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Abstract

This work explores the influence of motivation on choice
behavior in a dynamic decision-making environment, where
the payoffs from each choice depend on one’s recent choice
history. Previous research reveals increased levels of
exploratory choice among participants in a regulatory fit. The
present study placed promotion and prevention-focused
participants in a dynamic environment for which optimal
performance requires that participants sustain a single choice
strategy in the face of temporary payoff decreases. These
participants either gained or lost points with each choice. Our
behavioral results and model-based analysis, using the
average-reward reinforcement learning framework, revealed
differential levels of reactivity to local changes in payoffs—
specifically, participants in a regulatory fit were less reactive
to local perturbations in payoffs than participants in a
regulatory mismatch and performed more optimally as a
result.

Keywords: Decision making; motivation; reinforcement
learning

Introduction

Motivation is essential to action (e.g., Carver & Scheier,
1998; Yerkes & Dodson, 1908). Social psychology makes
the distinction between two general motivational
orientations (or regulatory foci), a promotion focus and a
prevention focus, which accentuate potential gains and
losses in the environment, respectively (Higgins, 1997).
Recent research reveals that an interaction occurs between
one’s regulatory focus and the reward structure of the task
being performed, affecting peoples’ use of flexible
strategies in a number of tasks. In one study (Worthy,
Maddox, & Markman, 2007) utilizing a two-armed bandit
task for which optimal choice behavior required exploratory
choices as opposed to exploitative choices (c.f. Daw et al.,
2006), participants attempting to earn a prize (inducing a
promotion focus) exhibited more optimal choice behavior
when the task environment had a gains reward structure
(i.e., participants were maximizing gains of points) than
when the task environment had a losses reward structure
(i.e. participants were minimizing Joss of points). Likewise,
participants attempting to avoid losing a prize (a prevention
focus) performed more optimally when the task involved a
losses reward structure than when the task involved a gains
reward structure.

In n-armed bandit tasks where which the decision-maker

learns to maximize his or her payoffs by making choices
and experiencing the consequences of those choices (e.g.
Daw et al., 2006; Bechara, A.R. Damasio, H. Damasio, &
Anderson, 1994), optimal performance depends on
balancing the demands of gathering and exploiting
information about choice payoffs. Worthy et al.’s (2007)
study demonstrated that participants in a regulatory fit, for
whom their situational regulatory focus matches the reward
structure of the task environment, exhibit more exploratory
choice strategies than do participants in a regulatory
mismatch, who exhibit more exploitative choice strategies.
Through continued exploration of choices—with the
consequence of occasionally taking decreases in payoffs—
participants in a regulatory fit display behavior that is
adaptive for the overall long-term pursuit of rewards.
Further, their model-based analyses suggested that
participants in a regulatory fit place less weight on outcomes
from recent choices than do participants in a regulatory
mismatch. While this class of tasks is well suited for
investigating  exploratory versus exploitative choice
behavior, we seek to understand how motivational factors
affect the degree to which recent changes in payoffs drive
choice behavior.

In this report, we examine the effects of regulatory fit in a
two-option, repeated-choice decision making task in which
payoff-maximizing, long-term optimal behavior requires
that participants persevere with one choice strategy,
sustaining temporary decreases in payoffs in order to
maximize long-term gain. Our experiment placed
participants in a version of the ‘“rising optimum” task,
previously used to investigate temporal-difference accounts
of learning (Eagelman, Person, & Berns, 1998; Montague &
Berns, 2002) and the problem of temporal credit assignment
in human sequential decision-making (Bogacz, McClure, Li,
Cohen, & Montague, 2007). Unlike other bandit tasks in
which payoff contingencies remain invariant to participants’
behavior (e.g., Bechara et al., 1994; Daw et al., 2006;
Worthy et al., 2007; Yechaim & Busemeyer; 2005), in this
task, the state of the task environment changes as a function
of a participant’s recent choices, which in turn governs the
payoffs associated with each action.

Consider the two payoff curves depicted in Figure 1,
which correspond to the possible payoffs for two choices A
and B in Egelman et al.’s (1998) “rising optimum” task. The
payoff received from a choice depends on the proportion of
A choices made over the last 20 trials, represented by the
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Figure 1: Payoff functions for two choices as a function
of response allocation. (See text for details).

horizontal axis. For example, if the participant makes only B
choices for 20 trials in a row—effectively making their
fractional allocation to the A choice 0—the payoffs from
choices A and B would be 0.38 and 0.19 respectively. If the
participant makes one A choice at this point, his or her
response allocation would change to 0.05, as only 1 out of
20 of the last trials were A choices. Consequently, the
payoffs for choice A and B would be .36 and 0.2. Thus, the
payoffs associated with the choices fluctuate with the past
choice behavior of the participant. In this task, optimal long-
term choice behavior requires consistent A choices every
trial, as the global optimum is located where the
participant’s fractional choice allocation to choice A is 1
(Montague & Berns, 2002).

Prior research utilizing the rising optimum task reveals
that participants easily become “stuck” in a local cycle
around the crossing point of the curves where the fractional
allocation to choice A is approximately 0.3 (Bogacz et al.,
2007; Montague & Berns, 2002). To illustrate, consider a
participant who makes repeated A choices until they find
themselves at the crossing point of the two curves (Figure
1). As they continue to make A choices, exceeding an
allocation of 0.3, the immediate payoff from choice A will
decrease, with greater immediate payoffs resulting from
choice B. Should they elect to make B choices at this point,
rewards for that option will decrease until the fractional
allocation falls below 0.3 whereupon choice A will yield
higher immediate payoffs. This globally suboptimal
response strategy—akin to matching behavior by humans
described by Herrnstein (1990)—is predicted by simple
temporal-difference (TD) learning models of reinforcement
learning (Montague & Berns, 2002; Sutton & Barto, 1998).
An optimal strategy of consistent A choice requires that the
participant persist in the face of the local decrease in payoffs
as they depart the “matching” crossing point and move
towards the global optimum of the A payoff curve. In the
absence of experimental manipulations, both Montague and
Berns (2002) and Egelman et al. (1998) grouped participants
by their choice strategies (i.e., those who stayed near the
crossing point, and those who were able reach near-optimal
allocations), finding that a substantial number of
participants exhibited choice behavior not anticipated by

standard TD-learning models.

A number of studies have explored factors that shape
participants’ choice allocations both in the rising optimum
task and other similar dynamic environments. Bogacz et al.
(2007) demonstrated how optimal choice performance
depends on the amount of time that elapses between choices
(i.e., inter-choice interval) using an eligibility trace model.
A question then, comes to bear in light of prior research:
how can motivational factors influence humans’ pursuit of
overall long-term rewards in the face of local reward
decreases, consequently driving them toward or away from
payoff-maximizing choice in the rising optimum task?

The present work extends previous research in two ways.
First, we demonstrate that situational regulatory fit (and
mismatch) affect the degree to which participants are able to
sustain temporary decreases in payoffs in order to maximize
long-term payoffs. Second, in the framework of
reinforcement learning (RL), we provide a model-based
analysis of choice behavior using a variant of the TD-
learning algorithm (Sutton & Barto, 1998) known as
average-reward learning, elucidating our hypothesized
differences about participants’ reactivity to local changes in
payoffs. In short, we hypothesize that the interaction
between one’s motivational state and the reward structure of
the environment will influence individuals’ ability to sustain
globally advantageous choices in the face of local
perturbations, such that decision-makers in a regulatory fit
will exhibit more optimal, payoff-maximizing response
allocations than decision-makers in a regulatory mismatch.

Experiment 1

We placed participants in a variant of the Rising Optimum
task, whose payoff schedule (under the gains reward
structure) is depicted in Figure 1. Participants in the gains
condition started with 0 points and gained between 0 and 1
points with each choice, while participants in the losses
condition started with 0 points and lost between 0 and -1
points with each choice. The bonus criteria was positioned
such that participants would need to earn at least 75% of the
total possible points at the end of the experiment—which
required that participants persevere in the face of local
reward decreases as they made repeated A choices.
Consequently, participants whose choice allocations
remained near the “matching” equilibrium would not
achieve the bonus criterion.

Participants in a promotion focus were told that they
would receive an entry into a drawing for a 1 in 10 chance at
winning $50 if they achieved the bonus criterion.
Participants in a prevention focus were given an entry into
the drawing and told that they had to achieve the bonus
criterion to avoid losing the entry. As in previous research
(e.g. Shaw & Higgins, 1997), this manipulation was
designed so that participants in the promotion and
prevention focus conditions were effectively in the same
objective situation.

In light of previous work revealing heightened
exploratory choice in regulatory fit (Worthy et al., 2007),
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we hypothesized that participants in a regulatory fit (a
promotion focus with a gains reward structure or a
prevention focus with a losses reward structure) will sustain
globally advantageous choice strategies, exhibiting less
reactivity to local changes in payoffs. In contrast, we
hypothesized that participants in a regulatory mismatch (a
prevention focus with a gains reward structure or a
promotion focus with a losses reward structure) would
exhibit more reactivity to local changes in payoffs and thus
exhibit less globally optimal response allocations. Table 1
provides another description of our factorial design and
hypotheses.

Table 1: Overview of regulatory focus manipulation.

Reward Structure
Gains Losses
=
§ -3 Fit Mismatch
S g (decreased (increased
3 L .
& E reactivity) reactivity)
)
S| g
g 2 Mismatch Fit
o § (increased (decreased
é’ reactivity) reactivity)

Method

Participants Forty undergraduates from the University of
Texas community participated in the experiment for course
credit. They were also given the opportunity to win an entry
into a drawing for $50 cash, and were told that no more than
10 participants would be included in each drawing. The two
between-subjects independent variables were the situational
regulatory focus (promotion and prevention) and the reward
structure of the task (gains and losses).

Materials The experiment stimuli and instructions were
displayed on 17-inch LCD monitors. At the start of the
experiment, participants were informed that they would
either earn (promotion condition) or keep (prevention
condition) a entry into the drawing if they met a bonus
criterion. Participants were instructed to make repeated
choices with the goal of maximizing overall, long-term
gains of points (gains condition) or minimizing overall long-
term losses of points (losses condition).

Procedure At the start of the experiment, each participant’s

OPTION A

OPTION B

Figure 2: Example gains task interface.

response history was randomized such that the mean starting
allocation of A choices was 0.5 across all participants. Each
trial, participants were presented with two buttons labeled
“Choice A” and “Choice B”. The mapping of response
buttons to choices was counterbalanced across participants.
The task interface under the gains condition is shown in
Figure 2. Using the mouse, participants clicked one of the
buttons to indicate their choice, and white payoff bar grew
(or fell, in the losses condition) vertically to indicate the
amount of points gained (or lost, in the losses condition) on
that trial. There was no time limit for making choices.

The payoff each trial was a function of the relative
fraction of the number of A choices made by the participant
over the last 20 trials. Specifically, the payoff for each
option, in the gains condition, with respect to relative
fraction of A choices, is depicted in Figure 1. Gains payoffs
were all between 0 and 1. Payoffs in the losses condition
were calculated by subtracting 1 from the gains payoffs,
resulting in all negative payoff values. Cumulative gains (or
losses) were displayed on the side of the screen, as a bar that
grew (or shrunk, in the losses condition) in relation to the
bonus criterion. This bonus criterion was determined by
calculating the average cumulative payoffs after 250 trials
with an “A” choice allocation of 0.75. This criterion was
equated across the gains and losses conditions.

After 250 trials, participants were given feedback on
whether they had met the bonus criterion or not. If they met
the bonus criterion, participants in the promotion focus
condition were given a ticket and told to enter it in the
drawing, and participants in the prevention focus condition
were informed that they could keep their ticket and enter it
in the drawing.

Results

Performance Measures

As a measure of response optimality, we analyzed the
proportion of trials for which participants made optimal
“A” choices. A 2 (regulatory focus) x 2 (reward structure)
ANOVA conducted on overall proportion of A choices
collapsed over the course of the experiment revealed a
significant interaction (F(1,38)=32.48, p<.001) and no
significant main effects. Among participants in the gains
reward structure, participants in a promotion focus
(M=0.591, SD= 0.05) made significantly more A responses
than participants in a prevention focus (M= 0.389, SD=
0.03) [#18)=3.30, p<.01]. For participants in the losses
reward structure, participants in a prevention focus
(M=0.522, SD= 0.03) made significantly more A responses
than participants in a promotion focus (M= 0.330, SD=
0.01) [#(18)=5.97, p<.001].
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Figure 3: Proportion optimal (A) choices made, by group,
over the course of the 250 trials, in bins of 50 trials.

Figure 3 shows the proportion of “A” choices calculated
over blocks of 25 trials at a time averaged across
participants. We conducted a 2 (regulatory focus) x 2
(reward structure) x 5 (trial block) ANOVA on number of A
choices made across the course of the 5 blocks, revealing a
significant 2-way interaction between regulatory focus and
reward structure (F(1,38) =17.32, p<.001), as well as a
significant main effect of reward structure (F(1,38) = 4.48,
p<.05) and a significant main effect of trial block (#(1,38) =
7.86, p<.01). All other main effects and interactions failed
to reach significance.

As another measure of optimal performance, we
calculated each participant’s final distance from the bonus
criterion, as depicted in Figure 4. A 2 (regulatory focus) x 2
(reward structure) ANOVA on this measure revealed a
significant interaction (F(1,38)=20.05, p<.001) and no
significant main effects. Among participants in the gains
reward structure, participants in a promotion focus (M=
39.96, SD=8.67) came significantly closer to the bonus
criterion than did participants in a prevention focus (M=
66.53, SD=4.91) [#(18)=2.66, p<.05]. For participants in the
losses reward structure, participants in a prevention focus
(M=52.68, SD= 4.40) ended significantly closer to the
bonus criterion than participants in a promotion focus (M=
75.06, SD=0.72) [#(18)=5.022, p<.001].
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Figure 3: Average distance, in points, from bonus
criterion by group.
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Model-Based Analysis

Model Definition We implemented a variant of temporal
difference (TD)-learning known as average reward learning
(Schwartz, 1993; Sutton & Barto, 1998), as theoretical work
suggests that average-reward may be a more realistic model
of human behavior than discounted-reward models (Daw &
Touretzky, 2000; Gureckis & Love, in press). Our
descriptive model affords a direct assessment of a given
participant’s reactivity to local perturbations in payoffs in
the rising optimum task.

Unlike standard TD-learning RL models (e.g. Yechaim &
Busemeyer, 2005), which rely only on estimated values of
individual actions, average reward learning maintains an
estimate of the average reward per time step, p, across both
actions. The value of an action is defined by its estimated
value relative to the average reward. Thus, actions that lead
to Dbetter-than-average rewards (i.e., positive transient
differences with respect to p) are selected more frequently
under an exploitative policy. Under average reward
learning, the TD error 9 is defined as:

6=r,-p-0a), M
where 7,4, is the actual experienced reward on that trial and
p is the model’s average reward per time step estimate.
Each trial, the update made to the estimated transient value,
O(a;) of each action g; is informed by the current TD error J:

0(a)=0(@a,)+ae;"s (2)
where a is a learning rate parameter, 0 < a <1 and ¢; is an
eligibility trace for that action (described below). If the
chosen option a; had the greater estimated value between the
two choices, the average reward estimate p is updated
according to the current TD error o:
p=p+(B-9) ®)
where £ is an average-reward update size parameter, 0 < f <
1, that determines how heavily the average-reward estimate
weights recent rewards. When f is small, p relies on a large
historical window and updates very slowly, while if =1, p
depends only on rewards from the most recent trials and is
updated quickly. Thus, a participant’s readiness to update
their expectations of average, trial-to-trial payoffs could be
encapsulated by their average-reward update parameter.

Finally, the model utilizes the “softmax” method of action
selection whereby the probability of making choice a; each
trial is:
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where y is an exploitation parameter (c.f., Daw et al., 2006;
Sutton & Barto, 1998) and Q(a;) is an estimate of the
transient reward associated with choice a;.

In order to effectively manage temporal credit
assignment—that is, the rewarding or penalizing of past
choices which occur at variable times prior to the current
reward—the model utilizes accumulating eligibility traces in
a manner similar to Bogacz et al. (2007), as shown in
Equation 2. The eligibility trace e; for each action is
initialized to O at the start of the trials and after each action,
both eligibility traces are decayed by a constant term and the
eligibility trace for the chosen action e; is incremented:
e, =he; (%)

e, =e; +1 (6)

where 4 is a decay parameter, 0 < A < 1. Eligibility traces
improve the rate of learning by allowing prediction errors to
propagate backwards across multiple trials (Sutton & Barto,
1998).
Model Fit Predictions and Results Consider a decision-
maker, who passes the crossing point from left to right (see
Figure 1) as they continually make A choices. If the
decision-maker readily changes their average-reward
estimate (i.e., large p) to reflect the dip in payoffs
encountered, they will seek the high positive transient
obtained from choosing B and move back towards the
“matching” crossing point, maintaining a suboptimal choice
allocation. However, if the decision-maker does not
significantly change their estimate (i.e., small ) as they
depart from the crossing point, their average-reward
estimate will remain anchored roughly at the crossing point,
meaning that choice B will not incur as large a transient
payoff as it would if the average-reward estimate followed
the dip. Consequently, choices A and B will have closer
estimated transient values, and thus, will be more
equiprobable choices under softmax action selection. Thus,
in a sense, slower average-reward updating makes
exploration tenable from the perspective of the local
decision-maker.

The examination of group differences with respect to
average-reward update size parameter (f) values would
allow us to evaluate the degree to which participants’
expectancies of global payoffs fluctuate with changes in
local payoffs. As our behavioral results suggested that
regulatory fit affected participants’ levels of reactivity to
local payoff changes, we hypothesized that participants in a
regulatory fit would be slower to update their expectations
of average per-trial payoffs, and thus yield lower estimates
of the average-reward update size parameter than would
participants in a regulatory mismatch. We fit this model to
the data using a parameter optimization procedure that
maximized the likelihood of the each individual
participant’s estimated parameter values given their choice
behavior over 250 trials (see Yechaim & Busemeyer (2005)
for details). To ensure our average-reward model captured
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Figure 5: Average estimates of average-reward update
size parameter § by condition.

participants’ response dynamics, we also fit a single-
parameter baseline model to each participant’s data, which
assumed a constant probability of making A choices across
all trials. The proportions of subjects in each condition for
whom the average-reward model provided a better fit than
the baseline model (by the Akaike Information Criterion,
see Akaike, 1974) are reported in Table 2.

Figure 5 depicts the average update size parameter values
for each condition. A 2 (regulatory focus) x 2 (reward
structure) ANOVA conducted on estimated update size
parameters revealed a significant interaction (F(1,38)= 6.56,
p<.05). On average, participants in regulatory fit had lower
estimated values of this parameter. The estimated values for
the four model parameters are also summarized in Table 2.
The estimated values of y, a, and 4 were not of interest in
this analysis, and no significant interactions or main effects
were found across the four conditions.

Table 2: Proportion of Subjects for whom Average-Reward
Fit Best, and Average Estimated Parameter Values by
Experimental Condition. Standard Deviations for these
Parameter Values are Shown in Parentheses.

Condition | Proportion y o s A
Best Fit

Promotion- 0.70 17.839 | 0.061 0.010 0.559
Gains ) (6.797) | (0.094) | (0.011) | (0.878)

Promotion- 070 18.478 | 0.034 0.134 0.540
Losses ) (6.884) | (0.039) | (0.268) | (0.597)

Prevention- 0.80 11.547 | 0.192 0.139 0.514
Gains ) (7.872) | (0.287) | (0.315) | (1.02)

Prevention- 0.80 15.267 | 0.108 0.004 0.567
Losses ) (9.660) | (0.194) | (0.005) | (0.803)

Discussion

This report examines the effects of regulatory fit on
optimal decision-making performance in a dynamic task
environment. While previous research has addressed the
neural correlates of “risky” choice behavior (Montague &
Berns, 2002) and the effects of decaying memory for actions
between choices (Bogacz et al., 2007) in decision-making
environments where payoffs vary as a function of recent
behavior, little work has examined motivational factors that
bear on performance in this class of tasks. We have shown
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that regulatory fit strongly influences how human choice
behavior adapts to changing payoff contingencies in the
environment. Specifically, we revealed that compatibility
between one’s situational regulatory focus and the reward
structure of the environment diminishes one’s reactivity to
local changes in payoffs—which, in the rising optimum
task, is necessary for optimal, payoff-maximizing patterns
of choice. It should be noted, however, that optimal choice
behavior did not depend solely on the reward structure of
the environment (e.g., gains and losses), but rather the
interaction between situational regulatory focus and task
reward structure.

A possible interpretation of differential levels of
sensitivity to local payoff changes is that continually
modifying one’s response policy on the basis of local payoff
information impedes systematic exploration of the decision
space. That is, reactivity to local changes in payoffs
precludes full, systematic exploration of the decision space.
The notion of systematic exploration is closely related to
“temporal abstraction” in reinforcement-learning as
described by Botvinick et al. (in press) by which agents can
reduce the effective size of the decision space through
structured, multiple-action patterns of exploration. While
previous accounts of motivational influences of choice in
bandit tasks find that regulatory fit engenders more
stochastic decision-making on the independent, trial-to-trial
level (Worthy et al., 2007), participants’ choice behavior in
the present work suggests that regulatory fit also facilitates a
more systematic form of exploration which persists over
multiple choices.

We have shown in this report that motivational factors in
the environment can influence individuals’ level of
reactivity to local payoff changes in a dynamic decision-
making task, which can in turn impact their willingness to
explore globally optimal choice strategies. These results add
to the body of findings from the decision-making and
classification literatures (Maddox, Baldwin, & Markman,
2006; Worthy et al., 2007), which suggest motivation holds
strong effects for human cognition and behavior.
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