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Abstract

People have strong intuitions about the masses of objects and
the causal forces that they exert upon one another. These in-
tuitions have been explored through a variety of tasks, in par-
ticular judging the relative masses of objects involved in col-
lisions and evaluating whether one object caused another to
move. We present a single framework for explaining two types
of judgments that people make about the dynamics of objects,
based on Bayesian inference. In this framework, we define a
particular model of dynamics – essentially Newtonian physics
plus Gaussian noise – which makes predictions about the tra-
jectories of objects following collisions based on their masses.
By applying Bayesian inference, it becomes possible to reason
from trajectories back to masses, and to reason about whether
one object caused another to move. We use this framework to
predict human causality judgments using data collected from a
mass judgment task.

Keywords: collisions; Bayesian modeling; perception;
causality; mass judgments

Following the ground-breaking work of Michotte (1963),
the perception of collisions has been studied as a way of de-
termining how people infer unobservable variables from ob-
servable variables. In visual perception of collisions, the ob-
server can see the movements of the objects, but needs to infer
the hidden properties of the objects (Chaput & Cohen, 2001;
Cohen & Ross, in press; Gilden & Proffitt, 1989; Runeson,
1977; Runeson, Juslin, & Olsson, 2000; Schlottmann & An-
derson, 1993; Todd & Warren, 1982). There are many pos-
sible questions that could be asked of observers. Two of the
most commonly used tasks are judging which object is heav-
ier and judging whether a collision occurred.

Judgments of the ratio of masses of colliding objects have
motivated arguments about the perceptual invariants. In a
mass judgment task, subjects are presented with two objects
colliding on a screen and are asked to choose which object has
greater mass. People make characteristic patterns of errors,
which have led researchers to propose that human mass ra-
tio judgments are based on heuristics (e.g., Cohen & Ross, in
press; Gilden & Proffitt, 1989; Todd & Warren, 1982), though
other researchers argue that the correct mass ratios are com-
puted for experienced observers (Runeson, 1977; Runeson et
al., 2000). Michotte (1963) has directly motivated a second
area of research. In this similar task, subjects had to deter-
mine whether two objects had collided or whether the objects

were moving independently. Studies in this area have col-
lected data on how changes in physical variables relate to the
judgments of causality (e.g., Chaput & Cohen, 2001; Spelke,
1994; Schlottmann & Anderson, 1993).

Despite the similar tasks used in mass judgments and judg-
ments of causality, these two lines of research have pro-
ceeded almost always independently (but see Kaiser & Prof-
fitt, 1984). Our goal is to present a unifying explanation for
these two types of judgments. We use a simple probabilistic
model of physical dynamics that makes the same assumptions
about the probability with which different physical properties
of objects are likely to be observed, but differs in the hypothe-
ses to be evaluated and the data that are used. Unlike previous
models of mass judgments, we assume that people are not us-
ing heuristics, but instead are making their decisions based on
the underlying physical laws. Using these laws, we assume
subjects are making the optimal decision based on noisy ob-
servations of the velocities of the objects.

The plan of this paper is as follows. First we describe the
mass and causality judgment tasks, along with the physical
laws that dictate the optimal decisions in these tasks. Next
we generalize the optimal decisions to a more realistic situa-
tion in which the observed velocities are perceived with noise.
Our generative probabilistic model applies to both mass and
causality tasks. Next we replicate two venerable experiments:
one for mass judgments and one for causality judgments. We
fit our model to the data from the mass judgment task, and
show that we can accurately mimic human performance in
this task. In addition, using the data from the mass judg-
ment experiment, we successfully predict how subjects will
respond in the causality judgment task. Finally, we discuss
how our model relates to other work in these two areas.

Task Descriptions and Physical Laws

The mass judgment and causality judgment tasks are similar
experimental paradigms, with a few key differences. In this
section we describe the variables in the two tasks and what a
classical model of mechanics would predict.
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Figure 1: Stages of a mass judgment movie. In the first row,
two objects have initial velocitiesua andub and massesma

andmb. The second row shows the collision and the elasticity
e. The final velocitiesva andvb are shown in the last row.

Mass Judgments
The first task we will examine is the mass judgment task (e.g.,
Cohen & Ross, in press; Gilden & Proffitt, 1989; Runeson,
1977; Runeson et al., 2000; Todd & Warren, 1982). In this
task, as shown in Figure 1, two objects with massesma and
mb move with initial velocitiesua andub. They participate
in a collision with coefficient of elasticitye, and then move
apart with final velocitiesva andvb. The subject’s task is to
infer which massma or mb is greater.

Using Newtonian physics, the observable initial and final
velocities of the objects, and the elasticity of the collision
(i.e., coefficient of restitution), the final velocities canbe de-
termined,

va =
maua + mb(ub + e(ub −ua))

ma + mb
(1)

vb =
mbub + ma(ua + e(ua −ub))

ma + mb
(2)

Elasticity is the ratio of velocities before and after impact
which can be calculated from the initial and final velocities,

e =
va − vb

ub −ua
(3)

The mass ratio, which is the question that we pose to partici-
pants, can also be calculated from the initial and final veloci-
ties,

ma

mb
=

ub − vb

va −ua
(4)

This result suggests a way for participants to evaluate a mass
ratio from velocities. However, it has been shown that hu-
man mass ratio judgments are affected by elasticity (Rune-
son, 1977; Todd & Warren, 1982), while Equation 4 shows
that the judgment based on Newtonian physics is independent
of elasticity.

Causality Judgments
The second class of question is a judgment of whether a one
object causes another to move. In this task, as shown in Fig-
ure 2, one object moves towards another with equal mass at
initial velocity ua. It stops a distance ofg from the other

Figure 2: Stages of a causality judgment movie. In the first
row, the gray square is moving with initial velocityua and the
black square is stationary. The second and third rows show
the gapg between squares after the first square stops and the
time delayt between the first square stopping and the second
square starting to move. The final row shows the gray square
stationary and the black square moving with final velocityvb

object, and after a delay oft, the second object moves with
final velocityvb. The task is to decide whether the first object
caused the movement of the second, or whether the second
object moved on its own.

This kind of task was famously studied by Michotte (1963),
and later by other researchers (Chaput & Cohen, 2001;
Schlottmann & Anderson, 1993). The masses of the two ob-
jects are usually taken to be equal (ie. a mass ratio of 1), but
the paradigm introduces two new variables relevant to assess-
ing causality: the gap between objects at the collisiong and
the interval after the first object stops before the objects begin
to movet.

A Bayesian Framework
Bayesian inference can provide a unifying framework for un-
derstanding human judgments in both of these tasks if we
view them as inferences to hypotheses from perceptual data
(Yuille & Kersten, 2006). Specifically, if we can define
a probabilistic model that specifies the relationships among
these variables, the two tasks can be viewed as involving in-
ferences about one variable based on another. We use the
Bayesian network in Figure 3. The final velocitiesva andvb

follow distributions with modes given by Newtonian dynam-
ics (Equations 1 and 2), meaning that they depend onua, ub,
ma, mb, ande. We chose to use Gaussian distributions to re-
flect perceptual variability with a mean parameter equal to the
Newtonian dynamics and fixed variance parameterσ2. Elas-
ticity can vary between 0 and 1, and we chose a uniform prior
distribution over elasticity for simplicity. The massesma and
mb are bounded below by zero and we chose an exponential
with decay parameterλ to reflect the intuition that we rarely
see extremely massive objects colliding. As with the final ve-
locities, the initial velocities are distributed as a Gaussian dis-
tributions, with mean parameter set to zero and the variance
parameter was set tocm , meaning that more massive objects
are expected to move more slowly, scaled by parametersc.
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Figure 3: Graphical model for both mass and causality judg-
ments. The initial velocitiesua andub and final velocitiesva

andvb depend on the object massesma andmb. The final ve-
locities also depend on the initial velocities and the elasticity
e. The gapg and time delayt are independent of the other
variables.

The mass and causality judgment tasks require different in-
ferences from our statistical model. For the mass judgment,
there is no gap and no delay before the objects move after
the collision. These variables can be removed from the full
model. The data areua, ub, va, andvb, and the hypotheses are
thatma > mb or mb > ma. Conditioning on the observed vari-
ables, we can calculateP(ma > mb|ua,ub,va,vb) by summing
out the possible values ofe, ma, andmb.

For the causality judgment, our Bayesian framework is ap-
plied differently. Our data areua, vb, g, andt, and our hy-
potheses are that the event was or was not a Newtonian col-
lision. These two hypotheses correspond to different proba-
bilistic models, which we term the causality model and co-
incidence model. For the causality model,vb depends onua

andg andt are close to zero. For the coincidence model,g,
t, andua have the same distribution as before, and asvb is
now independent ofua, it is distributed identically toua. The
probabilities of the observed variables under the two model
are calculated and one of the models is selected as the re-
sponse.

The unifying framework is able to predict data in both the
mass judgment and causality judgment experiments. Studies
of these two phenomena have collected data in different labs
using different displays and different dependent measures. In
our experiments, we gather data from our model using a simi-
lar display for each task in which we collect all-or-none judg-
ments for relative mass (Experiment 1) and causality (Exper-
iment 2).

Experiment 1: Judgments of Relative Mass
Our first experiment replicates Experiment 1 of Todd and
Warren (1982) and collects judgments of relative mass un-
der a variety of conditions, manipulating the mass ratio and
the elasticities of the collision displays.

Methods
Twenty four participants were recruited from a university
community for this study. Four participants were discarded
due to a computer error. Each participant was paid $4 for less

than one hour of participation. The eyes of the participants
were situated approximately 44 cm away from the display.

Participants were presented with movies of two white
squares colliding with each other along one dimension. They
were told that these squares were blocks sliding along an in-
visible smooth surface and colliding with one another. Par-
ticipants were instructed to press a key corresponding to
whichever block they thought was heavier. The two white
squares with 1 cm sides started outside the visible area of
the screen and moved toward each other at their initial ve-
locities. The two objects moved toward each other at their
initial velocities until the edges of the two squares touched at
the center of the screen. Following the collision, the squares
immediately moved away from each other at their final ve-
locities. The trial ended automatically as soon as the faster
object reached the edge of the visible display, but participants
could end the trial at any point by responding. No feedback
was given to participants during the experiment.

A total of 252 trials were presented to each participant.
There were twelve combinations of mass ratios and elastic-
ities. One example of each combination was used presented
to participants (order randomized for each participant) atthe
beginning of the experiment to become acclimated to the dis-
play. The data from these practice trials were not included
in the analysis. The test trials consisted of 20 replications
of each combination of mass ratio and elasticity with the or-
der of presentation was randomized for each participant. The
mass ratios were set to be 1.25, 1.5, 2.0, or 3.0. On each trial,
the heavier object was set to be the right or left object with
equal probability. The elasticities used were 0.9, 0.5, and0.1.
The initial velocities of the left square ranged from 1.91 to
4.45 cm/s in steps of 0.13 cm/s. The initial velocity of the
right square was determined by the initial velocity of the left
square using the formula,ub = ua−6.35 cm/s. The initial ve-
locity of each trial was drawn uniformly from the set of initial
velocities. Given these variables and Equations 4 and 3, the
final velocities of the two objects are uniquely determined.

Results and Discussion
The average accuracy over participants for each of the combi-
nations of mass ratio and elasticity is shown in Figure 4. The
pattern of results show better accuracy with larger mass ra-
tios and greater elasticity. An ANOVA showed a main effect
of mass ratio,F(3,19) = 155, p < 0.001, and a main effect
of elasticity,F(2,19) = 16.0, p < 0.001. However, the inter-
action between mass ratio and elasticity was only marginally
significant,F(6,19) = 1.89, p < 0.1.

The model presented above for mass judgments was fit to
the data from this experiment. The best-fitting parameters
wereλ = 0.647,c = 4.999, andσ2 = 0.238. These parameters
make the predictions shown in Figure 4, which has a high
correlation with the human data (r = 0.98).

Experiment 2: Judgments of Causality
Our second experiment tackles a different inference, causal-
ity, while manipulating a similar set of physical variables.
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Figure 4: Data and modeling results for the mass ratio judg-
ment task. The horizontal axis is the mass ratios of the colli-
sions shown to subjects and the vertical axis is subject accu-
racy. The separate lines correspond to different elasticities in
the collisions.

This experiment is similar to that of Schlottmann and An-
derson (1993) as it manipulates the same variables and asks
for causality judgments. The key differences are that we col-
lected all-or-none judgments instead of ratings, and presented
displays in which we could examine the effects of assump-
tions of elasticity on the judgments.

Methods
Fifteen participants were run in each of two instruction con-
ditions: real or random andcausality. The same equipment
and viewing distance were used in this experiment as in the
previous experiment.

In addition to being told that the blocks were sliding along
an invisible smooth surface, participants were instructedthat
each of the blocks were made of the same material and had the
same mass. Following these generic instructions, instructions
specific to each condition were given to participants. In the
real or random condition the additional instructions were,

Your task is to decide whether each movie came from a real
collision of the blocks or a random combination of the vari-
ables. A real collision looks like the blocks actually collide.
A random collision looks a little like a real collision, except
that the velocities of the blocks, gap between the blocks, and
the time delay before the second block starts moving are all
selected randomly. Remember, both blocks always have the
same mass.

Following these instructions,real or random participants
were shown the boundaries of each of the variables. These
instructions were meant to convince participants to use a uni-
form distribution over each of these variables as their alter-
native distribution. After each movie, participants responded
by keypress as to whether the trial was a real collision or was
drawn from the random distribution.

In thecausality condition, participants were only instructed
to decide whether the gray block caused the white block to

move or whether the white block moved by itself. After each
movie, participants in this condition were asked, “Did it look
like the white box moved because the gray box hit it? Was
the white box’s movement produced by the gray box? Or did
the white box take off on its own?”

Three hundred trials were presented to each participant,
with half drawn from a near-Newtonian collision distribution
and half drawn from a distributions with heavier tails. The
trials were drawn in this way to make the instructions seem
more plausible. The velocities ranged from 6 cm/s to 15 cm/s.
The gap ranged from 0.1 mm to 4 mm, and the time delay
ranged from 0 to 250 ms. All samples that fell outside the
bounds of the variables were resampled. Each movie began
with the fading in of a central white block and a gray block
positioned 6.75 cm left of center. The sequence of events in
the trials in this experiment are described above.

Results and Discussion
The correlation between responses in thereal or random con-
dition and thecausality condition was computed after first
binning the trials. The ranges of all four manipulated vari-
ables (gap, time delay, initial velocity, and final velocity) were
divided into two equal-sized bins. The bins were crossed be-
tween variables and the percentage of trials judged to be a col-
lision was computed for each bin, yielding sixteen values for
each condition. The correlation between thereal or random
condition and thecausality condition wasr = 0.94, showing
that there was good agreement between the conditions. The
data from these two conditions are aggregated in the remain-
ing analyses.

Best fits were computed for the gap and time delay vari-
ables. These variables were fit separately because they are
independent from the velocities in both the collision and co-
incidence models. The collision model represents these two
variables as independent zero-mean Gaussian distributions.
The coincidence model used a uniform distribution over the
range of gaps and time delays shown in this experiment. For
each variable, the standard deviations of the Gaussian colli-
sion distribution were fit to the data. The standard deviation
of the gap was 0.0014 m. The standard deviation of the time
delay was 0.0825 s.

The prior assumptions about velocities identified by esti-
mating the parameters of the model can be tested using the
collision judgments made in trials with different initial and
final velocities in this experiment. We choose to analyze fi-
nal minus initial velocity, because judgments of causalityare
very dependent on this difference. Subject trials were gener-
ated from a non-uniform distribution to enhance the believ-
ability of the instructions, so the data were first binned to re-
move this influence. Twenty-five equal-sized bins were cre-
ated that spanned the range of final minus initial velocity. The
percentage of collision responses in each bin was computed
and is displayed in Figure 5. The probability of choosing
collision over coincidence peaks around zero and decreases
as the difference between velocities grows. Interestingly, the
probability of choosing a collision decreases asymmetrically.
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When the initial velocity is larger than the final velocity, dif-
ferences produce a higher probability of collision choice than
when final velocity is larger than initial velocity. This effect
was not found in Schlottmann and Anderson (1993), because
no trials were tested in which the final velocity was greater
than the initial velocity and they did not instruct subjectsthat
the objects had equal mass. Our model does predict this ef-
fect, for reasons described below.

We made predictions on this task using the best-fitting pa-
rameters from Experiment 1. Carrying over the parameters
from the first experiment, we predicted collision probabilities
from both the causal model and the coincidence model of ve-
locities that were specified above. Collision responses were
assumed to match the posterior probability that the observed
event was generated by the collision model, taking the two
models to have equal prior probability.

Predictions from our model are shown in Figure 5. Our
model predicts the same peak height, the same width at the
peak, and a very similar peak location. Interestingly, our
model matches human data in predicting an asymmetry for
for positive and negative values of initial minus final veloc-
ity. This pattern was consistent for both the data and model
across a variety of bin sizes. The asymmetries in the model
are due to the model using a range of elasticities. Using a
value ofe = 1, the final velocity is equal to the initial veloc-
ity, but whene < 1, the final velocity is less than the initial
velocity. Stated in terms of final minus initial velocity,e = 1
produces no difference, while every other value produces a
negative difference. As the prior has mass over all elastic-
ity values, the model predicts a negative skew in the choice
function. The match between the model predictions and hu-
man data suggests that subjects also are considering a range
of elasticities.

Where the model and the data differ is when there is a size-
able difference between final and initial velocity. The data
show that subjects are much more willing to make a colli-
sion response for these velocity differences than the modelis.
The extra spread that the data show compared to the model
may be a result of the difference in velocity ranges used in
the experiments. Experiment 1 used a velocity range of 1.91
to 4.45 cm/s, while Experiment 2 used a velocity range of 6
to 15 cm/s. As velocity increases, the noise in the perceived
velocity increases as well (Snowden & Braddick, 1991). It is
reasonable to expect then, that the tails of the model would be
wider if we more accurately accounted for noise in velocity
perception.

General Discussion

Mass-ratio and causality judgments have been studied mostly
independently, despite using similar stimulus displays. Our
goal was to model these two types of judgments under a sin-
gle framework and we were able to predict several interesting
features of collision judgments using the data collected ina
separate mass judgment experiment. Our model assumed that
the observed velocities in the display were perceived noisily,

and calculated the optimal decision using noisy perception
and classical mechanics. Now we turn to comparisons of our
model versus existing models for each of these two types of
judgments.

Todd and Warren (1982) proposed that people used a per-
ceptual heuristic to make mass judgments. The heuristic they
used was,ma > mb ⇐⇒ vb > ua, meaning that if the veloc-
ity after collision of Object B was greater than the velocity
after collision of Object A, than Object A had greater mass.
Gilden and Proffitt (1989) extended this model to two dimen-
sions and introduced an additional heuristic that subjectsused
to make judgments of mass ratios, that balls that ricochet
more are lighter. Subjects were assumed to switch between
heuristics based on the salience of the information in each.
These heuristics explain mass judgments well, but are unable
to make predictions for collision judgments. Using heuristics
for a particular task provides a discriminative model contrast
to our generative model of collisions. As these heuristics only
model one particular task, and this task only approximately,
then they are unable to generalize to new types of tasks.

Other models of causality judgments are very different
from our model. These models were generally applied to
explain whether the perception of causality is innate or in-
ferred from other variables (e.g., Chaput & Cohen, 2001;
Schlottmann & Anderson, 1993). Though we infer the
causality of the collision, our model does not bear on this
discussion, as even innate perception of causality is assumed
to be limited by perceptual noise Michotte (1963) . The in-
formation integration approach was successful at describing
ratings of causality by computing a weighted average of the
cues. For two cuesa andb, the model would be,

r =
wa,xψa,x + wb,yψb,y + w0ψ0

wa,x + wb,y + w0
(5)

wherewC is the weight for cueC, ψC,ℓ is the value of cueC
at levelℓ. The configural cue is represented by 0. Though the
information integration approach was only applied to causal-
ity judgments by Schlottmann and Anderson (1993), it could
be easily extended to fit our mass ratio judgment data by us-
ing the mass ratioma/mb and elasticitye as cues. The main
difference between our model and the information integration
approach is that we give an explanation of the how the physi-
cal variables work together, while the information integration
approach relies on a general-purpose method of estimating
the contribution of different cues to decisions which does not
result in generalization to other tasks. So for the mass ratio
judgment data, it would require 14 parameters to fit the data,
but these parameters would not allow it to make any predic-
tions in the causality judgment task.

While our model makes accurate predictions using the cor-
rect model of classical mechanics in our tasks, it seems un-
likely that this approach could be expanded to any physi-
cal situation. More complex situations, such as the two-
dimensional collisions of Gilden and Proffitt (1989) and the
common misconception that heavier objects should fall faster
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Figure 5: Human data and model predictions in the causality experiment. The final velocity of Object B minus the initial velocity
of Object A lies along the horizontal axis. The vertical axisis the probability of choosing a collision over the alternative with
data aggregated over subjects and conditions. The red points are the binned data, the blue points are the parameter-freemodel
predictions.

argue against an accurate physical model in all cases. In these
situations, it may be that we make optimal judgments in the
presence of noise while using the wrong physical model. Un-
derstanding exactly when and why our cognitive judgements
are inconsistent with physical law and rational inference re-
mains an important challenge for future work.

Conclusion
We modeled human perceptual judgments in a one-
dimensional collision task using a model of classical mechan-
ics that was generalized to include noise in the observations.
We collected data in two tasks, one for judgments of mass
and the other for judgments of causality. Previously, these
tasks have been modeled in very different ways and by as-
suming that people are using heuristics. Our model makes
predictions across tasks in an optimal way given the noise
in observations. We accurately predicted human data in the
mass judgment task, and used our fits to these data to make
accurate, parameter-free predictions in the causality task.
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