
What Cognitive Scientists Need to Know about Virtual Machines
Aaron Sloman (A.Sloman@cs.bham.ac.uk)

School of Computer Science, University of Birmingham, Birmingham, B15 2TT, UK

Abstract

Many people interact with a collection of man-made virtual
machines (VMs) every day without reflecting on what that im-
plies about options open to biological evolution, and the im-
plications for relations between mind and body. This tutorial
position paper introduces some of the roles different sorts of
running VMs (e.g. single function VMs, “platform” VMs) can
play in engineering designs, including “vertical separation of
concerns” and suggests that biological evolution “discovered”
problems that require VMs for their solution long before we
did. This paper explains some of the unnoticed complexity in-
volved in making artificial VMs possible, some of the implica-
tions for philosophical and cognitive theories about mind-brain
supervenience and some options for design of cognitive archi-
tectures with self-monitoring and self-control.

Keywords: virtual machine; virtual machine supervenience;
causation; counterfactuals; evolution; self-monitoring; self-
control; epigenesis; nature-nurture; mind-body;

Introduction
Two concepts of a “virtual machine” (VM), have been devel-
oped in the last half century to aid the theoretical understand-
ing of computational systems and to solve engineering design
problems. The first, Abstract virtual machine (AVM), refers
to an abstract specification of a type of system, e.g. a Turing
machine, a Universal Turing machine, the Intel pentium, or
the virtual machine defined by a language or operating sys-
tem, e.g. the Java VM, the Prolog VM, the SOAR VM, the
Linux VM, etc. An AVM is an abstract object that can be
studied mathematically, e.g. to show that one AVM can be
modelled in another, or to investigate complexity issues.

The second concept refers to a running instance of a VM
(Running virtual machine, RVM), e.g. the chess RVM against
which an individual is playing a game at a certain time, the
editor RVM I am using to type these words, the Linux RVM
running on my computer, the networked file-system RVM in
our department and the internet – a massive RVM composed
of many smaller RVMs, instantiating many different AVMs.

The RVM concept has deep features that have not been
widely recognized, or adequately described. Importantly dif-
ferent sub-cases are defined below, e.g. specific VMs (SVMs)
and platform VMs (PVMs). I conjecture that biological evo-
lution “discovered” some of the problems for which different
sorts of VM are solutions long before we did and produced
designs for RVMs whose functions we need to understand
better. Moreover, understanding relations between these VMs
and the underlying physical machines (PMs) in which they
are implemented can help to clear up some old philosophical
problems and pose new ones, including problems about men-
tal causation. This will add clarity and precision (including
engineering design information) to the closely related pair of
concepts “realization” and “supervenience”, and can provide
new insights into old puzzles about emergence and the exis-
tence and causal efficacy of non-physical states and processes
e.g. mental and socio-economic states and processes.

Philosophers have offered metaphysical, epistemological
and conceptual theories about the status of such entities,
for example in discussing dualism, “supervenience”, “real-
ization”, mind-brain identity, epiphenomenalism and other
“isms”. Many deny that non-physical events can be causes,
unless they are identical with their physical realizations.
Non-philosophers either avoid the issues by adopting various
forms of reductionism (if they are scientists) or talk about lev-
els of explanation, or emergence, without being able to give
a precise account of how that is possible. I shall try to show
how recent solutions to engineering problems produce a kind
of emergence that can be called “mechanism supervenience”,
and conjecture that biological evolution produced similar so-
lutions.1 Moore (1903) introduced the idea of supervenience.
Davidson (1970) transferred it from ethics to the context of
mind/body relations, inspiring much subsequent discussion,
e.g. (Kim, 1993, 1998). Space limits rule out discussing re-
lations between “supervenience” and “realization”. A useful
introduction is in the Stanford Encyclopedia of Philosophy,
though it ignores the engineering (computing) examples.

Several varieties of supervenience can be distinguished:

• property supervenience: (e.g. having a certain temperature su-
pervenes on having molecules with a certain kinetic energy);

• pattern supervenience: (e.g., supervenience of various horizon-
tal, vertical and diagonal rows of dots on a rectangular array of
dots, or the supervenience of a rotating square on changes in the
pixel matrix of a computer screen);

• mereological, or agglomeration, supervenience: possession of
some feature by a whole as the result of a summation of features
of parts (e.g. supervenience of the centre of mass of a rock on the
masses and locations of its parts, each with its own mass);

• mathematical supervenience: e.g. Euclidean geometry can be
modelled in arithmetic, using Cartesian coordinates, and in that
sense geometry supervenes on arithmetic.

• mechanism supervenience: supervenience of one machine on
another: a set of interacting objects, states, events and processes
supervenes on a lower level reality (e.g., supervenience of a run-
ning operating system on the computer hardware).

This paper is about mechanism supervenience, relating
RVMs with PMs. It is not concerned with the simple case
of how one property, pattern, or entity relates to others, but
with how a complex ontology (collection of diverse entities,
events, processes, states, with many properties, relationships
and causal interactions) relates to another ontology. It could
also be called “ontology supervenience”, or perhaps “ontol-
ogy instance supervenience”. Davidson described superve-
nience as a relation between properties or “respects”, whereas
mechanism supervenience involves a relation between inter-
acting parts and relations of complex ontology-instances, not
just properties. A single object with a property that super-
venes on some other property is a very simple special case.

1See http://www.cs.bham.ac.uk/research/projects/cogaff/09.html#vms
for more details than this conference paper can include.

1210

What Is a Machine?
A machine is a complex enduring entity with a (possibly
changing) set of parts that interact causally with one another
and/or with the machine’s environment. The interactions may
be discrete or continuous, sequential or concurrent. Different
parts of the machine, e.g. different sensors and effectors, may
interact with different parts of the environment concurrently.
The machine may treat parts of itself as parts of the environ-
ment (during self-monitoring), and parts of the environment
as parts of itself, e.g. tools, or diagrams (Sloman, 1978, Ch
6&7). The machine may be fully describable using concepts
of the physical sciences (plus mathematics), in which case it
is a physical machine (PM). Examples include gear mecha-
nisms, clouds, electric motors, tornadoes, plate tectonic sys-
tems, and molecular machines in organisms. Many machines
manipulate only matter and energy, whereas some, including
biological organisms, manipulate information (often in order
to control manipulation of matter and energy).

Not All Machines Are Physical Machines
Some information-processing machines have states, pro-
cesses and interactions whose best descriptions use concepts
that cannot be defined in terms of those of the physical sci-
ences, e.g. “inferring”, “checking spelling”, “playing chess”,
“winning”, “threat”, “strategy”, “desire”. “belief”, “plan”,
“crime”, and “economic recession”. There is no space to de-
fend the indefinability claim here, though many will find it
obvious. Examples of Non Physically Describable Machines
(NPDMs) include socio-economic machines, ecosystems and
some biological control systems, e.g. motivational mecha-
nisms. NPDMs are ubiquitous in computing systems, but
go unnoticed, or misunderstood, by many researchers trying
to understand relations between physical and non-physical
states and processes. If an RVM contains causally interact-
ing components that cannot be described using concepts of
the physical sciences, then some of its states and processes
cannot be directly measured or detected using the techniques
of physics alone, although some physical measures may cor-
relate with non-physical phenomena. Examples are run-
ning computer programs doing things like checking spelling,
playing chess, sorting email, computing statistics, etc. “In-
correct spelling” cannot be defined in terms of concepts of
physics (e.g. “length”, “velocity”, “mass”, “energy”, “force”,
“charge”, “temperature”).

Computer scientists and engineers refer to NPDMs as “Vir-
tual Machines” (VMs). This can cause confusion, since “vir-
tual” sometimes implies “unreal”, as in “virtual reality” (VR).
However, a running NPDM/VM really has parts that inter-
act with one another and with the environment, in computing
systems, e.g. spread-sheets, word-processors, and flight con-
trollers. They can make things happen outside the computer.
A person in a VR game is an entity in a RVM, and its actions
can cause things to happen even though it is not a real person.

Every RVM depends for its existence and efficacy on a PM
on which it is implemented. This is causal, not substance
dualism: an RVM and its main causal interactions can be

transferred to a new PM, and the old PM destroyed, but no
RVM can work without being implemented in a PM. A more
complete discussion (Sloman, 1978, Ch. 6) would show that
human-like RVMs are implemented partly in the physical en-
vironment (e.g. extending short term memories) and partly in
other people, e.g. needed for reference to remote events and
places (as P.F. Strawson showed), and for use of concepts like
‘date’, ‘country’, ‘money’, ‘crime’, ‘fame’, etc.

Not All RVMs Are Computer-based
Things mentioned in gossip, political debate, novels, plays,
social sciences, etc., include RVMs, even though the label
“machine” is unusual in this context. Such RVMs are in-
volved in many causal interactions: e.g. jealousy can cause
weeping, poverty can cause crime, and crime can cause mis-
ery. There are socio-economic NPDMs implemented (partly)
in running mental VMs, implemented partly in brains and
partly in aspects of the physical environment. These enti-
ties and their causal interactions, properties, relations, struc-
tures, states, events, and processes, are accurately describ-
able only by using concepts that are not physically definable,
even though the mechanisms are implemented (ultimately) in
PMs. Neural mechanisms appear to be VMs implemented
in physical/chemical machines. Chemical processes can be
viewed as running VMs, whose entities, states, processes,
and causal interactions are “fully implemented” in lower
level PMs. Physics itself has layers, including common-
sense physics of billiard ball interactions, implemented in the
atomic/molecular layer, which physicists are trying to explain
as implemented in deeper layers. Nobody knows how many
layers will be required.

Misconceptions About VMs
Philosophers and others have written about VMs, but most ig-
nore the variety of types, the complexity of relations between
VMs and PMs, and the variety of causal interactions. Some
suggest wrongly that talk of VMs is just metaphorical: this
ignores advances in science and engineering that go far be-
yond making metaphors. The engineer who fixes a bug in a
VM specification that caused a plane to crash is not dealing
with metaphors: future runs of the VM will include different
processes. Many still assume that every virtual machine is
a finite state machine (FSM), with a collection of states be-
tween which it switches, triggered by input signals, with only
one (atomic) state existing at a time. A theory that minds are
like that (Block, 1996) could be called atomic state function-
alism. Turing demonstrated that, with an infinite tape, this
can provide a surprisingly powerful model of possible forms
of information processing. But it is not general enough for
our purposes. It cannot cope with what goes on in current
multiprocessing computers with multiple external interfaces,
because the machine table is not the only controller.

A richer model involves a RVM composed of multiple in-
teracting FSMs, only some of which interact directly with the
environment, possibly using external input and output inter-
faces including analog-to-digital and digital-to-analog con-

1211

verters, all requiring “device driver” software.
Instead of having a fixed set of sub-processes, modern com-

puting systems allow new VMs of varying complexity to be
constructed dynamically, some running for a while then stop-
ping, others going on indefinitely, some spawning new sub-
VMs, which in turn can spawn new sub-VMs. If analog de-
vices are included, there can be VM states that change con-
tinuously, instead of only discrete changes. Some VMs can
effectively model continuous change while running on digi-
tal devices (e.g. in digital video and digital audio systems).
Other VMs may not be able to tell whether they are interact-
ing with discrete or physically continuous mechanisms.

Not only static parts and relations but also processes and
causal interactions can supervene on physical phenomena.
Many people think multiple processes cannot run in paral-
lel on a single-CPU computer, because only one process can
run at a time. This ignores how memory mechanisms work in
computers. Different software processes have (overlapping)
regions of memory allocated to them, which endure in par-
allel, so that a temporarily passive process can affect an ac-
tive one that reads some of its memory, justifying the descrip-
tion of “enduring interacting sub-systems”. In any case, how
many CPUs share the burden of running a multi-component
VM is a contingent feature of its implementation, since some
operating systems on multi-cpu systems can dynamically dis-
tribute processes among processors as available. Moreover,
interrupt handlers connected to constantly “on” physical de-
vices, e.g. keyboard and mouse interfaces, video cameras,
etc., allow some processes to constantly watch or control the
environment even when they don’t have control of the CPU.

Another common misconception is that there are fixed cor-
relations between VM and PM entities and events. The rela-
tionships between RVMs and PMs can be continually altered
by virtual memory systems (paging mechanisms), and sys-
tems using “garbage collection” (reclaiming physical or vir-
tual memory that’s no longer in use). The use of structure
sharing, changing mixtures of precomputed and computed-
on-the-fly structures, and dynamic process creation and ter-
mination, can cause enduring and fleeting VM entities, rela-
tionships, events, and processes, to have no fixed PM corre-
lates. Different subsets of physical entities can implement an
enduring VM entity at different times in its history.

A PM and the VM it implements need not be isomorphic.
There need not be any part of the PM that is isomorphic with
the VM, not even instantaneously. The structure of the VM
can change significantly without structural changes occurring
at the physical level though the physical states of millions
of switches may need to change to alter conditional connec-
tions. A very large “sparse array” in the VM may contain
many more locations than there are switches in the PM. An-
other process will find the sparse array indistinguishable from
one implemented using an isomorphic PM structure. Distinct
objects in a VM can have implementations that share parts of
the PM. Redundant implementations used for reliability can
map one VM entity to a set of PM entities. In a PM, circu-
lar containment is impossible, whereas it is possible in a VM,

e.g. list A contains list B and B contains A (Sloman, 1978).
If you open up such systems you will not see the virtual

machine components, only the hardware components. Like-
wise, as explained above, the existence and properties of the
RVMs (e.g. playing chess, or correcting spelling) cannot be
directly detected by physical measuring devices. They can
only detect more or less reliable physical correlates. Reliable
detection of VM states, processes, and events by external de-
vices may be impossible for systems with highly dynamic or
idiosyncratic virtual-physical mappings. This may also be
true of some mental RVMs.

Causation in computing systems
A common misconception about causation in computers is
that PM events occur in sequence, every VM event is caused
by a specific PM process associated with a particular phys-
ical part, and causation is one-way, as depicted crudely in
Fig. 1. This is how the supervenience or realization of mind
on matter is conceptualised by many philosophers. The popu-

Figure 1: A tempting but incorrect causal model

Figure 2: A (slightly) more accurate model – see text.
lar model of computers as supporting a single ordered stream
of discrete events is false: a modern computing system has
many different physical components that are active in paral-
lel, including memories, external sensor interfaces reading in-
formation into memory, and output interfaces transmitting in-
formation to external systems, some measuring or controlling
continuously varying signals: voltages, speeds, temperatures,
tilting (e.g. using gyroscopes) and chemical concentrations.
As indicated in Fig. 2, the (spatial and temporal) granular-
ity of VMs and PMs is very different, and there can be causal
chains between coarse-grained VM events linking PM events,
vastly reducing the combinatorics of programming, debug-
ging, or modifying VMs, compared with controlling PMs.
This contradicts the view that there is causation by VMs only

1212

because the VM events just are the PM events described in
a different way. On this “VM-PM identity theory” causation
by VM events (e.g. decisions) just is causation by the corre-
sponding physical events. However, there are statements true
of VM events and false of PM events and vice versa. More-
over, if VMs were identical with their implementations, then
PMs would be implemented in VMs. They aren’t.

A combination of hardware and software technology en-
sures (most of the time!) the truth of a complex web of con-
ditional statements relating what happens if so and so occurs
in physical or virtual machines. The support for that network
of relationships, including counterfactual conditional truths
(about what would have happened if), is equivalent to sup-
port for a complex web of causal connections, between in-
teracting VM and PM components crudely indicated in Fig. 2.
A corollary is that events can be causally overdetermined.

Such causal webs in computers required decades of devel-
opment of physical devices performing many functions, in-
terfaces/transducers linking computers to other devices, and a
plethora of interacting software or hybrid hardware-software
sub-systems, including: schedulers, device drivers, file man-
agement systems, memory management systems, compil-
ers, interpreters, interrupt handlers, caches, programmable
firmware stores, error-correcting memory, wired and wire-
less network interfaces, network protocol handlers, email sys-
tems, web browsers, and many more. Evolution has had
far more time, however, We’ll return to the implications of
that below. Virtual machine functionalism, using mechanism
supervenience, unlike atomic state functionalism, postulates
mind-brain relations more like Fig. 2.

Most man-made virtual machines have a fixed architecture
at present. However there is no reason why RVMs should not
extend themselves, e.g. through learning processes, just as
(Chappell & Sloman, 2007) suggested some biological virtual
machines grow themselves.

Why VMs Are Important In Engineering
As explained more fully in (Sloman, 2008) the use of VMs
makes a huge difference in the engineering of complex sys-
tems – for several reasons. It would be impossible to spec-
ify directly all the low level physical processes in a mod-
ern computing system as was done with the earliest comput-
ers, programmed at the bit level. Formalisms for program-
ming abstract VMs using concepts determined by the tasks,
rather than the usually much greater bit-level complexity, al-
low some designers to specify processes running on those
VMs (games, browsers, databases, etc.), while others work
on the mappings between VMs and PMs. Initially compil-
ers could statically map VM instructions to PM instructions.
Later, as concurrency, multiple users with different privileges
and external interfaces were added, the variety and unpre-
dictability of run-time possibilities ruled out static mapping
of VMs to PMs, and the tasks had to be allocated to inter-
mediate sub-systems taking decisions at run time. Allowing
generic hardware and software designed by specialists to han-
dle those decisions, further simplified tasks for designers of

specific applications with concurrently executing subsystems.
This vertical separation of design tasks contrasts with hor-

izontal separation, i.e. designing and implementing different
concurrent or switchable functions. Both can make very com-
plex systems much simpler and easier to specify, design, im-
plement, and debug, because each engineer (or team) works
on different, easier problems than getting the whole system
to work. Over time, designers of high level systems need to
know less and less about the details of what happens when
their programs run, leaving low level designs for others, e.g.
people writing compilers, device drivers, operating systems,
etc. VMs also reduce complexity for system maintainers,
allowing them to monitor and debug packages, by looking
only at patterns of VM operations, to find out what is go-
ing wrong. Another important development was from spe-
cialised VMs (SVMs) implemented to perform specific func-
tions, to platform VMs (PVMs) each capable of supporting
many SVMs. Examples of PVMs include operating systems,
which are RVMs on top of which many different SVMs can
run. Using a high level PVM as the control interface makes a
very complex system much more controllable: relatively few
high level factors, shared between different functions, are in-
volved in running the system, compared with monitoring and
driving sub-processes at the transistor or neuron level. This
advantage can apply to self monitoring and self control in
complex systems that need to take high level control deci-
sions McCarthy (1995); Minsky (2006).

Biological Virtual Machines
Evolution clearly produced horizontal modularity, using sep-
arate designs for sub-systems with separate functions: dif-
ferent neural or other control subsystems coexist and con-
trol different body parts, or produce different behaviours, e.g.
eating, walking, breathing, circulating blood, repairing dam-
aged tissue. But if developing new behaviours for the whole
organism requires each new behaviour to be implemented
in terms of low level states of muscles and sensors shared
between competences (e.g. typing, piano playing, prepar-
ing food), that could be unmanageable, and very hard to
change. Perhaps evolution also “discovered” the advantages
of vertical modularity based on PVMs, long before we did,
e.g. using layered VMs running on brains to provide high
level control interfaces between subsystems, including self-
monitoring. Moreover, if different control regimes (including
motive generation, and conflict detection and management)
are implemented on a multi-purpose VM layer, a PVM, the
regimes will have much simpler specifications than neural
implementations – e.g. making learning by self-monitoring
much easier.

For self-monitoring biological and artificial VMs, the com-
pressed, abstract information, ignoring much physiologi-
cal detail, may often suffice. If self-monitoring and self-
controlling systems are grown during an organism’s lifetime,
as in humans, platform-based vertical modularity could sim-
plify a genome’s support for multiple possible developmen-
tal trajectories, influenced by demands of the environment

1213

(Chappell & Sloman, 2007). Biological PVMs could al-
low developing individuals to explore and select different
kinds of new functionality, e.g. different behaviours, differ-
ent languages, different control strategies, different policies
for choosing goals or planning actions, and different ways of
learning things. There would not be fixed machine table as
suggested in (Pollock, 2008).

Designs can survive in evolution for the same reason as
they are useful for human designers. A design modification
giving an organism a kind of PVM-based self-understanding
lacked by its competitors, could make it more successful. E.g.
it may monitor its own reasoning, planning, and learning pro-
cesses (at a certain level of abstraction) and find ways to im-
prove them. If those improved procedures can also be taught,
the benefits need not be rediscovered only by chance. So
PVMs can directly support teaching and learning, and thereby
cultural evolution. Using them in control mechanisms goes
further than the common suggestion that a robot needs to
build a self-model.

However, such mechanisms, while useful much of the time,
can also produce incomplete self knowledge and errors in
self analysis, etc. Simplifications in self-monitoring VMs
could lead robot-philosophers to produce confused philo-
sophical theories about their own mind-body relationships,
e.g. theories about “qualia”. “Ineffable” qualia arising out
of learning in self-monitoring VMs could cause muddle (Slo-
man & Chrisley, 2003). Intelligent, human-like robots will
start thinking about these issues. As science fiction writers
have pointed out, they could become as muddled as human
philosophers. So to protect future robots from muddled think-
ing, we shall have to teach them philosophy, provided that we
have good philosophical theories to teach. Likewise children.

This raises many research questions, including: How could
PVMs have evolved? Do some species allow the environment
to influence features of VM construction during epigenesis
(Chappell & Sloman, 2007)? How? Can genes specify con-
struction of virtual machines under environmental influence?

It is often assumed that only mechanisms with biologi-
cal benefits could evolve. However a VM can include low
cost “decoupled” subsystems that process information, even
though they have only intermittent or no connections with
sensors or motors; e.g. a VM playing chess with itself or
solving problems in number theory, without any connection
to sensors or effectors. Such things may earn their biologi-
cal keep by occasionally passing discoveries to VMs that are
linked to the environment. Some VMs, e.g. sensory process-
ing VMs, may have more going on in them than can possi-
bly be expressed externally using the available external band-
width. Some constantly active sub-VMs may be capable of
being only very slightly influenced by sensor data, with very
minor perturbations, while others are strongly driven by the
environment.

A system that can change its own instructions can create
its own new sub-systems while running, and if this is done
largely under external influences, it may turn out to be a sys-
tem whose development nobody planned, and nobody under-

stands. So the widespread belief that computers can do only
what a programmer specifies is false, except in simple cases
(with write-protected code!). There are similar erroneous be-
liefs about genetic influences in humans.

Supervenience and Causation
Many philosophers who investigate mind-matter relation-
ships are generally either ignorant of or simply ignore most of
the facts about complex artificial VMs, e.g. the otherwise ex-
cellent (Kim, 1993, 1998). Notable exceptions include Bech-
tel, Boden, Clark, Dennett, Polger, and Pollock. Mental states
and processes are said to supervene on or be realized in phys-
ical ones. Problems arising include: Can mental processes
cause physical events (“downward causation”)? If previous
physical states and processes suffice to explain physical states
and processes at any time, how can mental ones have any ef-
fect? How could your deciding to come here influence your
movement, if physical causes (in brain and environment) suf-
fice to produce the motion? Before trying to answer such
questions for minds and brains it is worth considering sys-
tems we already understand much better, because humans de-
signed, built, and can extend and debug them. E.g. a move
in a chess VM can cause a computer display to change. Soft-
ware engineers finding a software bug that causes an airliner
to crash, can re-design the system so that early detection of a
problem causes a control mechanism to take remedial action,
saving lives. Virtual machines can do things.

Some philosophers believe that causal connections can ex-
ist only between physical events and processes; but that raises
the problem: at what level of physics? Billiard-ball interac-
tions and even chemical interactions can be argued to involve
virtual machines implemented on lower level machines. So if
they can be causes, why not allow causation in other virtual
machines? Normal human decision making and policy mak-
ing requires talk of ignorance causing poverty, poverty caus-
ing crime, preferences causing decisions, intentions causing
actions, experiences causing learning, greed in one person
causing harm to others, and many more. If we interpret causa-
tion in terms of truth of appropriate (often very complex) sets
of conditional statements the mystery can be removed. Fig. 2
indicates (crudely) how causes can operate simultaneously at
different levels because a tangled web of true counterfactual
conditionals supported by complex technology links events
at different levels, showing how virtual machines and physi-
cal machines are related so that the same thing can be caused
in two very different ways, by causes operating at different
levels of abstraction. Software engineers have an intuitive
understanding of this, but don’t do philosophical analysis.

A key feature of causation is its relationship with
conditional and counterfactual conditional questions and
statements: Would Fred have crashed if he had drunk less, if
the road camber had been greater, if there had been no ice on
the road, if he had driven more slowly, etc.? Without offering
an analysis of these usages, I have tried to indicate how they
relate to causation in VMs, loosely indicated in Fig. 2, which
depicts a web of interconnected counterfactual conditional

1214

statements corresponding to detailed implementational
mechanisms. A lot more detail is needed to make the points
precise.

Multiple layers of virtual machinery
Just as some physical machines (e.g. modern computers)
have a kind of generality that enables them to support many
different VMs (e.g. the same computer may be able to run
different operating systems Windows, Linux, or) so are
there some platform VMs with a kind of generality that en-
ables them to support many different “higher level” VMs (e.g.
the same operating system VM may be able to run many
different applications – window managers, word processors,
mail systems, spelling correctors, spreadsheets, compilers,
games, internet browsers, CAD packages, virtual worlds, chat
software, etc.). More generally, VMs may be layered:
V M1 supports V M2 which supports V M3, etc. The layers can
branch, and also be circular, e.g. if V M1 includes a compo-
nent that invokes a component in a higher level V Mk, which
is implemented in V M1. Layered virtual machines are not the
same as layered hierarchical control systems (e.g. Brooks’
“subsumption architecture”), where control layers implement
different functions for the whole system, and can be turned on
and off independently (mostly). When a VM provides func-
tionality that is implemented in lower levels: the lower levels
can’t be turned off leaving the higher levels running. Marr’s
third level, the “computational level” is sometimes regarded
as a virtual machine level. However Marr did not allow mul-
tiple VM levels, and insofar as his third level was a mapping
from sensor data to a scene description, it was a single func-
tion, not a machine specification as in Fig. 2.

The label ‘emergence’ can indicate that a VM non-
definitionally extends an ontology: the new concepts required
to describe the VM are not definable in terms of old ones. En-
gineers discussing implementation of VMs in computers and
philosophers discussing supervenience of minds on brains are
talking about the same ‘emergence’ relationship. This is not
a metaphor: both are examples of the same type.

Conclusion

The idea of a virtual machine (or NPDM) is deep, full of
subtleties and of great philosophical significance, challeng-
ing philosophical theories of mind, of causation, and of what
exists. The use of virtual machines has been of profound im-
portance in engineering in the last half century, even though
many of those closely involved have not noticed the wider
significance of what they were doing, especially the benefits
of vertical separation of concerns, and the complexity of what
has to be done to make it all work. The biological relevance
has not been widely acknowledged, whereas it seems that
evolution “discovered” both the problems and many solutions
long before we did, long before humans existed. I expect
the biological importance of VMs, including the importance
of VMS that grow themselves, will be increasingly acknowl-
edged. The resulting mind-brain theory is Virtual Machine

Functionalism, not Atomic State Functionalism.
If VMs are objects of self-monitoring and self-control they

can deceive themselves because many details are inaccessi-
ble, as humans have done, including some scientists who ex-
amine physical structures and processes in brains in the hope
of explaining virtual machine phenomena, without under-
standing the complexity and sophistication of the mappings
that can exist.

Acknowledgements
Many colleagues have helped with these ideas, especially
Ron Chrisley, Matthias Scheutz, Jackie Chappell, and col-
leagues working on the EU-funded CoSy robotics project and
its successor CogX, both making heavy use of VMs. Luiz
Carlos Baptista reminded me about causation in VR systems.
An early version of some of these ideas is (Sloman, 1993).
Later ideas inspired by the CoSy project, including ideas
about levels of interacting dynamical systems, are in my web-
site and papers in press. Many of the ideas have been devel-
oped in parallel by other authors, e.g. (Dyson, 1997). There
is much more relevant literature than I have space for here.

References
Block, N. (1996). What is functionalism? In The Encyclope-

dia of Philosophy Supplement. Macmillan.
Chappell, J., & Sloman, A. (2007). Natural and artificial

meta-configured altricial information-processing systems.
Int. Jour. of Unconventional Computing, 3(3), 211–239.

Davidson, D. (1970). Mental Events. In L. Foster & J. W.
Swanson (Eds.), Experience and Theory. London: Duck-
worth.

Dyson, G. B. (1997). Darwin Among The Machines: The
Evolution Of Global Intelligence. Addison-Wesley.

Kim, J. (1993). Supervenience and Mind: Selected philo-
sophical essays. CUP.

Kim, J. (1998). Mind in a Physical World. MIT Press.
McCarthy, J. (1995). Making robots conscious of their mental

states. In Aaai spring symposium on representing mental
states and mechanisms. Palo Alto, CA: AAAI.

Minsky, M. L. (2006). The Emotion Machine. New York:
Pantheon.

Moore, G. (1903). Principia ethica. CUP.
Pollock, J. L. (2008). What Am I? Virtual machines

and the mind/body problem. Philosophy and Phe-
nomenological Research., 76(2), 237–309. (http://philsci-
archive.pitt.edu/archive/00003341)

Sloman, A. (1978). The computer revolution in
philosophy. Hassocks, Sussex: Harvester Press.
(http://www.cs.bham.ac.uk/research/cogaff/crp)

Sloman, A. (1993). The mind as a control system. In
C. Hookway & D. Peterson (Eds.), Philosophy and the cog-
nitive sciences (pp. 69–110). CUP.

Sloman, A. (2008). The Well-Designed Young Mathemati-
cian. AIJ, 172(18), 2015–2034.

Sloman, A., & Chrisley, R. (2003). Virtual machines and
consciousness. JCS, 10(4-5), 113–172.

1215

