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Abstract

We ask observers to make judgments of the best causal func-
tions underlying noisy test data. This method allows us to ex-
amine how people combine existing biases about causal rela-
tions with new information (the noisy data). Participants are
shown n data points representing a sample of noisy data from
a supposed experiment. They generate points on what they
believe to be the true causal function. The presented functions
vary in noise, gaps, and functional form. The method is similar
to function learning studies, but minimizes the roles of learn-
ing and memory. To what degree do the participants exhibit
a bias for simple linear functions? We describe a hierarchical
Bayesian polynomial regression model to quantify complex-
ity. The results show the expected bias for simplicity, but with
some interesting individual differences.

Keywords: causal models, function learning; prior knowl-
edge; hierarchical Bayesian regression.

In science generally, in statistical inference, in studies of
model selection, and in psychological theorizing, we design
our inference approaches to trade off fit to observed data
(models are good that fit well) and complexity (models or
explanations that fit or explain everything are bad). In the
present research we explore how observers form causal mod-
els for noisy data by asking observers to estimate functions
as explanations for a set of noisy data points. We ask: How
do mental causal models balance fit and complexity? Fur-
ther, how does the balance of fit and complexity achieved by
observers compare with the balance imposed by a rational
system? We explore the former question by fitting Bayesian
hierarchical models to the causal functions produced by the
observers. The latter question is addressed by comparing the
model for the observers to a Bayesian hierarchical model fit
to the presented noisy data.

Recent research into beliefs about casual relationships
has demonstrated that people prefer simple explanations
over more complex explanations (see e.g., Lombrozo, 2006,
2007). In fact, simplicity biases have been forwarded as
underlying many fundamental cognitive processes (Chater
& Vitanyi, 2003). Here we are primarily concerned with
how people form mental models summarizing relationships
between continuous input and output quantities (i.e., data).
Learning about continuous variables has typically been stud-
ied as a function learning phenomena. Within this paradigm,
input values from a single function are displayed one at a
time, the participant responds with an output value and re-
ceives corrective feedback about the true output value. Over
time, participants form some representation about the un-
derlying functional relationship between the two variables
(i.e., exemplar-based associations, DeLosh, Busemeyer, &
McDaniel, 1997; or a mixture of linear function ’experts’,

Kalish, Lewandowsky, & Kruschke, 2004). Typically, the
focus in function learning is on the type and relative diffi-
culty of learning different functions; most function learning
studies have not directly examined prior beliefs. However,
there have been some recent investigations of function biases
in the iterated learning paradigm (see e.g., Griffiths, Kalish,
& Lewandowsky, 2008; Kalish, Griffiths, & Lewandowsky,
2007). In an iterated learning task, participants are trained
on stimuli drawn from the learning outcomes of the previous
participant. Each learner is assumed to have a set of hypothe-
ses about the causal relationship between the input and output
variables. A rational learner assigns probabilities to each hy-
pothesis in accordance with the posterior probability of that
hypothesis given the data. According to Bayes’ rule the pos-
terior probability, p(h|d), is:

p(h|d) =
p(d|h)p(h)

p(d)
(1)

where p(d|h) is the probability or likelihood of the data
given a hypothesis, p(h) is the prior probability of that hy-
pothesis and p(d) is the marginal probability of the data,
∑i p(d|hi)p(hi). In an iterated function learning task, re-
sponses tend to converge to a positive linear function indicat-
ing a bias towards positive linear functions in people’s prior
beliefs about functions(Kalish et al., 2007).

Non-Bayesian approaches to function learning also pro-
vide hints of a simplicity bias. Humans learn positive lin-
ear functions faster than negative linear functions or non-
linear functions (Carroll, 1963). One successful theoretical
approach assumes that performance is driven by combining
a pre-existing set of linear functions (i.e., POLE; Kalish et
al., 2004). However, the representations formed in function
learning studies are determined in part by cognitive limita-
tions on, and the processes of, attention, learning, and mem-
ory. For example, the relation between an input value and
output value presented at one point in time might be partially
or wholly forgotten later, and possibly distorted through in-
ference in the direction of simplicity. As another example,
extreme points might be attended and remembered best, lead-
ing to a different set of distortions. In the current paper, we
present an experimental method for studying function repre-
sentations in which all the data is presented simultaneously,
in a form easy to perceive and process. In this method, one
should not have to parcel out the effects due to faulty mem-
ory for the data points on the function, or inadequate learn-
ing of the function over time. We use the method to address
two related questions: do people show a bias towards sim-
ple (possibly linear) functional relationships when faced with
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noisy data generated from a range of different function types?
and b) how do people’s prior beliefs about functional rela-
tionships interact with information given to them about the
function? Let h represent a causal functional form. We as-
sume that people are rational to the degree that they properly
combine prior expectations, p(h), with information from the
problem, p(d|h). In our modeling, we will estimate p(h), and
the distribution of likely values of p(h), from the responses.
We assume that the distribution of of p(h) is a direct mea-
surement of the prior biases.

A Method for Studying Function Biases
In a typical function learning task, participants are shown
values from a single function, values are presented one at
a time and participants only learn about one function in the
course of the experiment. In order to separate the applica-
tion of functional knowledge from learning and memory, the
current experimental method showed participants a selection
of data points all generated by the same function and pre-
sented simultaneously (with Gaussian noise added to obscure
the true function; see Figure 1). The participants were asked
to demonstrate their best estimate of the true underlying func-
tion by placing a series of points at specified places in the
presented graph. They were told that these response points
should lie on their best estimate of the underlying causal
function for the data on the current trial. The data on each
trial were drawn from different functions and across trials the
functions varied in number of data points that were displayed
and the amount of Gaussian noise added to the output.

Figure 1: A: Example of ”data” presented to participants dur-
ing the function estimation task. B: Example of the ”data”
presented to participants along with a response column. The
participant places a ’best’ point with the response column.
Many such columns are presented on each trial.

Bayesian polynomial regression
In a regression problem, the goal is to describe the functional
relationship between two continuous variables. In Bayesian
terms, we need to compute the posterior probability of each
possible function given the data. The hierarchical approach
allows us to specify probability distributions to capture our
uncertainty about not only the best-fitting parameter values
within a model class (e.g., the slope and intercept of a linear
function) but also at higher levels of abstraction, such as the
entire set of model classes (all polynomials). Using Markov
Chain Monte Carlo (MCMC) techniques we can sample from

the distributions at higher levels. For example, if we spec-
ify a probability distribution over polynomial degree, we can
estimate the shape of this distribution using MCMC; hence,
any bias towards using less complex functions is reflected by
increased mass over lower degree polynomials.

The first step in hierarchical regression is to specify the
probability distributions over the parameters within a model
class to a given set of data (e.g., a single trial j from the cur-
rent experiment). If we assume that people explicitly repre-
sent functions, then the likelihood of the observed data given
a specific model class k is given by:

p
(
y|β,σ2,Xk

)
∼ N

(
Xkβ,σ2I

)
, (2)

where β is the vector of regression coefficients, Xk is the
matrix of predictor variables for model k, and ∼ means ”is
distributed as” (in this case, the distribution is a multivariate
normal distribution with a specified mean and covariance ma-
trix). Here we consider the models to be polynomials of the
form y = ∑

k
i=0 βixi + ε where ε∼ N

(
0,σ2

)
.1

Within each particular model class k, if we assume nonin-
formative priors over the coefficients, β, and the variance, σ2,
then the posterior probability of the coefficients is given by:

β∼ N
(

β̂X,Vβσ
2
)

, (3)

where β̂ =
(
XTX

)−1 XTy and Vβ =
(
XTX

)−1. The posterior
probability of the variance is:

σ
2|y∼ Inv−χ

2 (
n− k,s2) , (4)

where n is the number of data points, k is the
degree of polynomial under consideration, and s2 =

1
n−k

(
y−X β̂

)T (
y−X β̂

)
. Using noninformative priors can

result in improper posterior distributions unless a) k < n and
b) the matrix of predictors, X , is full rank (Gelman, Car-
lin, Stern, & Rubin, 2003). The above distributions de-
scribe how to determine the posterior probabilities for the pa-
rameters of a given model class given one set of data; the
focus of our analysis, however, is on how people choose
amongst model classes over the entire set of experimental
data. Hence, the main quantity of interest is the marginal
distribution of the data for each model class k (the prob-
ability of the data over all parameter settings within each
model, p(y|k) = ∑i p(y|βki ,σ

2
ki
)p(βki ,σ

2
ki
) for each problem

j weighted by the prior probability of selecting k for each
particular problem).

The marginal probability of the data is used to compute the
posterior probability that the model class is k by using Equa-
tion 1; hence, we also need to define a prior over polynomial
degrees representing the probability of selecting model k for
any problem j. We assume a prior distribution over the model
class k given by:

1The data, matrix of predictors, the coefficients, the variance,
and the number of data points, n, change across trials, j, but for
notational simplicity we suppress indexing by trial.
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k ∼Categorical (p1, ..., pK) . (5)

Polynomial degree is thus treated as a categorical variable
with the probability of selecting a particular degree given by
the categorical distribution parameters, p1, ..., pK . Intuitively,
these parameters index prior belief about model classes of dif-
ferent complexity. If we were solely concerned with selecting
the appropriate model for the data, we could set the multino-
mial parameters to reflect our assumption of a simplicity bias
over the model class (i.e., p1 > p2 > ... > pK). However,
we want to measure prior bias without committing ourselves
to any a priori assumptions about simplicity; hence, a non-
informative prior distribution over the multinomial parameter
must also be specified. We use the conjugate prior to the cat-
egorical as follows:

p1, ...pK ∼ Dirichlet (α1, ...,αK) (6)

where K is the number of different polynomial degrees being
tested and α1, ...,αK = 1, which is equivalent to a multivari-
ate uniform distribution. MCMC techniques including Gibbs
Sampling (see e.g., Gelman et al., 2003) allow the prior dis-
tribution of the model degree k to be approximated.2

This analysis when conducted on each participant’s re-
sponses gives a direct measure of the prior expectation for
polynomials of different complexity in the distribution of
p1, ...pK . This analysis also provides the posterior distribu-
tion of the degrees, (hereafter, kresponse), for each problem.
When conducted on the data that are shown to the partici-
pants the distribution of the degrees, (hereafter, kdata) gives
a measure of optimal model selection for each problem (i.e.,
the degree k of the model that best captures the data). By
comparing the data and response distributions of k for each
problem, we can investigate how information from the prob-
lem is combined with prior biases.

Method
Participants and Design
Five Indiana University psychology graduate students partic-
ipated in the experiment and received $16 dollars reimburse-
ment. Each participant responded to 108 functions which
varied in a) the number of data points displayed on screen
(6, 16, or 52 points), b) the variance of the Gaussian noise(
µ = 0,σ2 ∈ (.25,1)

)
added to each y-value, and c) the gen-

erating function, which was either a polynomial of 1, 2, 3, 4
or 5 degrees (i.e., linear, quadratic, cubic, etc), or a sin, tan or
exponential function. Function coefficients were uniformly
generated with replacement from the integers 1 to 10. Differ-
ent random coefficients and Gaussian noise were generated

2Here we use the pseudo-prior sampling method from Carlin and
Chib (1995) to ensure that the sampling method switches between
models. The parameter distributions for β are updated from Equa-
tion 3 for each model m when the selected model k 6= m. When
k = m, β is sampled from the distribution in Equation 3 but with the
variance in that distribution multiplied by C, where C << 1; hence,
the distribution of the coefficients is more diffuse for model j when
k = j.

for each participant; hence, each participant saw a different
instantiation of the base functions. 3

Figure 2: Example of data and responses from three different
trials for one participant.

Procedure
On each trial, a data set (e.g., see Figure 1) was presented
on the screen, and participant estimated the function that
best summarized the causal relationship between the input
and output values. Their response function was queried by
prompts at several locations on the screen. There were 15
successive response requests. Each highlighted an x-value
for the entire height of the screen (see Figure 1). Participants
responded with their function value for a given x-value by
clicking on their best guess location in the response column

3For each participant, each function was presented three times.
Participants tended to respond with functions of the same complex-
ity across repetitions. However, there was variability in the actual
function generated, and we therefore do not aggregate across repe-
titions. The proportion of response functions that differed in their
polynomial degree across with problem repetitions was .17, .06, .13,
.06, and .06 for each participant, respectively.
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with the mouse. During the initial response stage, the se-
lected function value was removed until all of the response
columns had been presented. After responding to the 15 re-
sponse columns, all of the participant’s initial responses were
presented simultaneously on the screen, and participants had
the opportunity to adjust their functions until they were satis-
fied with the result.

Results
An example of the data shown to the participants, the initial
function response and the final function response are shown
in Figure 2. We used the Bayesian regression model outlined
above to estimate the complexity (i.e., the degree of the poly-
nomial with the highest mean posterior probability) of the
data and the complexity of each participant’s final response
function. A scatterplot of the estimated polynomial degrees
for the data and the responses are shown in Figure 3 (top row).

The hierarchical Bayesian regression allows examination
of the prior density over the polynomial degree for each par-
ticipant (that is, p1, ..., pk for all degrees k). The prior den-
sities for each participant are shown in Figure 3 (bottom
row). These densities clearly show that all of the participants
demonstrate a bias towards functions of lower polynomial de-
gree. Three of the participants show a higher mass over linear
functions, while two of the participants show a higher mass
over horizontal functions. Consideration of the Bayesian so-
lution (see the top row of in 3) indicates that the a bias towards
simple functions is appropriate for this task. The Bayesian
solution also prefers simple functions for many of the prob-
lems. We consider the relationship between the optimal func-
tion and the generated function in more detail below.

Combining data with prior expectations
To examine the factors that influenced responding, we used
the hierarchical Bayesian regression model to predict the
mean polynomial degree of responses, kresponse, using the fol-
lowing predictors: a) The mean polynomial degree of the
data, kdata (i.e., the complexity of the data that participants
were shown). b) An estimate of the noise (σ2

P) generated
using Equation 4 with β̂ and X estimated from the response
function. c) The number of data points, N. In addition, the
pairwise interactions between kdata, σ2

P, and N, the three-way
interaction between all variables plus an intercept. For this
analysis we are only concerned with the posterior probabili-
ties of the coefficients; hence, we integrate out σ2 and com-
pute the posterior probability of the coefficients as a mul-
tivariate t-distribution, β|kresponse ∼ tn−k

(
β̂X,Vβσ2

)
. The

posterior distributions of the coefficients for each participant
are shown in Figure 4. Coefficients whose 95% credible in-
tervals do not overlap zero are shown in bold.

Clearly, all of the participants responses are predicted by
the intercept (which provides a measure of the base polyno-
mial degree) and the complexity in the data, kdata. For two
of the participants (numbers 3 and 4; see rows C and D in
Figure 4), only these two variables predict kresponse. For these

two participants, the average intercept value is less than 1,
which corresponds to the prior distribution of kresponse shown
in Figure 3 (bottom row, columns 3 and 4). The means of
the kdata distributions are also less than one indicating that
for these two participants an increase in the complexity of the
data is accompanied by an lesser increase in the complexity
of the response. For the other three participants, the influence
of the intercept and the complexity of the data are augmented
by other factors. For participant #2, the coefficient for the
estimated noise, σ2

P, is also greater than zero indicating a ten-
dency to respond with higher kresponse with noisier data (see
Figure 4, row B). For this participant, the estimated intercept
value also accords well with the prior distribution shown in
Figure 3 (bottom row, column 2). Responses from partici-
pants 1 and 5, in addition to the intercept and kdata variables,
are also influenced by the interaction between the complexity
of the data and the number of data points, kdata×N, reveal-
ing a tendency to increase the complexity of their responses
for complex data with higher N (see Figure 4, rows A and E).
Participant #1 also showed a tendency to increase response
complexity for noisy complex functions (see Figure 4, row
A).

Discussion
The posterior distributions over kresponses clearly show a bias
toward simple functions. This bias is warranted by posterior
distribution over kdata. This finding accords well with results
from related domains using a single function type such as it-
erated learning or function learning.

Not surprisingly, all participants showed a tendency to in-
crease the complexity of their responses whenever the com-
plexity of the data increased. This combination of data and
prior follows directly from Bayes’ rule (see Equation 1); in
the order for the posterior distribution over kresponse to shift to-
wards higher degree polynomials, the probability of the data
given higher degree polynomials must be high enough to out-
weigh the prior bias towards lower degree polynomials. It is
reasonable to assume that this only occurs when the data are
complex, and the results seem to support this notion.

The Bayesian analysis also offered a straightforward way
to handle individual differences in not only the prior distri-
butions over kresponse but also in how information is extracted
about the problem with some participants also utilizing the
number of data points and the noise in the data in producing
their responses. One limitation of the analysis presented here
is that the polynomial regression returns a complete distribu-
tion over k for each problem; however, the follow-up regres-
sion analysis only utilizes the mean k. Future analysis would
combine the regression analyses by making the polynomial
degree of the responses contingent on the outcome of the re-
gression model used in the follow-up analysis.

In typical function learning studies, the processes and lim-
itations associated with attention, learning, and memory can
obscure the underlying way that observers trade fit and com-
plexity in their formation of mental causal models. By con-
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Figure 3: Top Row: Average estimated degree of best fitting polynomial for the data plotted against the average best fitting
polynomial for the responses. The data points have been jittered to reduce overlap. Bottom Row: Histogram the sampling
distribution of the prior density of polynomial degrees for each participants responses (p(k)). The estimated mean and 95%
credible intervals are also shown.

trast, the presented methodology offers several advantages:
1) the influence of memory and learning on responses is re-
duced and 2) data from a large number of functions that differ
in type and complexity can be collected efficiently. 3) Addi-
tionally, important factors, such as noise and the amount of
data, can be easily manipulated without any detriment in per-
formance. In function learning, people are not very good at
learning about noisy functions (see e.g., Carroll, 1963). These
three points have particular value when studying the prior bi-
ases underlying function representation. However, there are
several other findings from function learning which are not
addressed here. For instance, extrapolation tends to be lin-
ear and is an important diagnostic result (see DeLosh et al.,
1997); only a small extrapolation region was included in the
current experiment (see Figure 1). Future work will increase
the number of responses collected from the extrapolation re-
gion to allow examination of extrapolation biases when learn-
ing and memory are removed from information processing.

Finally, one clear divergence in the present work from pre-
vious work is the use of a polynomial regression model to
capture function-based performance. While early work in
function learning assumed that people explicitly represented
the to-be-learned functions (Carroll, 1963), more recent work
has emphasized similarity-based processing. The basic idea

is that each input that is presented during learning is stored
in memory along with an associated output, new inputs are
compared to the stored values and responses are generalized
based on the similarity (i.e., psychological distance) between
the new value and all of the stored values (DeLosh et al.,
1997). Griffiths, Lucas, Williams, and Kalish (in press) have
recently demonstrated that the function-based view and the
similarity-based view are related: Bayesian linear regression
requires predicting y by specifying a prior over the class of
polynomials; if we instead specify a covariance matrix on the
different input values (e.g., by taking, for example, the expo-
nential of the squared distance between all pairwise combina-
tions of x-values) then Gaussian process regression achieves
the same result. Gaussian process regression is essentially a
similarity-based view of function learning that is isomorphic
to Bayesian linear regression. The experimental method em-
ployed in this paper offers a promising way to explore both
views of function-based performance.
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Figure 4: Distribution of regression coefficients for A: participant 1, B: participant 2, C: participant 3, D: participant 4, E:
participant 5. Coefficients whose 95% credible intervals do not overlap zero are shown in bold.
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