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Abstract

The ability to produce and comprehend spoken language
requires an internal understanding of the complex relations
between  aticulatory gedures and their acoustic
consequences. Recent theories of speech processing propose a
division between the ventral dream, which involves the
mapping of acougtic signds to lexical/semantic
representations, and the dorsal stream, which mediates the
mapping between incoming auditory signals and articulatory
output. We present a connectionist model of the dorsal stream
of speech processing that utilizes a novel schematic
representation of time-varying acougtics and a featura
mapping of articulation. The modd successfully learns a
large training vocabulary, accurately produces novel items
and demonstrates paiterns of perceptua errors highly similar
to those observed in human subjects.
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I ntroduction

In few instances do our intuitions more thoroughly deceive
us than in the ‘common sense' picture of speech perception.
Phenomenologically, the experience of hearing speech is
similar to that of reading text; empty gaps set off each word,
and these words consist of individua stretches of sound
corresponding more or |ess perfectly to the written character
s. In reality, things are not nearly so clean-cut; the silent
sretches that do appear in the signal (for instance, during
voiceless stop closures) do not typically correspond to word
boundaries, and one would be hard pressed to point to the
instant in the word 'deed’ where the signal switches from /d/
to /i/. To the extent that phonetic segments do exist, they are
highly blurred together by the effects of the preceding and
following articulatory gestures. In some cases the same
sretch of sound induces different percepts in different
contexts; thus the same burst of noise will produce a /p/
percept before a back vowel but a /k/ percept preceding a
front vowel. In addition, each segment can be signaled by a
congtellation of cues, none of which is guaranteed to be
present in agiven utterance.

This apparent lack of acoustic invariants for phonetic
identification led Liberman and his colleagues to propose
the Motor Theory (MT) of speech perception, which holds
that the true objects of speech perception are not acoustic
but instead articulatory. Under thisview, listeners employ a
potentially innate understanding of vocal tract physics to
recover the speaker's intended gestures from the acoustic
waveform. The lack of invariance at the acoustic leve is
thereby resolved through reference to the putatively
invariant underlying articulations.

Whether or not speech perception is mediated by neural
representations of intended gestures, the many findings
inspired by MT provide important insight into the nature of
phonetic categorization. While there exist myriad cues to
phonetic identity, these cues necessarily covary due to the
constraints imposed on the signal by the physics of the
articulatory apparatus. Thus whilealow F1 onset frequency
and a lack of F1 cutback are signals to voicing in word-
initial stops, these two features tend to trade off as the
supraglottal articulations in voiced and voiceless stops are
highly similar. When voicing commences at the release of
the stop closure, F1 will be low because, as an index of jaw
position, it will reflect the fact that it is still relatively
closed. Additionally, due to the presence of energy (from
the voicing source) in the vicinity of the first formant, F1
will be audible and thus there will belittle to no F1 cutback.

In spite of this extensive variability, the speech perception
system displays an astonishing ability to recover the
spesker's intended phonetic message and thereby her
meaning. Many studies have demonstrated just how difficult
it is to render a speech signal unintelligible. Remez, Rubin,
Pisoni and Carrell (1981) showed that participants could
understand speech signals composed only of sine waves
tracking the movement of the first three formants of a
sentence. Listeners in Shannon et al.’s (1995) study quickly
learned to transcribe signads composed of four bands of
white noise modulated by amplitude within each filtered
band, a manipulation which all but removes tempord cues
to phonetic identity. At the other end of the spectrum, Saberi
and Perrott (1999) split speech waveforms into 50-100 ms
chunks which were then each reversed in time, again,
participants quickly adapted to this manipulation and could
reproduce the distorted sentences.

Given the complexity of the stimulus, then, we should not
be surprised tha the corresponding neurd activation is so
extensive and difficult to pin down. The perception of a
sngle word activates an extensve bilateral network
centered around the primary auditory cortices and extending
both anteriorly and posteriorly along the superior temporal
gyri (Binder et d., 2000). Similarly, speech production
activates a left-lateralized network consisting of IFG
(Brocd's area), insula, and primary and supplementary motor
cortices (Hickok & Poeppdl, 2007). Unsurprisingly, there is
dso a dignificant amount of overlap between the two
systems, both in terms of the underlying representations that
mediate the sound to articulation mapping, as wel as the
perceptuo-motor systems that provide online monitoring of
one's own utterances and the ability to shadow heard speech
a extremely short latencies.
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While most researchers would accept primary auditory
cortex as an appropriate starting point for analysis of the
speech processing system, the consensus gppears to end
there as well. The advent of functiona neuroimaging has
rendered even the most general questions concerning speech
processing open for debate. On the basis of lesion data, the
classicd Wernicke-Geschwind model posited a few very
basic tenets about the organization of language in the brain:
1) Language in right-handed individuals is generaly left-
lateralized; 2) The posterior portion of the left superior
temporal lobe ("Wernicke's ared) is primarily responsible for
language comprehension; 3) The left IFG (‘Brocas ared) is
primarily responsible for guiding language production
(Geschwind, 1970). All of these statements have been
subject to some reevaduation; we focus here on the
sensorimotor  transformations required to compute the
mapping between audition and articulation. As such, we
will first examine receptive processing of the speech signa,
and then integrate this discussion into an understanding of
the mechanism of speech production. In this discussion we
will follow the terminology of Hickok and Poeppd (2007),
who pose a distinction between speech perception and
speech comprehension. Speech comprehension involves
recovering the speaker's intended message from the acoustic
sgnal, and more or less aligns with our everyday use of
gpeech. Speech perception, on the other hand, refers
primarily to the sorts of behaviors beloved by speech
researchers, such as identification and discrimination of
speech sounds and other explicitly phonological or phonetic
tasks. When no digtinction need be made; viz., when a
statement is true of both perception and comprehension, we
refer to both under the aegis of speech processing.

Hickok and Poeppe (2007) propose a dud-stream model
of speech processing, in which a ventral stream projecting
bilaterally from A1 to posterior STG and MTG mediates the
mapping between signa and lexicon, while aleft-lateralized
dorsal stream involving the left temporo-parietal junction
(area Spt) and IFG links speech sounds to articulations. To a
first approximation, then, this model fits well with the
classicd picture. However, on the basis of a number of
neuroimaging studies, these authors propose some important
eaborations to the Wernicke-Geschwind model. Key among
these is the proposa that area Spt plays a centra role in
computing the mapping between incoming auditory
information and articulatory gestures.

That there might be some region of cortex keyed into the
relation between acoustics and articulation seems quite
likely, Hickok and Poeppel offer two strong motivations for
the necessity of such an area. First, when achild islearning
to speak, the disparity between the intended and actual
output provides the learning signa that drives organization
of the articulatory output system. The importance of this
function is not limited to development, however; the adult
spesker must also monitor her output for errors. The quick
and efficient operation of this system is perhgps best
exemplified by the work of Houde and Jordan (1998), who
manipulated the acoustic feedback to participants in such a

way as to make them believe they had produced an incorrect
vowe when reading single words aloud (eg., when a
participant produced 'head’ she heard herself saying ‘heed’).
Participants in this experiment quickly adjusted their
articulations to reflect the altered feedback concerning
vowe height; a function which Hickok and Poeppel ascribe
to thedorsal stream.

While the neuroimaging findings discussed above have
certainly increased our understanding of the anatomical
substrates of speech processing, there remain a number of
open questions concerning the nature of the underlying
conceptud representations. That is, while we may agree that
area Spt is involved in the mapping between representations
of sensory data (e.g., heard speech) and those underlying
production (e.g., articulatory sequences), we would also like
to know what the representations in Spt actualy look like.
What stimuli are considered similar/equivaent in this area?
Are there nonlinearities in the encoding of stimuli along
perceptud or articulatory dimensions known to be relevant
in speech processing? While imaging studies certainly can
contribute to this goal (perhaps especidly through the use of
fMRI adaptation paradigms), it is likely that work in other
methodologies will provide key insights aswell.

Parallel Distributed Processing (PDP) provides an ideal
framework for the exploration of the internal representations
that guide behavior. This is perhaps especially true in
gpeech perception, as the signal consists of multiple
interacting probabilistic cues that likely require highly
nonlinear weightings for correct stimulus classification. An
important early precursor to the work presented here is the
TRACE modéd of speech perception (McClelland & Elman,
1986), which was designed to account for a number of key
phenomena in speech perception and lexical access. One of
the key insights of this model was the highly interactive
nature of speech processing: processing of the early part of
the signal strongly constrains the interpretation of the latter
part. However, there exist key differences between TRACE
and the model presented here: while the input to TRACE
was an acoustic featural description of the signal, in our
model we use schematic spectrograms derived from actual
recordings of English. In addition, the weights in TRACE
were set by hand, while in our simulations the weights were
adjusted as a function of the mismatch between the target
and actua output.

A closer precedent to our smulations can be found in the
work of Kello and Plaut, who explored phonologica
development in the context of neura network models. Plaut
and Kello (1999) trained a multi-layer PDP network on the
mappings between a schematic, feature-based acoustic input
and both articuletion and semantics, demonstrating the
feasibility of the approach presented here. In addition,
Kdlo and Plaut (2004) focused specifically on the forward
mapping from articulation to acoustics, by training a
network on the mapping between actual articulatory
recordings (EMA, laryngography, € ectropalatography) and
their associated acoustic output. A key insight of both these
papers is the idea that the representations that underlie
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speech processing are best viewed as neither purely acoustic
nor purely articulatory in nature, but rather are shaped by
the covariance structure of the articulation-audition
interface.

Methods
Model Architecture

The simulations described in this paper employed a 4-layer
PDP network trained with continuous recurrent
backpropagation (Pearlmutter, 1995). The input layer
contained 46 units, divided into two separate filter banks
and two task units. The first 22 units represented the
presence of acoustic energy in 1 Bark bands, corresponding
to the region of the spectrum from 0-8 kHz, spaced
according to auditory acuity as a function of frequency. The
second bank of 22 units had the same frequency spacing, but
their activation corresponded to the presence or absence of
periodicity in each frequency range. The task units
indicated the delay at which the model was reguired to
produce the response; these units were employed in the
delayed repetition test described below. The input layer
projected to a hidden layer of 150 units, which itself was
recurrently connected to a second hidden layer containing
150 units as well. This second hidden layer projected
recurrently to the output layer. All simulations used a
learning rate of 0.01, and a Euclidean distance metric was
used for scoring model performance.

The output layer contained 21 units, which represented a
schematic articulatory mapping based on that reported in
Keidel, Zevin, Kluender and Seidenberg (2003). Each word
was coded as a series of articulatory targets, in line with the
work of Browman and Goldstein (1992). Individua bitsin
each segment vector corresponded to constructs such as
plece of articulation (POA), condtriction degree, tongue
tip/body position and velar lowering.

Stimulus Design The input to the model consisted of
schematic acoustic representations of CVC stimuli. To
create these representations, we first recorded a native
Southern British English speaker (SRW) producing tokens
of 16 English consonants (six stops, eight fricatives, and
two nasals) in onset position before 11 different vowels.
These recordings were then analyzed to determine values
for key acoustic parameters known to affect phonetic
identification, such as burst spectrum, direction and
meagnitude of formant trangitions, vowe formant values, and
others described below. These vaues were then employed
to create schematic time-varying acoustic input for the
network to classify.

The perception of stop consonants is perhaps the best
studied field in speech research, as they embody the
interaction of multiple probabilistic cues perhaps better than
any other type of segment. In our stimuli, voiced stops in
onset position were represented as three separate events: 1)
aburst portion corresponding to the rel ease of pressure built
up behind the constriction; 2) formant transitions resulting
from the movement of the primary articulator from the

closure into the vowel, and 3) the steady state vowel itself.
Vaues for the bursts followed the characterization found in
the work of Blumstein and Stevens (1979) and Repp and
Lin (1989). Schematicaly, labia bursts were flat and
diffuse, aveolar bursts were diffuse and rising, and velar
bursts were compact. To prevent the model from tracking
idiosyncratic features of production by our single speaker,
the F1 transition was aways calculated as the trgjectory
from a start value of 200 Hz to the steady-state F1 of the
following vowel. The onset frequencies for F2 and F3
transitions were measured for each vowd context, and these
served as the basis for the model's input representations.
Vaues for the first three formants of each vowel were
calculated as the averages of F1, F2 and F3 across the
recorded consonant contexts.

Fricatives were represented as a steady-state frication
period followed by formant transitions into the syllable
nucleus. Vaues for the frication spectra were taken from
spectrographic measurements of the model spesker. The
formant transition values from the stop measurements were
aso used in some fricative contexts; thus the alveolar and
post-alveolar fricatives received the transitions from the
adveolar stops and the labiodental fricatives received the
transitions of bilabial stops. For the interdental fricatives,
transition vaues from the modd speaker were measured and
used to create the stimuli. Nasals were modeled by an
initid murmur followed by transitions appropriate for the
POA taken from the stop productions described above.
Generally, coda consonants were represented as the time-
reversed versions of their onset counterparts. However, in
the case of voiceless stops, the distinction was produced by
shortening the vocalic portion of the word, as this is the
predominant cue to coda stop voicing in English.

The measured values described above were then converted
into time-varying acoustic input vectors to the model
(hereafter referred to as the ‘acoustic matrix', reflecting the
time x frequency nature of the stimuli). The matrix for each
CVC word was 36 x 44, with 36 20 ms time steps and 44
frequency coefficients (22 for energy in a filter and 22 for
presence or absence of periodicity). Stimuli were first
vowe-centered, so that similar formant transitions (e.g.,
those in /d/ and /z/) would overlap in time. Next, measured
acoustic vaues were inserted into the proper filters,
according to a linearly weighted split of energy between the
units representing the closest Bark values on either side of
the given frequency. Formant transitions were created by
linear interpolation between onset frequencies for transitions
and steady-state values for the relevant vowe over a 60 ms
time window, equivalent to 3 events along the time axis of
the acoustic matrix.

To simulate effects of speaker variability, 15 versions of
each token were created by adding noise to the vowel
formants, then calculating transitions with respect to the
new vaues (e.g., /dal was specified with a400 Hz falling F2
transition, so regardless of the formant values chosen in the
noise procedure, F2 would fall 400 Hz into the steady state
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F2 value). Additionally, Gaussian noise with an SD of 0.1
was added to the activation of the input units.

In order to vdidate the similarity of our acoustic
representations to the actual speech signal, we trained the
network on all possible combinations of the 16 consonants
in both onset and coda position with the 11 vowels in the
syllable nucleus (a total of 2816 stimuli; 10% of these
simuli were withheld to test generalization performance).
At the conclusion of training, we tested the model on the
trained stimuli in varying levels of noise, for comparison
with the perceptua confusion data presented in Miller and
Nicely (1955).

In this classic paper, the authors present identification data
from four human listeners labeling thousands of syllables of
the form /Cal, where C ranged over the six stops, eight
fricatives, and two onset nasds (/m/ and /n/) of the English
sound system. The experiment was carried out under a
number of different noise levels and bandpass filter widths,
illustrating the gradual breakdown of the boundaries
between phonetic categories as ligening conditions
deteriorate.  The  comparison of the  model's
misidentifications of words in noise with Miller and Nicely's
(MN) data alows for an independent validation of the match
between our acoustic representations and the statistical
sructure of the actual speech signal. That is, while any
mapping isin principle learnable by a PDP network, it is by
no means given that the breakdown in function induced by
the addition of noise will follow that exhibited by human
listeners.

Results

All results presented represent the average of 10 runs of the
moddl. After 1.5M trials the models reached asymptote,
identifying an average of 99% of the input patterns correctly
based on a Euclidean distance criterion. Generalization
performance was somewhat poorer, with an average of 93%
of items named correctly.

Clearly, any model of speech perception must account for
the foundational finding of MT: categorical perception. In
the terminology of Liberman, Harris, Hoffman, & Giriffith
(1957), categorica perception occurs when identification
predicts discrimination: if two stimuli from the same
spesker are both identified as /ba then the listener will not
be able to tell them apart. However, if the same amount of
acoudtic difference straddles a category boundary (such as
that between /ba/ and /da/), then the two stimuli will be
discriminable. To simulate this in the mode, we
interpolated the initial formant values used to create /ba/ and
/dal stimuli and generated a 10-step series between these
simuli. Importantly, the model had only been exposed to
the endpoint stimuli in training; thus, the identification of
the intermediate stimuli represents true generalization.
Figure 1 shows the results of this test: asin human subjects,
discriminability peaks sharply a the category boundary, and
intermediate stimuli are identified as the closest endpoint in
auditory space. Discrimination performance was cal culated
as the normalization of the Euclidean distance between

hidden unit representations generated by three consecutive
simuli in the series.
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Figure 1. Identification and discrimination of a/ba/-/dal/
series. Y -axis represents percent /bal identification for ID
curve and correct discrimination of tokens (see text).

Figure 2 shows the corrdation between the erors of
human listeners perceiving speech at a signal-to-noise ratio
(SNR) of -6 dB, and the average of 10 modds
identifications of the training stimuli presented in Gaussian
input noise with an SD of 0.35. This value was chosen to
produce the same proportion of errors as the MN subjects
independent of the errors distribution. Because most of the
cells of the confusion matrix are empty we only entered
cells with error rates greater than .05 for one of the groups.
The results of the analysis demonstrate a good fit to the
human data: r(27) = .54, p < .05. Similar results were found
for the other noise levels tested by Miller and Nicely; in all
cases the correlations between human and model data were
significant.
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Figure 2. Correlation of mode identification performancein
noise and human participant data from Miller and Nicely

As a further test of the match between human and model
behavior, we introduced high levels of noise to the second
hidden layer, and tested the model’ s ability to repeat words

(i.e.,, items from the model’s training set) and nonwords
(items from the generalization set). Performance on this task
was evaluated in the same manner as above, viz. Euclidean
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distance. Jefferies, Crisp and Lambon Raph (2006)
demongtrated that patients with phonological impairments
following cerebrovascular accident showed an interaction
between lexicality and delay, such that nonword repetition
was significantly more impaired than word repetition at
longer delays. As can be seen in Figure 3, the model
demonstrates a very similar lexicality effect as unit noise
increases, with lexical items much more resilient to
increasing noise.

—— words-no delay
---&-- words-delay

---®-- nonwords-no delay
—=®— nonwords-delay

Proportion correct
o
(%]

0 0.2 0.4 0.6 0.8 1
SD of noise in hidden2

Figure 3. Model performance as a function of lexicaity and
naming delay.

Discussion

The results from identification in noise demonstrate that
our acoustic representations accurately reflect the structure
of the speech signd: error patternsin the simulations closely
matched those observed in human listeners. At a general
level, place errors were much more common than errors in
voicing, and perception of nasal consonants was very robust
even at high noise levels. At a more fine-grained leve of
detail, the models captured the high degree of confusability
for interdentd and labiodental fricatives, both voiced and
voiceless. Additionaly, the model captured an important
dissociation in misidentification of stop consonants in noise.
Specificaly, for voiced stopsit is/d/ and /g/ which are most
likely to be confused, since listeners rely on the direction of
F2 and F3 transitions, which are rather smilar for these two
segments.  On this basis, then, one might expect a similar
pattern for the voiceless stops, with a high degree of
confusion between /t/ and /k/. However, it is actualy /p/
and /k/ that are more confusable in this case, since the
formants in voiceless stops are excited by low-energy
aspiration noise and thus listeners appear to focus more on
the release burst in identifying these sounds. In the case of
ft/, the release burst is a very strong cue to a coronal POA,
as it is high-energy and high-frequency. For the other two
stops, however, the bursts are not quite as robust and thus it
is the labia and the velar that are more commonly mistaken
for one another when perceived in noise.

Dorsd stream speech processing is a highly complex
behavior, requiring analysis of information a multiple
levels of specificity. At the acoustic level, listeners are
exquisitely sensitive to small variations in the signal (e.g.,
VOT changes on the order of 10s of milliseconds), yet are
able to decode highly degraded signals in which most or al
of these fine-grained cues have been destroyed. At the same
time, speech perception is aso strongly shaped by higher-
level linguistic influences. While the many cues to phonetic
identity are largely independent of meaning, listeners online
processing of the signal is demonstrably affected by their
knowledge of the lexicon.

Further, the speech processing apparatus must fulfill two
main functions. On the one hand, we listen to understand,
and thus speech perception must provide a mapping from
the acoustic signa to semantic representations—the
function of the ventral stream in Hickok and Poeppel’s
model. However, both during linguistic development and in
the adult state, we must also process speech signals in such
away as to be able to produce articulations similar to those
which gaveriseto the input. Animportant question, then, is
a what point in the processing pathway do the cortical
representations diverge?

Unsurprisingly, the answers that have been offered to this
question reflect certain theoretica commitments that lead
different researchers to different conclusions. For instance,
proponents of MT and direct realism propose that this is
smply adistinction without a difference, as the key tenet of
MT is that it is recovery of the underlying articulations that
alows lexical access. In this sense, then, we get the sound
to meaning mapping ‘for free': since the brain has inbuilt
sructure that allows us to know what the spesker intended
to do with their vocal tract, the acquisition of alexicon isto
afirst gpproximation simply a matter of rote memorization.

While MT and its descendants possess a great dea of
intuitive appedl, they face a number of issues at both the
implementational and theoretical levels. For any given
peech waveform, there are an infinite number of voca tract
configurations that could have given rise to the signa—a
relation known as the ‘inverse problem'. The work presented
here does not directly address this issue, as the
preprocessing of the acoustic signal and the provision of
veridical articulatory targets renders the mapping learnable.
Nonetheless, the work spawned by MT has greatly increased
our understanding of the speech processing apparatus, and
the model presented here represents an attempt to reify
many of the insight that this work has provided.

While we believe that this model represents an important
first step toward a mechanistic implementation of recent
theory in the study of speech processing, there obvioudy
remain a number of issues to address. Chief among these is
the addition of lexica/semantic knowledge, which would
permit the exploration of the many interactions between
bottom-up and top-down interaction in speech perception.
Further, while the added noise to the input pattern prevents
the model from learning entirely spesker-specific
information, the results from this word do not directly
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address the rather vexatious question of speaker variability.
In this, however, we are not alone; even the most advanced
commercial automatic speech recognition systems have not
yet achieved the ideal of large-vocabulary speaker-
independent identification.

In future work, we intend to employ the multi-layer
architecture implemented here in order to investigate the
internal representations that arise in layers whose input and
output is impacted more by perception or production. For
instance, the first hidden layer in our model receives direct
input from the acoustic layer, while the second hidden layer
receives a transformed version of this input which it must
use to drive the articulatory output. It is likely that the
internal representations within these layers (investigated
with multivariate tools such as multidimensiona scaling)
reflect the different processng demands associated with
these tasks.
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