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Abstract 

It has frequently been claimed that learning performance 
improves with practice according to the so-called “Power 
Law of Learning”. Similarly, forgetting may follow a Power 
Law. It has been shown on the basis of extensive simulations 
that such Power Laws may emerge as artifacts through 
averaging functions with other shapes. Here, we present a 
mathematical analysis that power functions will indeed 
emerge as a result of averaging over exponential functions, if 
the distribution of learning rates follows a gamma 
distribution. Power Laws may, thus, arise as a result of data 
aggregation over subjects or items. Through a number of 
simulations we further investigate to what extent these 
findings may affect empirical results in practice. We conclude 
that spurious Power Laws will be more likely with large 
numbers of subjects and shorter time scales and with gamma 
distributions with much probability mass close to zero and 
with a not too low variance.  
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Power Laws of Learning and forgetting 

It has frequently been claimed that learning performance P 

improves with practice time t according to the so-called 

Power Law of Learning or that forgetting of learned 

material follows a power function (e.g., J. R. Anderson & 

Schooler, 1991; Newell, 1981; Wixted, 2004). In its 

simplest form, a power function is simply a function of the 

shape P = t

, where  is the learning (or forgetting) rate and 

t is number of learning episodes or time. P may refer to how 

accurate or how fast we carry out a learned activity.  

Power functions have the characteristic that the learning 

rate slows down with prolonged practice.  The above 

equation is not correct if P denotes a probability, µ is 

negative and t is small. For example, for t = 0.5 and µ = -

0.1, we have P = 0.5
-0.1

 = 1.072. This would give a 

probability greater than 1, which is impossible. We can 

easily remedy this by adding 1 to t, thus obtaining P = 

(t+1)
µ
. This form ensures that its value remains properly 

scaled as a probability (i.e., remains between 0 and 1) if µ is 

negative. 
 

Several authors dispute that learning follows a power 

function (e.g., Heathcote, Brown, & Mewhort, 2000), 

reporting exponential curves for individuals. Exponential 

curves have shape P = t. If learning shows an exponential 

improvement, the learning process itself does not slow 

down but continues at the same pace. These opposing 

viewpoints can be reconciled, if averaging over individual 

exponential curves would yield an averaged power function. 

This has indeed been found in an extensive simulation study 

(R. B. Anderson, 2001). The motivation by Anderson for 

carrying out a simulation study rather than a mathematical 

analysis was that a mathematical proof had not been 

established and may in fact be impossible. As we will 

demonstrate here, however, this is not the case. For at least 

one relevant case, a mathematical proof can be derived, 

which we will discuss below. Note that though we use the 

Power Law of Learning as a starting point of our analysis, 

our proof is general and applies to any situation where the 

assumptions are met. In particular, it also applies to the 

shape of forgetting functions. 

Exponential learning curves 

Our measure of learning performance is the probability p(t) 

that a student will be correct on a certain test item (e.g., 

knowing foreign language vocabulary) after study time t. In 

the analysis, we will first assume an exponential learning 

curve for individual students: ( ) 1 tP p t e     with µ ≥ 0. 

Such a curve starts at zero performance at t = 0 and will 

reach an asymptote at 1 (100% correct) given enough study 

time. Our second assumption is that students‟ learning rates  

 

Figure 1: Illustration of the flexibility of the gamma 

distribution. Shown are plots for different values of a and b. 
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are not all equal to . Instead we make the more reasonable 

assumption that some will be fast learners (high µ) and 

others slow learners (low µ). Exactly how learning rates are 

distributed is an empirical question. Our aim here, however, 

is limited to showing that for at least one probability 

distribution the shape of the averaged curve can be derived. 

We will then investigate the implications of this in practice 

through simulations. 

Gamma distributed learning rates 

We will here consider the case where learning rates follow a 

gamma distribution. This is a well-known probability 

distribution that can take different shapes depending on its 

parameters a (the „shape‟ parameter) and b (the „scale‟ 

parameter). If the shape parameter a is 1, the gamma 

distribution becomes the exponential distribution as a 

special case. The mean of the gamma distribution is given 

by the product ab and the variance by ab
2
. As can be seen 

from Figure 1, its shape is flexible and may vary from a 

peaked distribution where most learners tend to have low or 

average learning rates, to a broader distribution where 

learning rates are more variable. 

 

 

 
 

 

Figure 2: Convergence of the simulated exponential 

curves (dots) to predicted power curve (line) for different 

shapes of the learning rate distribution.  The inserts give the 

shape of the distributions used to generate each plot. 

Effects of averaging 

In Appendix A, we show that, if we assume that the learning 

rates µ of individual subjects follow a gamma distribution, 

the average pA(t) of a number of exponential learning curves 

will approach ( ) 1 (1 ) b

Ap t a t    . This is a power 

function, which is properly scaled as a probability (i.e., 

remaining between 0 and 1) and starts at zero performance 

at t = 0.  

In Figure 2, we present an illustration of this. For different 

shapes of the learning rate distribution we have generated 

1000 artificial subjects with their learning rate drawn 

randomly from the distribution. Each subject learns 

according to an exponential curve. The different plots show 

the averaged curve over the 1000 exponential curves. We 

can observe that the simulated learning curves (dots) 

approach the theoretical power function (line) very closely.  

Normally, experiments will have a number of subjects 

much smaller than 1000 and one might wonder whether the 

theoretical result still holds. In Figure 3, we show the 

distance (root of the squared differences, RSD) between the 

simulated and predicted curves for increasing numbers of 

subjects in an experiment that measured learning over 10 

episodes. Each data point represents the average of 1000 

simulated experiments. In larger experiments, with higher 

numbers of subjects, the simulated data continues to 

approach the theoretical data. 

 

 
 

Figure 3: Experiments with larger number of subjects fit 

the power function increasingly well. The dashed line is 

based on a gamma distribution with (a, b) = (1, 0.5), the 

solid line (a, b) = (2, 0.5). 

 

In the following series of simulations, we studied the 

effect of varying the parameters of the gamma distribution 

for a fixed study time (we used learning over 20 episodes). 

Each simulated experiment had 20 subjects, for which we 

calculated the average distance (RSD). Gamma distribution 

parameters a and b were varied from ¼ to 2 in steps of 0.05. 

For all data points shown in Figure 4, we took the average 

of 1000 simulated experiments.  

As can be observed, the predicted power function is closer 

to the simulated data with lower a and higher b (up to a 

point). Lowering a shifts the mass of the distribution 

towards lower values (see plots in the left column of Figure 

2, which shows shapes for increasing a). More slow learners  
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 Figure 4: Distance between the theoretical and simulated 

curves as a function of gamma distribution parameters a and 

b. Each simulated experiment had 20 subjects and a time 

scale of 20 episodes (e.g., minutes or days).  

 

will cause a „thicker tail‟ in the learning curve, as it will 

approach 100% performance more slowly due to those 

learners that have low learning rates. Thick tails are seen as 

a characteristic of power functions. Increasing b increases 

the variance of the learning rate distribution. The opposite 

effect, decreasing the variance, will cause a narrower peak 

around the mean value. With very similar learning rates for 

all subjects, we would expect the averaged curve to also be 

quite similar to the individual learning curves, which we 

continue to assume to be exponential. Widening the peak 

will change the shape of the averaged curve from 

exponential to more power, as predicted by our derivation. 

In Figure 5 a contour plot is shown of a similar simulation, 

but now varying a and b from 1/10 to 2.0 in steps of 0.1. 

Each data point represents the average of 10000 simulated 

experiments with 20 subjects and 20 time episodes. 

In the simulations thus far, we have compared the 

predicted power curve with the results of simulated 

experiments that vary in numbers of subjects, length of the 

learning curve, and shape of the learning rate distribution. 

One might well wonder, what would happen if we fitted 

both a power function and an exponential function to the 

averaged, exponential learning curves. To investigate this 

we simulated experiments with different rate distributions 

(drawn again from the gamma distribution) and with 

increasing numbers of subjects. Each simulated curve was 

fitted to an exponential function and a power function.  

To enable simulations of thousands of experiments we 

used a linear model, fitted to the log-transformed data for  

 

 
 

Figure 5: Contour plot of a similar simulation as Figure 4 

but with a and b varied in steps of 0.1 and with each data 

point based on 10,000 simulated experiments. 

 

 

the exponential function and the log-log transformed data 

for the power function. Though we are aware that this is not 

the most reliable method to find power laws, this method is 

often used in practice, e.g., by plotting the data with log 

transformed axes. With log-log axes, a power function will  

show up as a straight line. If only the ordinate is log-  

 

 
 

Figure 6: For simulated experiments with increasing 

numbers of subjects, the fraction is shown for which the 

power function gave a better fit on the Bayesian Information 

Criterion (a measure of goodness-of-fit), as opposed to an 

exponential function. Each point is the average of 1000 

simulated experiments. Of the four curves, '' has (a, b) = 

(2, 1) and episodes = 10,  '' has (a, b) = (4, 1/2) and 

episodes = 10,  '' has (a, b) = (2, 1) and episodes = 20, '' 

has (a, b) = (4, 1/2) and episodes = 20. 
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transformed (i.e., data, but not time), an exponential 

function will give a straight line. The fit of the two function 

types was compared using the Bayesian Information 

Criterion (BIC), which is a popular goodness-of-fit criterion. 

For every simulation, the best fitting function was chosen. 

We were, thus, able to plot the fraction of times a power 

function was selected, which is shown in Figure 6 for (a, b) 

is (2, 1) and (4, ½) and for simulated experiments with time 

scales of 10 and 20 time units (e.g., seconds or days). The 

experiments in this simulation can be compared to those 

where an experimenter decides to fit empirical data to two 

different functions to see what fits best. 

As can be seen in Figure 6, (i) averaging over more 

subjects increases the chances of finding a (spurious) fit to a 

power function, and (ii) extending the time scale in a curve 

decreases the chances of power function fits. 

The BIC is a excellent measure of fit that takes into 

account relevant information such as number of free 

parameters. For many researchers, however, the proportion 

variance explained or r
2
 is more meaningful. In Figure 7, we 

therefore show for one particular choice of learning rate 

distribution (a = 2, b = 1) and number of episodes (10) what 

the r
-2

 is. As can be observed, the variance explained is quite 

good for nearly all simulated experiments. For realistic 

numbers of subjects, the power function (open squares) 

gives r
2
 values in excess of 0.985, even though these fits are 

an artifact caused by averaging exponential functions. 

 

 
 

Figure 7: For simulated experiments with increasing 

numbers of artificial subjects, the r
2
 value (fraction of 

variance explained) is shown for the fits of exponential 

function, '', and power function ''. Each point is the 

average of 1000 simulated experiments with gamma 

distribution parameters (a, b) = (2, 1) and number of 

learning episodes = 10. 

 

Discussion 

We presented a mathematical analysis of the effects of 

averaging exponential curves, demonstrating that averaging 

exponentials gives rise to spurious Power Laws, if the 

subjects have different learning rates that follow a gamma 

distribution. Through computer simulations, we also showed 

that (i) averaging over higher numbers subjects increases the 

chances of finding a good fit to a power function, and (ii) 

extending the time scale in the experiment decreases the 

chances of power function fits. We also showed that with 

gamma distribution parameter values that put the mass of 

distribution closer to zero or that turn it from narrow peak 

into a somewhat flatter distribution, the simulated data 

converge quickly to the predicted power curve. 

Our analyses are based on assumptions that may be 

satisfied frequently, given the flexibility of the gamma 

distribution, offering a plausible explanation for the 

ubiquitous reports of the Power Laws of Learning and 

Forgetting. While this does not rule out that other processes 

may give rise to power laws (Wixted, 2004), we have 

adduced mathematical proof  that power laws may arise as a 

result of mere data aggregation without reflecting directly 

the properties of fundamental cognitive processes, which 

may well be exponential in nature. 

The theoretical result can be generalized to forgetting 

functions where we consider t to be time since the 

completion of learning. Using ( ) tp t e   for individual 

curves and assuming a gamma distribution of the individual 

forgetting rates µ, we obtain for the averaged forgetting 

curve:  ( ) 1
b

Ap t a t


  . Our result is corroborated by a 

recent analysis (Lee, 2004) of over 200 forgetting studies 

taken from the literature, most of which average across 

participants. These forgetting curves are best modeled by 

the hyperbolic function 1/(1+t), which is a power function 

with exponent b = 1. If our analysis would apply to this case 

and the hyperbolic function does indeed emerge from 

averaging over exponential forgetting functions, we expect 

the distribution of the forgetting rates to be
11( ) af a e 
  . 

This is an exponential distribution, implying that in these 

experiments we should observe rather many students that 

show little or no forgetting. This is not implausible with the 

short retention intervals often encountered in the psychology 

laboratory where there may not be enough time to allow 

sufficient forgetting for many subjects. The resulting ceiling 

effects would foster spurious Power Laws in the averaged 

forgetting curves. 

The analysis can also be applied to averaging over items 

rather than students. We then assume that single items to be 

learned (e.g., foreign language words) have different 

learning rates, according to a gamma distribution. The 

learning curve averaged over items will then appear as a 

power function. Thus, even a single student may show a 

power learning curve based on averaged performance of 

heterogeneous items to-be-learned. 

The analysis can be carried even further, to the level 

below that of a single item, namely to the features that make 

up its representation. Suppose, an item‟s representation can 

be approximated by discrete, uncorrelated elements and that 

the individual elements are learned according to an 

exponential learning function where the learning rates 

follow a gamma distribution. Then, if the item‟s strength 
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during the learning process reflects the average strength of 

its features, the learning of such a single item will follow the 

power law of learning. A single item in this example may be 

of any type or modality (e.g., a cognitive representation of 

face or word meaning, but also of a complex activity such as 

a certain movement pattern in sports or music); as long as 

the assumption regarding its features are met, it will exhibit 

power law learning. The same applies to forgetting of single 

items. The effects of averaging at different levels will 

transform exponentially shaped curves into a power curve.  
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Appendix A 

Here, we present the mathematical details of averaged 

learning curves. Individuals differ in learning rates. Exactly 

how individuals differ is described by a probability density 

function. We will couch the example in terms of learning 

processes but it should be pointed out that the results 

presented here are general and apply to forgetting and other 

processes as well. 

The starting point of our analysis is the form of the 

function for the probability of correctly recalling a learned 

item for an individual subject. Recall takes place after 

cueing and retrieving information about an item. The 

success of recall will improve if learning time is increased 

or learning is enhanced.  

Let us denote the initial amount of learned information 

stored per unit of practice time t by . Next, we denote the 

extent to which information will be recalled at time z since 

learning by a function r(z), such that r(0) = 1, where z = 0 

denotes the end of a learning trial. In a recent study, we 

derived and tested a recall function within an extreme-value 

theoretical framework (Chessa & Murre, 2006). Based on 

this study, we take the following general form for the recall 

function p(t, z) of an individual subject at retention lag z, 

after learning time t: 

 
( )( , ) 1 .t r zp t z e    (1) 

 

Note, that when z = 0, we have the special case of a 

simple exponential function of the shape ( ) 1 tp t e    as 

discussed above. To simplify the analysis somewhat we will 

present most analysis in terms of averaging over 

( ) .tp t e 
 

Gamma distribution 

We assume that individual learning rates  follow a gamma 

distribution with density function 

 
1 /1

( )
( ) ,b

b a

b a
f e    


  (2) 

with parameters a, b > 0, where (b) is the well-known 

gamma function that equals (b – 1)! for integer values of b.  

Exponential functions 

The recall function aggregated over subjects that learn 

exponentially but with different learning rates, which we 

denote as pA(t, z), is equal to the mathematical expectation 

of function (1) with respect to , that is: 

 

 

0

( ) 1 /

0

1

( )

( , ) ( , ) ( ) d

1 d

1 1 ( ) .

b

A

t r z b a

b

b a

p t z p t z f

e e

a t r z

 

 

 





  







 

  



  (3) 

where a and b originate from the gamma distribution. This 

function can be calculated by applying elementary 

probability calculus and is a standard result in statistics 

(e.g., Feller, 1966, p. 48), though it appears to be largely 

unknown in psychology. For z = 0, aggregate recall is equal 

to 
–1– (1  ) ba t

 
for practice only, which is the well-known 

„Power Law of Practice‟. The proof also applies to 

forgetting rates, e.g., when averaging over exponential 

forgetting curves with shape ( ) tp t e  . 
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