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Abstract

Two primary methods have been used in studies of word
reading: small-scale factorial studies and larger scale
“megastudies” involving thousands of words. We conducted
comparisons between the two, using the standard frequency X
regularity interaction in word naming as test case. Whereas
the effect replicates across small-scale studies, somewhat
different results were observed using item means from 3
megastudies. Correlations between the megastudies are also
relatively low. The considerable error variance in the
megastudies limits their use in creating mini (“virtual”)
experiments. The megastudies yield small but more consistent
results using regression analyses examining specific factors.
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Introduction

How people read words is one of the most extensively
studied topics in cognitive science, because of the
complexity and importance of the skill, and because it has
provided a domain for exploring general theoretical
frameworks (e.g., Parallel Distributed Processing, Bayesian,
Dual-Route) and computational modeling methods.
Extensive data have been acquired using many
complementary methods (e.g., behavioral studies of
beginning, skilled and impaired readers; neuroimaging).
Considerable progress has been made, with significant
implications for education (e.g., Rayner et al., 2002).
Although many methods have been used to study reading,
most of the primary data are drawn from simple tasks such
as reading words aloud (naming) and making lexical
decisions. These tasks have been used to examine how
properties of words affect processing, including experiential
factors like frequency and age of acquisition; semantic
properties such as ambiguity and abstractness; and structural
factors like length and spelling-sound consistency. For
years researchers have relied on experiments that factorially
manipulated properties of words while attempting to hold
other factors constant. These studies usually involved
relatively small numbers of items per condition because of
demands of experimental designs. More recently,
researchers have conducted “megastudies” in which
latencies are gathered for large numbers of words. In the

first study of this type, Seidenberg and Waters (SW; 1989)
obtained naming latency and error data for 2,900 words
from each of 30 subjects. Kessler, Treiman, & Mullennix
(KTM; 2002) gathered similar data for 2,326 words, and
Balota et al. (English Lexicon Project, ELP; 2007) took this
approach much further, gathering naming data for 40,481
words from 444 individuals (each of whom named a subset
of words). These large corpora sample the lexicon broadly
and permit additional types of data analyses, particularly
regression models. Balota et al. have provided an extensive
analysis of their corpus, which is an important tool that is
freely available on the Internet. The two other corpora are
also downloadable and have been used by other researchers.

We were interested in two questions. First, can these
corpora be used to conduct “virtual experiments”? In
principle, researchers could create factorial style experi-
ments by sampling words from the corpora. Many such
experiments could be generated, while avoiding the
demands of collecting new behavioral data, a potentially
productive research strategy. The question, however, is
whether the large scale studies yield data that is comparable
to that obtained in the smaller-scale factorial experiments.
Data obtained from subjects who have read hundreds or
thousands of words could differ from data obtained in
studies of 100 words. We examined this question by looking
at whether 5 well-known studies of a common finding, the
frequency X regularity interaction, replicate using data
drawn from megastudies.

A second, related question concerns how the results of the
megastudies compare to each other. Differing method-
ologies (e.g. recording equipment, subject samples,
instructions, and number and type of stimuli per session)
could introduce considerable experiment-specific variance.
This is an important consideration, particularly because
accounting for item-wise variance in naming latencies has
become a criterion for evaluating computational models of
reading (Perry, Ziegler, & Zorzi, 2007).

To foreshadow the results, we show that the virtual
experiment methodology is problematic: it tends to
underestimate effects, creating Type II errors. Item-wise
correlations between the megastudies are surprisingly low,
indicating considerable error variance. Thus, some effects
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identified using factorial studies would not have been
detected via virtual experiments. The differences between
the corpora have important implications for their use in
evaluating computational models of reading. Regression
analyses yield more consistent results across the
megastudies, but some effects are small and hard to detect.
We conclude that factorial and megastudy methodologies
have different strengths and weaknesses, which suggests
using them in a complementary manner.

Virtual Experiments

The frequency X regularity interaction is a standard finding
in the reading literature. Seidenberg et al. (1984) found that
English words with irregular pronunciations (e.g., HAVE,
PINT) produced longer latencies than regular words (e.g.,
MUST, PINE) only when they were relatively low in
frequency. Intuitively, common words are read equally
easily, other factors aside; for less common words,
irregulars incur a penalty in latency, even for skilled readers.
In early studies “regularity” was defined with respect to
whether a word’s pronunciation is rule-governed (as in a
dual-route model; Coltheart et al.,, 2001). Later, it was
reconceptualized in terms of the degree of consistency in the
mapping between spelling and sound (as in connectionist
models; Seidenberg & McClelland, 1989). These effects
(under either name) have replicated multiple times in
different labs using a variety of stimuli. Plaut et al. (1996)
provided a formal analysis of the relationship between
frequency and consistency in connectionist models.

Our first question was whether the pattern obtained in the
factorial studies will replicate if we create virtual studies
using latencies for the same stimuli collected in the
megastudies? For this analysis we used the following
widely-cited studies: Seidenberg (1985, sets A and B
collapsed); Taraban and McClelland (1987); Jared (1997);
Paap and Noel, 1991); and Seidenberg et al. (1984). Other
studies were not included because of space limitations.

Methods and Results

We recreated each study using the means for the original
stimuli, but taken from the megastudy data sets. Items in the
original experiment were occasionally missing from a
megastudy. For present purposes we simply excluded these
items from the analyses, resulting in slightly different
numbers of stimuli per condition across experiments and
megastudies. The number of excluded items was very small.
We conducted the same item analyses as in the original
studies; the full ANOV As are available from the authors.
Figure 1 shows the results of the Seidenberg (1985) study
and the three virtual experiments. The significant frequency
X regularity interaction in the original study was marginal
using the KTM corpus (p < .07) and nonsignificant using
ELP and SW. The SW latencies are noticeably faster than
in the other data sets, although in the same range as the
original study. All of the megastudies show qualitatively
similar patterns as the original study, taking into account
differences in overall naming speed. ELP produced main

effects of frequency and regularity but no interaction; these
subjects were also slowest on the higher frequency words,
which suggest they treated them more like lower frequency
items, perhaps because they were less familiar with them on
average. In summary, the basic pattern replicates across the
megastudies but the statistical effects are not reliable.

Original ELP
6507 g Exception 6507 g Exception
630 1 O Regular 630 1 O Regular
610 610
590 - 590 -
570 4 570 4
550 4 550 4
530 530 A

High Frequency Low Frequency High Frequency Low Frequency

KT™M SW
650 ® Exception 6507 g Exception
630 O Regular 630 { O Regular
610 610 -
590 + 590 4
570 4 570 4
550 - 550
530 - 530 -

High Frequency Low Frequency High Frequency Low Frequency

Figure 1: Results for Seidenberg (1985) Experiment
Original ELP

620 1  m Exception
0O Regular

620 1 m Exception
0O Regular

High Frequency Low Frequency

High Frequency Low Frequency

K™ SW
620 {  ® Exception
610 1 O Regular

600

620 { M Exception
610 1 O Regular
600 -

590 590 -
580 580
570 570
560 | 560 |
550 550
540 540

High Frequency Low Frequency High Frequency Low Frequency

Figure 2: Results for Taraban & McClelland (1987)

Replications of the Taraban and McClelland (1987)
experiment yielded a similar pattern (Figure 2). In the
original study, there was a significant frequency X
regularity interaction (the apparent difference between the
two high frequency conditions was nonsignificant). The
replications produced similar patterns, but the effects are
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again not statistically significant (the only significant effect
was frequency in the KTM analysis).

Original ELP
gfg ® Inconsistent gfg 7 = Inconsistent
605, O Consistent 605 & Consistent

595
585
575

High Frequency Low Frequency

High Frequency Low Frequency

K™ SW
7 mInconsistent

o Consistent 605 : o Consistent

| Inconsistent

High Frequency Low Frequency

High Frequency Low Frequency

Figure 3: Jared (1997) Results

The Jared (1997) study (Figure 3) compared “consistent”
and “inconsistent” words, where the inconsistents included
items that had been categorized as either exceptions (such as
BREAK) or regular inconsistents (e.g., PAID, which has the
“enemies” SAID and PLAID) in previous research. The
“consistent” items are essentially the same as ‘“regular”
words in other studies. This study is widely cited because it
produced a consistency effect for “high” frequency words as
well as low; however, the frequencies of these “HF” words
were somewhat lower than in previous studies, and as in
previous studies the consistency effect was larger for the LF
words. In the virtual experiments none of the statistical
effects (frequency, consistency, or the interaction) were
significant and none reproduced the original latency pattern.

Original ELP
m Exception m Exception
725 + 725 +
o Regular o Regular
675 675
625 625
575 4 575 4
525 ~ 525 ~

High Frequency Low Frequency High Frequency Low Frequency

K™ SW
m Exception m Exception
725 + 725 +
O Regular O Regular
675 675 4
625 - 625
575 4 575 +

25 o .

High Frequency Low Frequency High Frequency Low Frequency

Figure 4: Results for Paap and Noel (1991)

The Paap and Noel (1991) study used a different
methodology: subjects performed a secondary task while
naming words aloud. Although the study is cited as
yielding a frequency X regularity interaction (Coltheart et
al., 2001; Perry et al., 2007), the relevant statistical test was
not reported in the article. There was a regularity effect for
LF words and a reversed effect for HF words (reg > exc).
The megastudy replications are variable. ELP produces
frequency and regularity effects and a marginal (p < .07)
interaction. For the other studies only the regularity effect
in the SW replication is significant.

Original ELP
710 ® Regular 709 g Regular
690 - Inconsistent 690 - Inconsistent
670 4 O Strange 670 1 O Strange
650 - 650 -
6304 O Regular 6304 O Regular
610 + 610 -

590 590
570 4 570 -
550 1 550 -
530 - T 530 - T

High Frequency Low Frequency High Frequency Low Frequency

KTM SwW
7109 g Regular 707 g Regular
690 4 Inconsistent 690 - Inconsistent
670 4 O Strange 670 1 O Strange
650 - 650 -
630 O Regular 630 { O Regular

610 610 4

590 590

570 570 -

550 - 550 *Ai_’_\
530 - T 530 - T

High Frequency Low Frequency High Frequency Low Frequency

Figure 5: Seidenberg et al. (1984) Results

Finally, Figure 5 shows the results for an early study by
Seidenberg et al. (1984). The experiment examined regular
words, inconsistent words (such as GAVE) and “strange”
words (such as AISLE), which are highly irregular. For the
HF words, there were no significant differences between
conditions; for the LF words, the order of latencies was
strange >> regular inconsistent > regular. This study
replicates best. ELP and SW produced the same pattern and
statistical results; KTM produces the same pattern except
that low frequency inconsistents did not differ from low
frequency regulars.

To summarize, we examined whether 5 widely-cited
studies of the effects of frequency and regularity/
consistency would replicate if the same experiments were
run using data from three megastudies. The results are
somewhat disappointing. In some cases, effects do not
replicate. In other cases, the virtual experiments show the
same pattern as the original, but effects are not borne out by
the statistical analyses. Differences in subject speeds across
studies also need to be considered. Subjects in ELP and
KTM were typically slower than in the original studies,
whereas the SW subjects were faster, producing smaller
effects.
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The freq X regularity/consistency interaction has
replicated in multiple small-scale experiments conducted in
different labs. The main effects of these variables are also
well documented. The fact that the effects do not replicate in
the megastudies is therefore a cause for concern. The
megastudies yield substantially different results at the level
of individual items and condition means.

Item Analyses

Our virtual experiments may not have replicated the original
factorial studies for a number of reasons. One possibility is
that the megastudy data are not as reliable at the item level
as data collected in factorial experiments. This would
decrease statistical power and so increase the rate of Type 11
errors. One clue to the reliability of megastudies is the
amount of shared item variance between them.

Table 1 shows the percentage of item variance that each
megastudy accounts for in each of the other megastudies.
This is based on naming latencies for the 2,303 words
included in all three datasets. Notably, none of the
megastudies accounts for as much as half the variance in
another study. The remaining variance is attributable to
factors other than characteristics of the words themselves.

Table 1: Percentage Of Shared Item Variance (computed
using r*) Across Megastudies

ELP KTM
KTM 43.59
SW 36.11 34.90

One issue may be the use of different stimuli in each
study, which can produce list context effects. The ELP
includes mono- and multisyllabic words, whereas SW and
KTM are only monosyllabic. The ELP and KTM studies
were conducted at multiple institutions, in labs that employ
different apparatus. In fact, the KTM dataset was gathered
to examine variation produced by different voice keys.
Subjects in the ELP study only read a subset of the words,
whereas words were tested within subjects in the other two
studies. There is considerable subject-wise error: subjects
differ in reading ability, attention to the task, and so on.

These and other sources of variance seem to prevent the
creation of reliable virtual experiments. As the frequency X
regularity analyses showed, different results will be
obtained using different corpora and the effects are not
robust. The smaller-scale studies produced more consistent
results, suggesting they provide more reliable estimates of
the tested effects.

The relatively low correlations between megastudies
affect their utility in evaluating models of word reading
(Balota & Spieler, 1998; Seidenberg & Plaut, 1998). Recent
computational models have been assessed with respect to
item-wise correlations between measures of model
performance and mean naming latencies. These
correlational analyses involve thousands (Perry, Zeigler, &
Zorzi, 2007) or tens of thousands (Sibley & Kello,

submitted) of words. Much has been made of the fact that
one model accounts for more item-wise variance in naming
latencies than others; increasing the amount of variance
accounted for is taken as a primary modeling goal (see
Coltheart et al., 2001; Perry et al., 2007). This approach
assumes that megastudies are reliable at the item level.
However, Table 1 indicates the presence of considerable
experiment-specific variance. The amount of item variance
that each megastudy predicts in the other megastudies
suggests an upper limit for the variance that a computational
models should predict. A model that fit a particular dataset
more closely would probably be modeling error.

The megastudies have other uses, however. Balota et al.
(2004) and Yap & Balota (2009) used regression to explore
how variables such as frequency and regularity affect
latencies across large portions of their corpus. These
regression analyses offer advantages compared to smaller-
scale factorial experiments. The larger data sets allow a
broader range of statistical analyses, including ones that
examine multiple properties of words simultaneously, or the
effect of a factor (such as frequency) while statistically
controlling other factors (such as length). Factorial studies
use relatively few words per condition because of the need
to equate stimuli across conditions with respect to other
factors. Regression analyses are not subject to statistical
problems associated with treating continuous variables as
categorical (Cohen, 1983). This is particularly relevant to
factors such as consistency, which is thought to be a graded
phenomenon (Seidenberg & McClelland, 1989).

The regression analyses yield more consistent results
across megastudies than did the virtual experiments. We ran
regression models on the 2,252 words which were included
in all three megastudies for which estimates of frequency
and consistency were available. We first examined
frequency because of its prominence in studies of word
reading. The logarithm of American History frequency
estimates had a statistically significant relationship (p <
.001) with latency in all of the megastudies. Effect size
estimates, using rz, are 0.091, 0.074, and 0.027 in the ELP,
KTM, and SW datasets, respectively. While these effect
sizes vary they are all in the same direction.

We also performed regression analyses examining the
effect of a word’s length in letters on naming latencies.
Length was chosen because it is a simple objective measure,
with substantial theoretical importance (see Perry et al.,
2007). Length in letters accounts for a statistically
significant amount of variance in all 3 megastudies (p’s <
.001). Effect sizes are also fairly consistent: 0.159, 0.153,
and 0.124 on the ELP, KTM, and SW studies, respectively.

Regression analyses were conducted on four measures of
spelling-sound consistency from Yap & Balota (2009).
Their measures examine consistency in the mapping from
orthography to phonology (feedforward consistency) and
vice versa (feedback consistency) for both onset and rime.
Three of the four consistency measures had statistically
significant relationships with latencies in all three
megastudies. Only feedforward rime consistency had no
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statistical relationship in any of the megastudies. The size
of the relationship between each consistency measure and
each megastudy is displayed in Table 3. This table shows
that analyses based on any of the megastudies would have
yielded the same conclusion: that there is a small but
significant effect of spelling-sound consistency in naming
aloud. However, the effects are very small. This may be
because the variability in these consistency measures is not
large across the large corpora because most words in
English are consistent. It is also odd that feedforward
consistency had no effect, because most experiments on
consistency effects manipulated this property.

Table 3: Effect size measure of consistency

ELP KTM SW
Feedforward onset .012 .022 .025

Feedforward rime .000 .000 .000
Feedback onset 027 .033 .032
Feedback rime .020 011 .019

Finally we conducted regression analyses examining the
interaction of frequency and consistency. Interactions were
assessed as suggested by Cohen et al. (2003; see also Yap,
2007): the two relevant main effect variables were first
entered into a stepwise regression and then their interaction
was entered. Using this technique only feedback onset
consistency had a statistically significant effect and only in
the ELP and KTM megastudies.

The regression analyses of the megastudies fail to pick up
the frequency X regularity/consistency interaction seen in
many smaller-scale studies. This discrepancy is a reminder
as to why smaller experiments with well-controlled
contrasts between conditions are valuable. The English
language has relatively few low frequency inconsistent
words. As a result, frequencies X consistency interactions
are difficult to detect without using experimental designs
that oversample low frequency inconsistent words.
Although the effects are small in the lexicon as a whole,
they are nonetheless theoretically important and thus
important to identify using sensitive designs.

Conclusions

The present work examined whether data collected in
megastudies of word reading can be used to draw reliable
conclusions about skilled reading. We first explored
whether virtual experiments could be created by
determining whether existing studies would replicate using
item data drawn from the three data sets. This technique
could be used to generate many studies, expediting the
research process. We found that 5 prominent studies of
word naming failed to produce conclusive results using this
method. Given the robustness of the effects in question in
the smaller scale studies, these failures to replicate suggest
that the virtual experiment methodology has limited utility.
Regression analyses produced more consistent results
across the three megastudies. Frequency and length in

letters produced reliable effects in all three data sets. The
estimates of the sizes of the effects varied somewhat, as
expected given the presence of measurement error. The
regression analyses were less successful in picking up
effects of consistency and its interaction with frequency.
There were significant effects of consistency but they were
tiny, and the interaction with frequency was not detectable.

Our results highlight important differences between the
two methodologies. The small-scale factorial experiments
are useful for identifying factors that affect performance,
such as spelling-sound consistency. They intentionally
involve creating conditions that are most likely to reveal
whether the factor in question has an effect. The studies
typically involve relatively few words per condition because
of the need to equate stimuli with respect to other
properties. Such studies often succeed in identifying robust
phenomena, such as the frequency X regularity interaction,
using different stimuli tested in different labs with different
subjects. Such phenomena often have considerable
theoretical interest, of course.

Whereas the small-scale experiments are useful for
identifying the existence of an effect, they provide little
information about its size, precisely because they sample
biased portions of the lexicon and the number of stimuli is
small. If the question of interest is the size of the effect,
megastudies are the way to go. However, some additional
issues should be noted.

First, sometimes the size of an effect is less important
than the mere fact that it exists. Consistency effects are
small across the lexicon as a whole for two reasons: (a)
because English is relatively consistent, and (b) because the
effect is modulated by frequency. Since most of the
inconsistent monosyllabic words are high in frequency, the
overall effect is small. However, consistency is
theoretically important because it is one of the few
phenomena for which competing models of word reading
(dual-route and connectionist) make different predictions.
Coltheart et al.’s (2001) DRC model treats consistency
effects as artifactual, resulting from confounded factors. If
such effects are real, however, they provide strong evidence
against the DRC approach (see Seidenberg & Plaut, 2006,
for discussion and evidence). The size of the effect,
however, is of limited interest. It could be small and require
examining specific stimuli. That is one purpose of small,
well-designed experiments. Such effects may be difficult to
detect in regression analyses using large data sets.

If the size of an effect is of interest, then analyses of large
corpora can be conducted. Effects of factors such as
frequency and length can be detected, as in our analyses and
others’ (e.g., Balota et al., 2004). This is particularly
relevant for continuous factors. Estimates of the sizes of the
effects vary across corpora because of measurement error,
however. This error seems to be substantial because the
correlations between megastudies are only moderate in size:
no megastudy accounted for even half the variance in
another megastudy. This conclusion is consistent with the
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results of the virtual experiments, which tended to replicate
patterns, but did not reach statistical significance.

What can be concluded from these analyses? First, the
virtual experiment methodology, although it would have
been enormously useful, seems inadvisable. It combines the
weakest elements of the two methodologies: the relatively
small number of stimuli in the factorial experiments, and the
relatively high error variance in the megastudies. This
combination is a recipe for Type II errors. Second, there is
no methodological Silver Bullet. Each of the methods has
strengths and weaknesses. The methods are also relevant to
different kinds of questions. The smaller scale factorial
experiments can be used to identify factors that are
theoretically important but small when considered with
respect to the entire lexicon. The megastudies can be used
to examine the relative sizes of effects and correlations
among factors, modulo the problem of error variance across
data sets. Moreover, they can be used with a much broader
range of data analysis tools, not merely the simple
regression analyses reported here. Thus the methods seem to
have complementary strengths and weaknesses, and have
complementary functions.
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