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Abstract

It has frequently been claimed that learning performance
improves with practice according to the so-called “Power
Law of Learning”. Similarly, forgetting may follow a Power
Law. It has been shown on the basis of extensive simulations
that such Power Laws may emerge as artifacts through
averaging functions with other shapes. Here, we present a
mathematical analysis that power functions will indeed
emerge as a result of averaging over exponential functions, if
the distribution of learning rates follows a gamma
distribution. Power Laws may, thus, arise as a result of data
aggregation over subjects or items. Through a number of
simulations we further investigate to what extent these
findings may affect empirical results in practice. We conclude
that spurious Power Laws will be more likely with large
numbers of subjects and shorter time scales and with gamma
distributions with much probability mass close to zero and
with a not too low variance.
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Power Laws of Learning and forgetting

It has frequently been claimed that learning performance P
improves with practice time t according to the so-called
Power Law of Learning or that forgetting of learned
material follows a power function (e.g., J. R. Anderson &
Schooler, 1991; Newell, 1981; Wixted, 2004). In its
simplest form, a power function is simply a function of the
shape P = t*, where w is the learning (or forgetting) rate and
t is number of learning episodes or time. P may refer to how
accurate or how fast we carry out a learned activity.

Power functions have the characteristic that the learning
rate slows down with prolonged practice. The above
equation is not correct if P denotes a probability, p is
negative and t is small. For example, for t = 0.5 and p = -
0.1, we have P = 0.5% = 1.072. This would give a
probability greater than 1, which is impossible. We can
easily remedy this by adding 1 to t, thus obtaining P =
(t+1)". This form ensures that its value remains properly
scaled as a probability (i.e., remains between 0 and 1) if p is
negative.

Several authors dispute that learning follows a power
function (e.g., Heathcote, Brown, & Mewhort, 2000),
reporting exponential curves for individuals. Exponential

curves have shape P = ", If learning shows an exponential
improvement, the learning process itself does not slow
down but continues at the same pace. These opposing
viewpoints can be reconciled, if averaging over individual
exponential curves would yield an averaged power function.
This has indeed been found in an extensive simulation study
(R. B. Anderson, 2001). The motivation by Anderson for
carrying out a simulation study rather than a mathematical
analysis was that a mathematical proof had not been
established and may in fact be impossible. As we will
demonstrate here, however, this is not the case. For at least
one relevant case, a mathematical proof can be derived,
which we will discuss below. Note that though we use the
Power Law of Learning as a starting point of our analysis,
our proof is general and applies to any situation where the
assumptions are met. In particular, it also applies to the
shape of forgetting functions.

Exponential learning curves

Our measure of learning performance is the probability p(t)
that a student will be correct on a certain test item (e.g.,
knowing foreign language vocabulary) after study time t. In
the analysis, we will first assume an exponential learning

curve for individual students: P = p(t) =1—e™" with p> 0.
Such a curve starts at zero performance at t = 0 and will

reach an asymptote at 1 (100% correct) given enough study
time. Our second assumption is that students’ learning rates
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Figure 1: Illustration of the flexibility of the gamma
distribution. Shown are plots for different values of a and b.
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are not all equal to g Instead we make the more reasonable
assumption that some will be fast learners (high u) and
others slow learners (low p). Exactly how learning rates are
distributed is an empirical question. Our aim here, however,
is limited to showing that for at least one probability
distribution the shape of the averaged curve can be derived.
We will then investigate the implications of this in practice
through simulations.

Gamma distributed learning rates

We will here consider the case where learning rates follow a
gamma distribution. This is a well-known probability
distribution that can take different shapes depending on its
parameters a (the ‘shape’ parameter) and b (the ‘scale’
parameter). If the shape parameter a is 1, the gamma
distribution becomes the exponential distribution as a
special case. The mean of the gamma distribution is given
by the product ab and the variance by ab? As can be seen
from Figure 1, its shape is flexible and may vary from a
peaked distribution where most learners tend to have low or
average learning rates, to a broader distribution where
learning rates are more variable.
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Figure 2: Convergence of the simulated exponential
curves (dots) to predicted power curve (line) for different
shapes of the learning rate distribution. The inserts give the
shape of the distributions used to generate each plot.

Effects of averaging

In Appendix A, we show that, if we assume that the learning
rates | of individual subjects follow a gamma distribution,
the average pa(t) of a number of exponential learning curves
will approach p,(t)=1-(1+at)™. This is a power
function, which is properly scaled as a probability (i.e.,
remaining between 0 and 1) and starts at zero performance
att=0.

In Figure 2, we present an illustration of this. For different
shapes of the learning rate distribution we have generated
1000 artificial subjects with their learning rate drawn
randomly from the distribution. Each subject learns
according to an exponential curve. The different plots show
the averaged curve over the 1000 exponential curves. We
can observe that the simulated learning curves (dots)
approach the theoretical power function (line) very closely.

Normally, experiments will have a number of subjects
much smaller than 1000 and one might wonder whether the
theoretical result still holds. In Figure 3, we show the
distance (root of the squared differences, RSD) between the
simulated and predicted curves for increasing numbers of
subjects in an experiment that measured learning over 10
episodes. Each data point represents the average of 1000
simulated experiments. In larger experiments, with higher
numbers of subjects, the simulated data continues to
approach the theoretical data.
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Figure 3: Experiments with larger number of subjects fit
the power function increasingly well. The dashed line is
based on a gamma distribution with (a, b) = (1, 0.5), the

solid line (a, b) = (2, 0.5).

In the following series of simulations, we studied the
effect of varying the parameters of the gamma distribution
for a fixed study time (we used learning over 20 episodes).
Each simulated experiment had 20 subjects, for which we
calculated the average distance (RSD). Gamma distribution
parameters a and b were varied from % to 2 in steps of 0.05.
For all data points shown in Figure 4, we took the average
of 1000 simulated experiments.

As can be observed, the predicted power function is closer
to the simulated data with lower a and higher b (up to a
point). Lowering a shifts the mass of the distribution
towards lower values (see plots in the left column of Figure
2, which shows shapes for increasing a). More slow learners
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Figure 4: Distance between the theoretical and simulated
curves as a function of gamma distribution parameters a and
b. Each simulated experiment had 20 subjects and a time
scale of 20 episodes (e.g., minutes or days).

will cause a ‘thicker tail’ in the learning curve, as it will
approach 100% performance more slowly due to those
learners that have low learning rates. Thick tails are seen as
a characteristic of power functions. Increasing b increases
the variance of the learning rate distribution. The opposite
effect, decreasing the variance, will cause a narrower peak
around the mean value. With very similar learning rates for
all subjects, we would expect the averaged curve to also be
quite similar to the individual learning curves, which we
continue to assume to be exponential. Widening the peak
will change the shape of the averaged curve from
exponential to more power, as predicted by our derivation.
In Figure 5 a contour plot is shown of a similar simulation,
but now varying a and b from 1/10 to 2.0 in steps of 0.1.
Each data point represents the average of 10000 simulated
experiments with 20 subjects and 20 time episodes.

In the simulations thus far, we have compared the
predicted power curve with the results of simulated
experiments that vary in numbers of subjects, length of the
learning curve, and shape of the learning rate distribution.
One might well wonder, what would happen if we fitted
both a power function and an exponential function to the
averaged, exponential learning curves. To investigate this
we simulated experiments with different rate distributions
(drawn again from the gamma distribution) and with
increasing numbers of subjects. Each simulated curve was
fitted to an exponential function and a power function.

To enable simulations of thousands of experiments we
used a linear model, fitted to the log-transformed data for
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Figure 5: Contour plot of a similar simulation as Figure 4
but with a and b varied in steps of 0.1 and with each data
point based on 10,000 simulated experiments.

the exponential function and the log-log transformed data
for the power function. Though we are aware that this is not
the most reliable method to find power laws, this method is
often used in practice, e.g., by plotting the data with log
transformed axes. With log-log axes, a power function will
show up as a straight line. If only the ordinate is log-
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Figure 6: For simulated experiments with increasing
numbers of subjects, the fraction is shown for which the
power function gave a better fit on the Bayesian Information
Criterion (a measure of goodness-of-fit), as opposed to an
exponential function. Each point is the average of 1000
simulated experiments. Of the four curves, 'e' has (a, b) =
(2, 1) and episodes = 10, 'w' has (a, b) = (4, 1/2) and
episodes = 10, 'o' has (a, b) = (2, 1) and episodes = 20, 'o'
has (a, b) = (4, 1/2) and episodes = 20.
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transformed (i.e., data, but not time), an exponential
function will give a straight line. The fit of the two function
types was compared using the Bayesian Information
Criterion (BIC), which is a popular goodness-of-fit criterion.
For every simulation, the best fitting function was chosen.
We were, thus, able to plot the fraction of times a power
function was selected, which is shown in Figure 6 for (a, b)
is (2, 1) and (4, ¥2) and for simulated experiments with time
scales of 10 and 20 time units (e.g., seconds or days). The
experiments in this simulation can be compared to those
where an experimenter decides to fit empirical data to two
different functions to see what fits best.

As can be seen in Figure 6, (i) averaging over more
subjects increases the chances of finding a (spurious) fit to a
power function, and (ii) extending the time scale in a curve
decreases the chances of power function fits.

The BIC is a excellent measure of fit that takes into
account relevant information such as number of free
parameters. For many researchers, however, the proportion
variance explained or r? is more meaningful. In Figure 7, we
therefore show for one particular choice of learning rate
distribution (a = 2, b = 1) and number of episodes (10) what
the r? is. As can be observed, the variance explained is quite
good for nearly all simulated experiments. For realistic
numbers of subjects, the power function (open squares)
gives r? values in excess of 0.985, even though these fits are
an artifact caused by averaging exponential functions.
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Figure 7: For simulated experiments with increasing
numbers of artificial subjects, the r* value (fraction of
variance explained) is shown for the fits of exponential
function, 'e', and power function 'o’. Each point is the
average of 1000 simulated experiments with gamma
distribution parameters (a, b) = (2, 1) and number of
learning episodes = 10.

Discussion

We presented a mathematical analysis of the effects of
averaging exponential curves, demonstrating that averaging
exponentials gives rise to spurious Power Laws, if the
subjects have different learning rates that follow a gamma

distribution. Through computer simulations, we also showed
that (i) averaging over higher numbers subjects increases the
chances of finding a good fit to a power function, and (ii)
extending the time scale in the experiment decreases the
chances of power function fits. We also showed that with
gamma distribution parameter values that put the mass of
distribution closer to zero or that turn it from narrow peak
into a somewhat flatter distribution, the simulated data
converge quickly to the predicted power curve.

Our analyses are based on assumptions that may be
satisfied frequently, given the flexibility of the gamma
distribution, offering a plausible explanation for the
ubiquitous reports of the Power Laws of Learning and
Forgetting. While this does not rule out that other processes
may give rise to power laws (Wixted, 2004), we have
adduced mathematical proof that power laws may arise as a
result of mere data aggregation without reflecting directly
the properties of fundamental cognitive processes, which
may well be exponential in nature.

The theoretical result can be generalized to forgetting
functions where we consider t to be time since the

completion of learning. Using p(t)=e*"' for individual

curves and assuming a gamma distribution of the individual
forgetting rates |, we obtain for the averaged forgetting

curve: pA(t):(1+at)7b. Our result is corroborated by a

recent analysis (Lee, 2004) of over 200 forgetting studies
taken from the literature, most of which average across
participants. These forgetting curves are best modeled by
the hyperbolic function 1/(1+t), which is a power function
with exponent b = 1. If our analysis would apply to this case
and the hyperbolic function does indeed emerge from
averaging over exponential forgetting functions, we expect

the distribution of the forgetting rates to be f () oca™e™ .

This is an exponential distribution, implying that in these
experiments we should observe rather many students that
show little or no forgetting. This is not implausible with the
short retention intervals often encountered in the psychology
laboratory where there may not be enough time to allow
sufficient forgetting for many subjects. The resulting ceiling
effects would foster spurious Power Laws in the averaged
forgetting curves.

The analysis can also be applied to averaging over items
rather than students. We then assume that single items to be
learned (e.g., foreign language words) have different
learning rates, according to a gamma distribution. The
learning curve averaged over items will then appear as a
power function. Thus, even a single student may show a
power learning curve based on averaged performance of
heterogeneous items to-be-learned.

The analysis can be carried even further, to the level
below that of a single item, namely to the features that make
up its representation. Suppose, an item’s representation can
be approximated by discrete, uncorrelated elements and that
the individual elements are learned according to an
exponential learning function where the learning rates
follow a gamma distribution. Then, if the item’s strength
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during the learning process reflects the average strength of
its features, the learning of such a single item will follow the
power law of learning. A single item in this example may be
of any type or modality (e.g., a cognitive representation of
face or word meaning, but also of a complex activity such as
a certain movement pattern in sports or music); as long as
the assumption regarding its features are met, it will exhibit
power law learning. The same applies to forgetting of single
items. The effects of averaging at different levels will
transform exponentially shaped curves into a power curve.
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Appendix A

Here, we present the mathematical details of averaged
learning curves. Individuals differ in learning rates. Exactly
how individuals differ is described by a probability density
function. We will couch the example in terms of learning
processes but it should be pointed out that the results
presented here are general and apply to forgetting and other
processes as well.

The starting point of our analysis is the form of the
function for the probability of correctly recalling a learned
item for an individual subject. Recall takes place after
cueing and retrieving information about an item. The
success of recall will improve if learning time is increased
or learning is enhanced.

Let us denote the initial amount of learned information
stored per unit of practice time t by . Next, we denote the
extent to which information will be recalled at time z since
learning by a function r(z), such that r(0) = 1, where z = 0
denotes the end of a learning trial. In a recent study, we
derived and tested a recall function within an extreme-value
theoretical framework (Chessa & Murre, 2006). Based on
this study, we take the following general form for the recall
function p(t, z) of an individual subject at retention lag z,
after learning time t:

p(t,z)=1-e " (1)

Note, that when z = 0, we have the special case of a
simple exponential function of the shape p(t)=1-e™*' as

discussed above. To simplify the analysis somewhat we will
present most analysis in terms of averaging over

p(t)=e*".

Gamma distribution

We assume that individual learning rates x follow a gamma
distribution with density function

() = rra P e, (2)

with parameters a, b > 0, where T'(b) is the well-known
gamma function that equals (b — 1)! for integer values of b.

Exponential functions

The recall function aggregated over subjects that learn
exponentially but with different learning rates, which we
denote as pa(t, ), is equal to the mathematical expectation
of function (1) with respect to g, that is:

po(t.2) = f p(t,2) (1) du

J‘ 1 e ytr(z) b-1 w/adlu (3)
0

F(b)ab H

=1-(1+at r(z))

where a and b originate from the gamma distribution. This
function can be calculated by applying elementary
probability calculus and is a standard result in statistics
(e.g., Feller, 1966, p. 48), though it appears to be largely
unknown in psychology. For z = 0, aggregate recall is equal

to 1—(1+ at)™ for practice only, which is the well-known

‘Power Law of Practice’. The proof also applies to
forgetting rates, e.g., when averaging over exponential

forgetting curves with shape p(t) =e™".
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