanism as GPD (goal-proximity
decision-making).

The rest of this paper describes a key theoretical problem
for RL models of decision-making (the 2-goal problem),
briefly summarizes classic evidence in psychological
literature for reward-independent decision-making in
humans and animals, and presents two computational
models that exemplify non-RL-based decision-making. We
then outline the implementation of the GPD mechanism
within the ACT-R cognitive framework. Finally, we
describe a single-choice navigation experiment, and provide
fits of GPD and RL decision mechanisms to human data.
We conclude that GPD can account for human performance
where RL cannot — prior to any reward or punishment.

What this paper is not about

Because everything in cognition is so closely knit, the GPD
theory may evoke topics that are outside of the scope of
current work. The following topics are important to
cognitive science but tangential to the focus of this paper.

First, GPD is not meant to replace RL, but rather to
complement it. How GPD and RL may interact is a topic for
further research.

Second, GPD does not address planning. GPD is a theory
of immediate behavior; how this behavior may be used in
complex planning procedures is a tangential topic.

Third, GPD partially addresses episodic memory and
associative learning. However, associative learning is not
the focus of this paper. Rather, the focus here is on the goal-
oriented decision-making that can emerge from a simple
associative learning mechanism. The topic of associative
learning should comprise other lines of research (e.g.
sequence recall, free association, priming) in addition to this
one, and is too extensive to address here.

Fourth, GPD describes how an agent may choose which
option to approach given multiple possible paths. Although
avoidance behavior is just as important as approach
behavior, and should eventually become part of the GPD
theory, it is assumed here to be a separate topic.

The 2-goal Problem

Consider a scenario where an agent has to achieve goal A,
then goal B, in the same environment. To increase
efficiency humans and animals would learn the environment
during task A, and perform faster on task B (the Experiment
below provides evidence for this phenomenon). That is, we
do not just learn the positive utility for the actions that
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helped us reach the goal, or the negative utility for the
actions that failed to reach the goal; we also pick up on
other regularities in the environment that may help us with
possible future goals. RL-based architectures will have a
problem matching human performance on this 2-goal
problem.

To make this example more concrete, imagine how an
RL-based agent may perform on a specific 2-goal problem.
In this example, the first goal, A, can be accomplished by
executing actions 1, 2, and 3. After trying the following
sequences of actions, 1-2-4, 1-5-7, 1-4-3, finally the
sequence 1-2-3 is attempted. Upon reaching the desired goal
A, actions 1, 2, and 3 will be positively reinforced. The
utility value of actions 1, 2, and 3 will increase every time
that A is reached via this route, and soon these actions will
fire without fail, greatly improving the agent’s time to reach
the goal.

Now imagine the task switches so that the agent has to
find B in the same task environment. The shortest path to B
would be to fire actions 1, 5, and then 7. Although the agent
had previously reached state B, actions leading to this state
were not positively reinforced because B was not the goal at
the time. Thus, when presented with this new goal, RL
performance will be at chance level.

RL, by definition, learns only the reward structure of the
world, ignoring the rest of the environmental contingencies
(with the exception discussed in the Model-based RL
section below). In those cases where this ignored
information may help in achieving new goals, it would be
useful to have an additional mechanism for collecting and
using this information (especially in the case of humans,
where memory is relatively cheap as compared to additional
trials). The mechanism proposed in this paper, GPD, should
serve as such a complement for RL-based architectures.

Background

Stevenson (1954) provided evidence that children are
capable of resolving the 2-goal problem. In this study
children were placed at the apex of a V-shaped maze, and
the goal items were located at the ends of the arms of the V.
Children were asked to find some goal-item A (a bird,
flower, or animal sticker), and later asked to find a new goal
B (a purse or a box). Although children were never
rewarded for finding B, and did not know that they would
be asked to look for it at any point, once presented with this
goal, they proceeded to the correct arm of the maze more
than 50% of the time.

This paradigm, called latent learning, does not just
provide evidence that learning occurs in the absence of
reward/punishment, but also that, given a goal, the learned
information is reflected in decision-making, and ultimately
in performance. Tolman provided evidence for latent
learning in rats in the context of maze running (Tolman,
1948; Tolman & Honzik, 1930), and Quartermain & Scott
(1960) displayed latent learning in human adults,
substituting the maze environment for a cluttered cubicle
shelf.

The following subsections describe Model-based RL —a
RL framework that learns environmental contingencies
beyond reward, Voicu & Schmajuk model of navigation — a
model capable of resolving the 2-goal problem, and SNIF-
ACT — a model that implements a decision mechanism
similar to Voicu & Schmajuk within a unified cognitive
framework.

Model-based RL

Model-based RL (Sutton & Barto, 1998) extends RL by
learning the environmental structure beyond action utilities.
The term "Model" in "Model-based RL" refers to agent's
internal model of the environment. An agent based on this
framework is capable of planning its route before execution.
However, the planning process itself is still based on RL.
Using the example from the 2-goal Problem section,
presented with a new goal B, and having the knowledge that
1-5-7 leads to B, a model-based RL agent will begin to plan
its route by considering random actions. In other words,
because this framework uses a decision mechanism based
on RL, having the additional knowledge about the world
does not reduce decision cycles.

Voicu & Schmajuk

Although models of space navigation can employ RL (e.g.
Sun & Peterson, 1998), there is a class of decision
mechanisms employed in many artificial navigation systems
that do not use RL representation (for review see Trullier,
Wiener, Berthoz, & Meyer, 1997). As Trullier et al. state,
“Navigation would be more adaptive if the spatial
representation were goal-independent” (p. 489).

In a primary example of goal-independent representation
Voicu and Schmajuk (2002) implemented a computational
model that learns the structure of the environment as a
network of adjacent cells. Once a goal is introduced, reward
signal spreads from the goal-cell through this network, such
that the cells farther from the goal-cell receive less
activation than those that are close. Goal-driven behavior in
this model comprises moving towards the cells with the
highest activation.

Once this model memorizes the map of the environment,
it does not need to learn the reward structure through trial-
and-error; rather, the utility of each action-path is identified
through spreading activation from the goal. In this manner,
this model resolves the 2-goal problem.

One major limitation of this model is that it makes
unrealistic assumptions about the world (e.g. that it can be
neatly mapped out as a grid of adjacent spaces). This model
would be computationally infeasible for sufficiently large,
dynamic, probabilistic environments. Additionally, this
model is not integrated within a larger cognitive framework.
As a standalone model of maze navigation behavior in an
oversimplified environment, there are questions as to the
scalability and fidelity of the model. The following sections
address how a similar mechanism, where decisions are
based on spreading activation from the goal, may be
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implemented within a unified cognitive framework, such
that integration is at the core of modeling.

SNIF-ACT

SNIF-ACT (Fu & Pirolli, 2007) is a model of human
information-seeking behavior on the World Wide Web. The
pertinence of SNIF-ACT to current work is that it is a model
of how humans use declarative knowledge (rather than
action utilities) in goal-driven behavior in a very rich and
unpredictable task-environment. The World Wide Web is
unpredictable in the sense that there is no way for any of its
users to know what links they will encounter during web
browsing. For this reason an agent must be able to evaluate
its actions (which link to click) without any prior
reinforcement of those actions.

The action of clicking a link in SNIF-ACT is based not on
the previous reinforcement of clicking on that link, but
rather on the semantic association of the text in the link to
user goals (information scent). To implement this concept in
ACT-R, Fu & Pirolli changed the utilities for clicking links
based on the link-goal association strengths (note the
similarity to the Voicu & Shmajuk model). This is different
from the standard ACT-R implementation, where the
decision mechanism is based on RL. Changing the utility
mechanism in this way allows SNIF-ACT to make non-
random decisions between multiple matching actions that
have never been reinforced.

Besides being limited to text-link browsing, SNIF-ACT's
other major limitation is that it does not learn the association
strengths between links and goals, but rather imports these
values from an external source. However, SNIF-ACT's
decision-making mechanism is an excellent example of how
to achieve goal-driven behavior in the absence of prior
reinforcement within the ACT-R framework.

Goal-Proximity Decision Making

RL cannot account for human/animal decision-making in
the absence of reward. The Voicu & Schmajuk and the Fu &
Pirolli models described above suggest an alternative
decision mechanism where agent choice depends on
spreading activation from the goal.

More specifically, these models employ reward-
independent  associative  knowledge to  represent
environmental contingencies. The decision mechanism in
both models works by approaching the option most strongly
associated with the goal element.

In the Voicu & Schmajuk model, the strength of
association between two elements is inversely proportional
to the physical distance of those elements in space. In SNIF-
ACT, the strengths of associations are imported from an
external source — Pointwise Mutual Information engine
(Turney, 2001), where association strength between two
words is incremented every time that the two words co-
occur within a window of text, and decremented every time
that the two words occur in the absence of one another.

In other words, the experienced temporospatial proximity
between items X and B may be employed to predict whether

X is en route to B. While the agent is seeking some goal, A,
it may be learning the proximity of elements in its
environment, including the proximity of X and B. Given a
new goal, B, the agent can use its knowledge to judge the
utility of approaching X to find B. In this manner, the
environmental contingencies learned while performing goal
A can help to improve agent performance on goal B, thus
resolving the 2-goal problem.

We call this mechanism Goal-Proximity Decision-making
(GPD). In more generic terms, GPD (1) relies on having
associative memory, where association strengths between
memory elements represent experienced temporal proximity
of these elements, and (2) chooses to approach the
environmental cue that is most closely associated with its
current goal.

Implementation

We implement GPD in the ACT-R cognitive architecture
(Anderson & Lebiere, 1998). ACT-R comprises a
production system as the central executive module, a
declarative memory module, a goal module, and visual and
motor modules.

To implement GPD in ACT-R, we developed an ACT-R
model that, given some goal G, looks through all the options
on screen, performing retrievals from memory. Retrievals
from memory in ACT-R, among other factors, depend on
spreading activation from the goal — such that the memory
elements that are more strongly associated with G are more
likely to be retrieved. The GPD model then clicks on the last
option to have been retrieved from memory.

Although ACT-R employs the spreading activation
mechanism, making for an easy implementation of the GPD
model (only 13 productions), it does not make predictions
about how association strengths between memory elements
are learned. ACT-R 4.0 (an older version) had a mechanism
for associative learning (Lebiere & Wallach, 2001; Wallach
& Lebiere, 2003). However, according to Anderson
(Anderson, 2001), this particular form of associative
learning turned out to be "disastrous", and produced "all
sorts of unwanted side effects" (p. 6).

To implement associative learning in ACT-R we first
create an episodic buffer —a simple list containing the
names of recently attended memory elements. Whenever the
model checks the contents of the visual buffer (visual
attention), the name of the memory element from the visual
buffer is pushed into the episodic buffer.

Next, we update association strengths between the latest
episode and every other item in the episodic buffer. To do
this we employ error-driven learning. Error-driven learning,
also known as the Delta rule, is widely accepted as a
psychologically and biologically valid mechanism of
associative learning (for psychological, computational, and
biological review of error-driven learning see Gluck &
Bower, 1988; O'Reilly & Munakata, 2000; Shanks, 1994).
For each new element j and previously experienced element
i, the strength of association between j and i, S, at current
time, n, is increased in the following manner:
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ASji(n)=p[ai(n)-Sji(n-1)]

where f is the learning rate parameter, and a; is the
activation of each element i in the episodic buffer. Episodic
activation, a;, is assumed to decrease by some decay
parameter, 3, at each tic. It should be noted that we did not
employ the ACT-R native constraints for memory activation
and decay — ACT-R memory decay implementation
accounts for frequency, recency, and spreading activation,
bearing peripheral complexity, to be examined at a future
date. The pseudocode for the GPD model and this
associative learning mechanism is provided in Table 1.

Table 1. Implementation of GPD.

Materials

The experiment was presented as a point-and-click
application on a 17" computer screen, set to 1280x1024
resolution. Participants were presented with 150x200 pixel
option buttons, where each button displayed either a letter
from the English alphabet, or one of the symbols shown in
Figure 1.

Qasd VLA IILOUM S EIDDX<L}-T
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Sji is the association strength between memory elements j and i
3 is the rate of decay of activation of objects in episodic memory
f is the associative learning rate parameter

#Ht#H
# GPD algorithm
given a goal, G, and current best option, Y {
for each option in the environment, X {
learn episode (X)
given two options, X and Y {
attempt retrieval from declarative memory
spreading activation from G
set Y to be the retrieved memory element
}
}
learn episode (Y)
approach option Y

}

HHH
# Episodic/associative learning
learn episode (j) {
activationOfItem = »
for each item in episodic-buffer, i {
Sji += p * (activationOfItem - Sji)
activationOfItem = activationOfItem * »
}
push j into episodic-buffer

}

Experiment

The purpose of this experiment is to collect data for
validation of how GPD can account for human choice where
RL cannot. The structure of the experiment reflects the 2-
goal problem. More precisely, this experiment requires the
participants to traverse a simple maze in search of different
goal-items presented one at a time. Whereas RL would
predict that reward structure is updated after the agent
reaches a goal or a dead-end, GPD would predict that the
agent also learns where other items in the maze are located.
When asked to find a new goal, RL should perform at
chance level (since there has been no reward for this goal),
whereas GPD should perform above chance level. Human
data from this experiment should provide a stark contrast
between the two decision mechanisms.
Participants

Twenty-one  human  participants, consisting  of
undergraduate students at RPI, were asked to participate for
course extra credit, as specified by course instructor.

Figure 1. Stimuli used for 3-choice mazes.

Procedure and Design

The experiment employed a single-group design with no
between-subject variables. Participants were asked to
perform a simple exploratory maze navigation task. Each
participant had to complete two 2-arm mazes (2 arms, 2 goal
items in each arm) and four 3-arm mazes (3 arms, 3 goal
items in each arm) in the following order: 2-arm, 3-arm, 3-
arm, 2-arm, 3-arm, 3-arm. The choice and goal items in
each of the 2-arm mazes were random letters of the English
alphabet, and the choice and goal items of the 3-arm mazes
were symbols randomly chosen from Figure 1. Participants
were required to continue with a given maze until they
completed 6 consecutive error-free trials (trials where only
the correct path to the goal was taken) in the 2-arm mazes,
or 12 consecutive error-free trials in the 3-arm mazes.

For each trial, participants were asked to find one of the
goal items (for example, in the maze displayed on left of
Figure 2, a goal could be: C, D, E, or F), such that no two
successive trials would have repeating goals. The idea here
is to replicate the 2-goal (or rather n-goal) problem design —
while participants are looking for a given goal item they
may be learning the maze, and will be able to perform above
chance-level when presented with the next goal item.

R S A
LEEE  EFRHODLEGE

Figure 2. Sample navigation mazes, 2-arm condition (left)
and 3-arm condition (right).

Trial Design:

Each trial persisted until the participant found and clicked
the required goal item. At the beginning of each trial,
participants were presented with the top-level options. After
choosing one of top-level options, participants were
presented with the bottom-level options (for example, in the
2-arm maze in Figure 2, a participant is first presented with
options A and B, and if they choose option A, they are
presented with options C and D). If the participant chose the
wrong path to the goal, upon choosing one of the bottom-
level options, they were presented with a “Dead End”
screen, and taken back to the top-level options. If the
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participant found and clicked their current goal item, they
were presented with their next goal.
Screen Design:

To ensure that participants attended each option, the
options were always covered with a grey screen until
clicked. Another click was necessary to cover an uncovered
option before proceeding. After the first option is uncovered
and covered, a participant may proceed to uncover the next
option. Once all options on screen have been viewed and
covered, the participant could make their choice with an
additional click. Additionally, participants were not be able
to rely on their location memory, as the location of each
option on screen was randomized; thus participants were
forced to attend every item (i.e. the participant could not
say, “when I go left, I get C and D,” they had to recall that,
“B leads to C and D,” instead).

Modeling

Human data were analyzed in terms of agreement with four
models: GPD, RL, Random, and IdealPerformer. The
Random model selected which option to click at random,
and the IdealPerformer model remembered everything
perfectly (which choices followed which other choices) and
made choices with perfect memory. The RL model simply
increased the utility of a goal-choice pair if the choice led to
the goal successfully, and decreased it otherwise; the option
with the highest utility warranted a click (no noise was
added), and if multiple options had the same utility, the
choice was random. After a few (less than 10) variations
were attempted, the best-fit GPD model was derived to have
error-driven learning with the following parameters: 3=.5,
p=.01. No noise was added to spreading activation.

Model data was collected using the model-tracing
technique (Anderson, Corbett, Koedinger, & Pelletier, 1995,
as cited by Fu & Pirolli, 2007). For each human participant,
for each decision, each model was provided with the same
experience as the human participant up to that choice point,
and then model’s would-be choice was recorded. For
example, imagine that Table 2 presents data for a human
participant having gone through the maze shown on left of
Figure 2. At the bolded choice-point (trial 1), being that
there is no experience with the maze, all models would
choose randomly. Let us say that both the RL and the GPD
models chose B. Thus, what will be recorded is that these
two models made an error on trial 1, whereas the human
participant did not. However, the experience added to the
two models will be based on human choice. At the end of
trial 1, RL will have learned that the D-A (if goal is D, click
A) goal-choice pair has a positive utility. GPD will have
learned that D is strongly associated with C, less so with A,
and even less with B, and that C is strongly associated with
A, and less so with B. At the underlined choice point (trial
2, top), the RL model will still have to make a random
choice (utilities for C-A and C-B goal-choice pairs are both
0 at that point). The GPD model, having learned that C is
more associated with A than with B, will choose A.

Table 2. Sample data log for a human participant.

Trial 1: goal=D:

looked at A, looked at B, clicked A,

looked at C, looked at D, clicked D, success
Trial 2: goal=C:

looked at B, looked at A, clicked B,

looked at E, looked at F, clicked F, fail

looked at B, looked at A, clicked A,

looked at C, looked at D, clicked C, success

Results and Simulation

Each model’s performance was averaged over 10 model
runs for each decision point. Results from the first 2-arm
maze were ignored as training data. Results for human and
model performances on the first choice of each of the first 6
trials for the other 2-arm maze (maze 4) are shown at the top
of Figure 3 (only the first 6 trials are shown because some
participants did not have data beyond the 6th trial). Results
for human and model performances on the first choice of
each of the first 14 trials for the 3-arm mazes (averaged over
all mazes: mazes 2, 3, 5, and 6) are shown at the bottom of
Figure 3 (only the first 14 trials are shown because some
participants did not have data beyond the 14th trial).

—¢—Human

--=-GPD

— —RL

0.8

0.6

0.4

0.2

Performance (average correct)

1 2 3 4 5 6

Trial Number

—¢—Human
-==-GPD
1

""" Random — —RL

Ideal Performer

0.8

0.6

0.4

0.2

Performance (average correct)

1 2 3 4 5 6 7 8

9 10 11 12 13 14

Trial Number

Figure 3. Average performance from human participants,

GPD, RL, Random, and IdealPerformer models on the 2-

arm maze (top), and the 3-arm mazes (bottom). Error bars
represent standard error based on 21 participants.
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Table 3. Root mean square error (RMSE) between human
and model performances, by trial.

2-arm 3-arm
GPD 2.07% 7.95%
RL 14.84% | 18.29%
IdealPerformer | 4.07% | 16.34%
Random 45.32% | 45.79%

Table 3 displays Root Mean Square Errors (RMSE)
between average human and model performances for the
data displayed in Figure 3 — performance on the first choice
of each trial for the first 6 trials of the second 2-arm maze,
and the first 14 trials of the four 3-arm mazes.

The key aspect to focus on is the early part of the curves
in Figure 3, where RL simply cannot account for human-
level performance. IdealPerformer model assumes that
associations between the clicked top-level choices and their
respective bottom-level objects are strengthened, and that
the non-clicked top-level choices do not interfere. For
example, on trial 1 shown in Table 2, the IdealPerformer
model will have only learned the association between the
clicked option, A, and the ensuing options, C and D. GPD,
however would increment association strengths between
C/D and all of their preceding items: both A and B. Thus,
IdealPerformer learns unrealistically fast, and RL learns
unrealistically slow.

Summary

Whereas reinforcement learning accounts for human
decision-making based on prior reward, this paper proposes
a mechanism to account for human choice in the absence of
reward, based on associative learning. The proposed
mechanism, GPD, was implemented in the ACT-R
cognitive architecture, and examined in its ability to
simulate human behavior in a simple forced-choice
navigation task. GPD was able to account for human data
where RL could not — in the beginning of the task, before
reward or punishment for finding a given goal could have
been presented.

To implement GPD in the ACT-R cognitive architecture,
it was necessary to add two things. First, we wrote an ACT-
R model that made retrievals based on spreading activation
from the goal, and clicked on the retrieved option. Second,
associative learning was introduced: keeping recently
attended memory elements in an episodic buffer, and using
error-driven learning to increase the strengths of association
between memory elements based on their proximity in the
episodic buffer.

GPD seems to be a necessary supplement to RL for
explaining human decision-making. We are currently in the
progress of using GPD to play Tic-Tac-Toe, providing
initial grounds for the claim that GPD can be used in more
than just navigation tasks, but rather in navigating any
decision-space, including board games. We are also
beginning to explore how this mechanism scales to more
complex, dynamic task environments (e.g. exploration of
Second Life virtual worlds).

In addition to testing GPD with board games and
exploration of virtual worlds, it will be necessary to
integrate GPD  with RL, for more complete
approach/avoidance behavior. Future studies will focus on
integration of GPD with other cognitive mechanisms, and
testing the integrated framework across a wide range of
tasks.
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