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Abstract

Categorization relies upon the vocabulary of features that
comprise the target objects. Previous theoretical work
(Schyns, Goldstone, & Thibaut, 1998) has argued this
vocabulary may change through learning and experience.
Goldstone (2000) demonstrated this perceptual learning
during a categorization task when new features are added that
create a single feature unit from multiple existing units. We
present two experiments that expand on that work using
whole-part judgments (Palmer, 1978) to elicit the feature
representation learned through categorization. The
implications for different classes of computational models of
categorization are discussed.
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Introduction

Recent successful computational models in the
categorization literature have represented objects as an
arrangement of a set of features (Kruschke, 1992; Love,
Medin, & Gureckis, 2004; Nosofsky, 1986; Spratling &
Johnson, 2006). These models make the assumption that
objects are automatically segmented into component
features (or feature dimensions, depending on terminology)
by the visual system. Kruschke (1992) argues that these
features are psychological, not necessarily directly related to
any particular physical property of the object, and may be a
complex combination of low-level visual properties. The
existence of psychological features has been inferred from
behavioral measures including response patterns in visual
search (Shiffrin & Lightfoot, 1997; Treisman & Gelade,
1980), the speed of classification (Goldstone, 2000), and
patterns of classification (Schyns & Rodet, 1997). These
features are defined by their function, how their presence
influences behavior.

This class of categorization models relies on a set of
perceptual features that is fixed at the beginning of category
learning and does not change throughout the learning
process. These models assume the perceptual system
creates representations consisting of stable psychologically
separable features that are available for further processing
by the categorization system. The viability of the
assumption of stable features is consistent with a lack of
evidence in some paradigms for the creation of new

detectors in primary visual cortex after repeated training
(Petrov, Dosher, & Lu, 2005).

Evidence for Flexible Feature Vocabulary Empirical
evidence from multiple sources is accumulating that the set
of perceptual vocabulary of features does change over the
course of learning a new task to include more diagnostic
functional features. A flexible set of functional features, in
which new features can be learned through experience, may
underlie the perceptual vocabulary used in categorization
(Schyns et al., 1998). Pevtzow and Goldstone (1994)
demonstrated reaction time patterns in whole-part
judgments which were consistent with different functional
features being learned from the same set of training stimuli
depending on the category structure. Similarly, Schyns and
Murphy (1994) found error patterns and self-report
statements consistent with participants forming stronger
feature detectors for diagnostic stimulus fragments than
non-diagnostic fragments.

Goldstone (2000) makes the strongest case for a flexible
feature vocabulary with results showing reaction time
patterns for classification of complex stimuli that cannot be
accounted for by models of categorization that rely strictly
on independently processing each feature. The results are
instead consistent with the formation of new functional
features that integrate information from previously separate
features into one unit, a learning process referred to as
perceptual unitization. In that study the stimuli were
constructed by connecting five line segments and assigned
to categories such that no individual line segment was
predictive of category membership. Sets of segments,
varying in size from 2 to 5 segments depending on the
condition, must all be processed to correctly categorize each
stimulus. The change in reaction times for categorization
trials were not accurately predicted by an analytic model in
which each necessary segment was processed independently
and all information was aggregated after each segment was
processed. A model in which the number of independent
components that must be processed for a given stimulus
decreases through learning more accurately accounts for the
decrease in response time found with training. This
decrease is proposed to be due to the perceptual unitization
of previously independently processed functional features
into single functional features that span multiple segments.

Goldstone (2000) goes on to investigate the necessary and
sufficient conditions for perceptual unitization. The effects
occurred in conditions where the individual segments were
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separated by blank gaps and not connected to each other as
well as in conditions where the unitized segments were
interleaved with and connected together by random non-
diagnostic segments of the same size. Manipulating the
number of segments that must be unitized to form a
diagnostic functional feature (which was confounded with
size of retinal image) produced a monotonically increasing
function between number of segments and number of
training trials needed to reach asymptotic reaction times.
Evidence for perceptual unitization was not found in any
conditions where the order of segments within the object
was randomized. Together, these results suggest that a new
perceptual unit is created when a stable, image-like pattern
is often repeated and is diagnostic for a task. The time
required to build this unit is proportional to the complexity
of the unit.

Flexible Feature Sets in Categorization Models Models
of categorization that incorporate fundamentally different
mechanisms for flexible feature sets have been proposed to
account for the empirical evidence of unitization and other
perceptual learning. CPLUS (Goldstone, 2003) is a
connectionist network that performs both categorization and
object segmentation; it has been shown to account for the
learned segmentation of diagnostic features from a whole
object (Pevtzow & Goldstone, 1994) and learning novel
complex diagnostic features but has not been extended to
incorporate a mechanism for perceptual unitization of
existing functional features. Other models, including those
by Spratling and Johnson (2006) rely on attention weights,
direct competition and lateral inhibitory processes between
feature detectors within a hierarchical structure to model
results similar to those addressed by the CPLUS model.

The assessment of these models has focused on the
learned connections that define the set of features each
model has learned rather than direct predictions of reaction
time. The whole-part judgment task, first used by Palmer
(1978) to assess the naturalness of different decompositions
of visual objects into parts and subsequently by Pevtzow
and Goldstone (1994) to look at the influence of experience
on part decompositions, is ideal for measuring changes or
differences in sensitivity to components of objects. This task
consists of comparing a whole object to a part probe and
asking participants if the part probe is a subset of the whole
object. The whole object and the part probe may both be
presented at once or in sequence. Correct answers rely on
accurately comparing all segments in the part probe to the
whole and determining if there is a match for each segment.
In trials when the whole object is presented only before the
part probe is present, whole-part judgments require a
memory component as well as perceptual processing. The
logic of whole-part judgment tasks relies on the assumption
that decision processes will be more accurate if the part
probe aligns with the functional features used to process and
identify the whole object. The closer the part probe aligns
to the existing functional features that encode the whole
object, the more accurate judgments will be. This predicts
that changes in the strength or vocabulary of functional

features would be reflected in changes in the performance of
whole-part judgments involving those features (Pevtzow &
Goldstone, 1994). Whole-part judgments may provide
complimentary  supportive evidence for perceptual
unitization that may more tightly constrain models than
reaction time measures.

Experiment 1

In Experiment 1, a whole-part judgment task was used to
assess the functional features after category training
conducive to perceptual unitization. Both familiar
segments, which were present during training, as well as
unfamiliar segments not presented during training were
tested. These were factorially combined with part probes
differing in their number of segments and in the presence or
absence of segments in locations that were not predictive of
category membership during training. During that
categorization training, participants learned to correctly
assign eight objects composed of three segments into two
categories. The category structure was arranged such that
no segment was predictive in by itself, but the identity of
two of the segments together were perfectly predictive of
category membership, while the other segment was never
predictive. These constraints produced an exclusive-OR
(XOR) category structure in which exactly two segments
must be identified correctly to make an accurate category
prediction (see Figure 1 below). This XOR category
structure differs from the classic Shepard et al. (1961) type
II XOR category structure because without training or
experience, the segments that compose these objects are not
clearly separable features. Learning the structure in this
experiment requires many more trials than even the most
difficult type IV category structure requiring the
memorization of all eight examples.

Figure 1: A scaled-down example of stimuli used in both

experiments. The object was constructed by connecting

three segments at specific locations. Dashed lines were
added to indicate the points where the segments join.
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Figure 2: Stimuli and category structure used in Experiment
1. Each letter represents a unique segment and segment
appears only in one location across all stimuli (A and D on
the left, B and E across the top, and C and F on the right).
To correctly categorize a stimulus in category 1, the
presence of both segments A and B or D and E must be
confirmed. Note that segments C and F provide no

information about category membership and the location
where they occur is never predictive.

[

Critical Tests of Model Predictions

Analytic Model with Independent Processing All of the
category learning models discussed above that do not
incorporate perceptual learning can be characterized at an
abstract level as analytical models where each feature is
detected independently and mappings are learned between
those pre-determined features and the appropriate
categories. These models predict improvements in speed
and accuracy over the course of training for the processing
and recognition of features through the systematic
strengthening of association weights or allocation of
selective attention to specific features. The crucial
characteristic of this class of models is that each feature is
processed independently of other features, regardless of

connections to categories or attention allocation. If features
align closely with the independent segments of the objects
then these models, which process features independently,
then they will always be more accurate on one-segment part
probe trials compared with two-segment part probes. This
is because each segment in the part probe must be matched
to the corresponding segment in the whole by detecting each
feature independently, regardless of association strength or
selective attention allocation to the features. The
independence of this process produces an overall error rate
for the decision process that increases linearly with the
number of features that must be matched correctly. This
pattern would produce higher sensitivity on one-segment
part probe trials compared to two-segment trials. Goldstone
(2000) found evidence that this class of models were
inconsistent with the pattern of reaction times found during
category training using similar stimuli.

Categorization models which include mechanisms of

perceptual unitization in which new functional features are
learned that are predictive of category membership make the
opposite prediction: they predict higher sensitivity for two-
segment part probe trials compared to one-segment part
probe trials when all segments in the part probe were
predictive of category membership during training. The
higher sensitivity should be limited to test trials where both
segments of the part probe are in the predictive locations
because this set of models predict that during categorization
training only unitized functional features of the combination
of predictive segments should be learned.
Selective Attention to Predictive Locations Both classes
of models could be expanded to include a mechanism for
assigning selective attention to the locations of predictive
segments during learning. If this mechanism drives learning
during the categorization phase then during the test phase
sensitivity should be higher for all segments in the
predictive locations, both for familiar and unfamiliar
segments. Both perceptual learning and analytic models
that do not have selective attention to location but rely only
on learning connections between features will show much
larger sensitivity for familiar predictive segments compared
to unfamiliar predictive segments.

In summary, Experiment 1 uses a whole-part task to
determine if participants learn to represent combinations of
independently varying segments as functional features when
the combination of those segments is predictive of category
membership. By using randomly generated segments and
creating arbitrary mappings to categories, it is very unlikely
that functional features for these combinations of segments
exist before the experiment. Specific contrasting
predictions concerning the effect of the number and
familiarity of the segments comprising the part probe in the
whole-part task differentiate perceptual unitization learning
models from analytical learning models, selective attention
only models, and models relying on combinations of only
independent features and selective attention.
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Method

Participants Undergraduate students from Indiana
University participated in this experiment to fulfill course
credit. 47 participants completed the experiment within the
allotted 60 minutes. All participants who did not reach the
accuracy criteria within the allotted time during training
were not included in any analysis.

Materials Stimuli were formed by combining three curved
segments randomly without replacement from a set of nine
segments. The angle of curvature was 120 degrees with a
radius of 6.6 cm at the endpoints. Two segments in each
stimulus were rotated such that the endpoints of all three
segments aligned to create a closed object with length and
height of 13.2 cm. The position and rotation angle of each
segment was randomized across participants but constant for
a participant. Participants viewed the display from a
distance of approximately 45 cm, resulting in a viewing
angle of 3 degrees for each object. Curved segments were
connected at or near local maxima of curvature along each
object because the ends of each segment were constrained to
be locally convex curves. The locations at which segments
were connected remained constant across all stimuli and
participants.

Design Category membership for each object was
determined by randomly selecting two segments not
occurring at the same position for each subject. Each object
that contained both or neither of those segments was
assigned to one category and all other objects were assigned
to another category; creating an exclusive-OR category
structure with 2 of the 3 positions predictive of category
membership (see Figure 2).

Categorization Procedure On each categorization trial, an
object was presented in the center of the screen and
participants were instructed to press one of two keys to
indicate category membership for the object. Feedback
indicating if the participant’s response was correct was
displayed while the object remained on the screen until the
participant pressed a button to move to the next trial.
Feedback was presented for 500 ms and was followed by a
prompt for the participant to proceed to the next trial. A
blank screen inter-trial interval of 750 ms preceded the next
trial. Categorization trials were grouped into blocks of eight
trials in which each unique object appeared once in a
random order. Participants remained in the categorization
phase until their accuracy was above 85% on four
consecutive blocks.

Whole-part Procedure Participants were given two blocks
of 192 trials, resulting in a total of 384 whole-part judgment
trials. On each trial, an object (the whole) was presented for
1000 ms, followed by a blank screen for 750 ms, before a
set of segments (the part probe) appeared and participants
were instructed to determine if all segments in the part
probe were present in the whole by pressing one of two keys
for “match” and “do not match.” All whole object or part
probe stimuli were presented in the center of the screen with
random jitter of up to 0.5 cm in any direction. Participants
were not provided with any feedback concerning their

response. A blank screen inter-trial interval of 750 ms
preceded the subsequent trial. Participants were instructed to
proceed as quickly as possible without sacrificing accuracy
in their responses; accuracy and response times were
collected. After every 50 trials, a short break was provided.

Four factors were manipulated independently within each
block of trials to determine the composition of the part
probe: 1) Number of segments in the part probe: on half the
trials the part consisted of one segment, otherwise it
consisted of two segments, 2) Familiarity of segments: on
half the trials the segments in both the whole object and part
probe were from the set of segments in category training,
the other half of trials used no familiar segments in either
the whole or the part, 3) Location of segments: segments in
the part probe appeared at all three positions of an object
equally often but consistently in the same location. 4)
Correct answer: on half of the trials all segments in the part
probe matched the segments in the whole and the correct
answer was yes, otherwise one segment was replaced with a
non-matching segment of the same familiarity and assigned
to the same location to create “no match” trials. The order of
trials was randomized within each block.

Results

A 2 (both the part probe and whole object consisted of
familiar vs. unfamiliar segments) X 2 (number of segments
comprising the part probe: one or two segments) X 2 (all
segments comprising the part probe in category-predictive
locations vs. at least one segment of the part probe in the
non-predictive location) analysis of variance (ANOVA) was
conducted with sensitivity (d-prime) from signal detection
theory as the dependent measure. Sensitivity combines
information from trials where the correct answer is yes and
no.

A significant main effect of number of segments in the
part probe was found, F(1,46) = 4.64 (p = 0.036) with mean
sensitivity of one segment trials was 1.23 and mean of two
segment trials 1.36. A main effect of category-predictive
location was found, F(1,46) = 5.43 (p = 0.024) with mean
sensitivity on trials in which all segments in the part probe
were in predictive locations was 1.39 and the mean where
the part probe contained a segment in the non-predictive
location was 1.21. A non-significant trend toward a main
effect of segment familiarity was found, F(1,46) = 3.41 (p =
0.07) with mean sensitivity of 1.41 for familiar segments
and 1.18 for unfamiliar segments.

The main effect of category-predictive location was
modulated by a two-way interaction with segment
familiarity, F(1,46) = 16.58 (p < 0.001) (see Figure 3). The
main effect of number of segments in the part probe was
also modulated by a two-way interaction with segment
familiarity, F(1,46) = 4.09 (p = 0.049) (see Figure 4). There
was no significant interaction between category-predictive
location and number of segments F(1,46) = 1.36 (p = 0.25).
The three-way interaction was non-significant F(1,46) =
2.52 (p=0.12).
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Figure 3: Interaction between the presence of a segment
in the non-predictive location of the part and the familiarity
of the segments on sensitivity (d-prime). The sensitivity
was much higher for parts with familiar segments when all
segments were in predictive locations.

Experiment 1 Discussion

The results of Experiment 1 show strong evidence that
unitized features comprised of two segments were learned
during the category-training phase. Figure 3, showing the
strong interaction between segment familiarity and the
location of segments in the part probe indicates that
sensitivity for familiar segments in predictive locations was
much higher than any other combination. This pattern of
results is not consistent with the predictions of a learning
model based entirely on the reallocation of spatial attention
to the category-predictive locations of objects. Instead, a
higher sensitivity was only shown for familiar segments in
those locations, indicating that something about those
segments was learned.

The significantly higher sensitivity to two-segment part
probes compared to one-segment, indicates that what is
being learned is not individual features for each
independently-varying segment, as suggested by an
analytical model. Instead, these results are more consistent
with an account where pairs of independently varying
segments are processed as unitized features.

One potential objection to the conclusions from
Experiment 1 is that the pattern of results was perhaps a
function not of changes in processing during the category-
learning phase, but of specific properties of the stimuli
themselves or the whole-part protocol. To address this
concern, Experiment 2 presents the whole-part judgment
task from Experiment 1 to participants who have not
experienced the category-learning phase.

Experiment 2 was a control condition for Experiment 1.
All the experimental methods from Experiment 1 were
repeated in 2 except participants did not participate in the
category training phase and proceeded directly to the whole-
part judgment phase.

B Familiar segments
O Novel segments

Sensitivity (d')
1.0
1

0.0
L

Two Segments One Segment

Number of segments in part

Figure 4: Interaction between the number of segments in
the part and the familiarity of the segments on sensitivity (d-
prime). The sensitivity was much higher for parts with
familiar segments when the part consisted of two segments.

Experiment 2

Without the category training phase no effect of category-
predictive location should be found. Additionally, without
any exposure during category learning, no difference should
be found between familiar and unfamiliar segments.
Without the opportunity to learn unitized features in
training, the trend from Experiment 1 that higher sensitivity
was shown for parts consisting of two segments compared
to one segment should be reversed in Experiment 2.

Method

Participants 47 undergraduate students from Indiana
University participated in order to partially fulfill course
credit.

Materials The exact stimuli from Experiment 1 were used.
Despite no category training, two segment locations were
randomly assigned to be predictive of category membership
and six segments were assigned to be the set of familiar
segments, as in Experiment 1.

Categorization Procedure No category-learning phase
occurred. Participants proceeded directly to the whole-part
procedure.

Whole-Part Procedure Participants were given at least two
blocks of 192 trials, resulting in a total of 384 whole-part
judgment trials. The whole-part procedure from Experiment
1 was duplicated for the first 384 trials. If time permitted,
participants did further blocks but those results are not
included in any analysis.

Results

A 2 (familiar vs. unfamiliar) X 2 (part probe size) X 2 (all
category-predictive segments vs. at least one non-predictive)
ANOVA was conducted with d-prime as the dependent
measure. No significant main effect of number of segments
in the part probe was found, F(1,46) = 0.37 (p = 0.54). No
significant main effect of category-predictive location was
found, F(1,46) = 0.01 (p = 0.96). No significant main
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effect of segment familiarity was found, F(1,46) = 2.07 (p =
0.16). No two-way or three-way interactions were
significant using a criterion of 0.05.

General Discussion

The significant effects and trends in the results from
Experiment 1 are not replicated in Experiment 2, indicating
that nothing in the stimuli or testing procedure is able to
account for the results in Experiment 1. Consistent with
Goldstone (2000), analytic models that rely exclusively on
functional features that do not span multiple segments are
not able to account for the greater performance on trials
containing two predictive-segments in the part probe. The
addition of spatial locations-based selective attention
mechanisms in these analytic models does not address this
shortcoming because of the strong interaction of the
observed effects with familiarity.

One class of analytic models that can account for the
pattern of results in Experiment 1 are those that do not
create new unitized features but initially include functional
features that span the small areas where segments connect.
Slowly learning to heavily weight existing features that span
those locations would produce results that cannot be
discriminated from a perceptual unitization process in this
data. The lack of main effect in Experiment 2 between parts
of size one and two lend slight support to the argument that
participants may not naturally decompose these objects into
the independently varying segments. However, this class of
models would fail to account for the perceptual unitization
of up to five connected segments into one functional feature
found in Goldstone (2000). Separating this account from
the predictions of perceptual unitization models within the
whole-part framework will require the manipulation of
category structure or multiple phases of whole-part
judgments over the course of category learning in future
experiments.

Further work on identifying individual differences within
the degree to which functional features are strongly
represented is also suggested by this framework. Future
directions should include the identification of which specific
functional features an individual is most sensitive and
relating systematic differences in performance in the
category learning phase to the test phase performance. This
work also provides clear results for the application of
cognitive models of categorization and perceptual learning.
The class of models that represent the independently
varying segments of these objects as separate functional
features will not adequately capture the pattern of results
found, even with the inclusion of selective attention to those
features or to spatial locations. Models of categorization
that learn vocabularies of functional features that span
familiar predictive segments and are learned during category
training are consistent with these results. Combined with
the results of Goldstone (2000), these experiments strongly
support models of categorization that include mechanisms
for the perceptual unitization of smaller functional features
into larger features during category learning.
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