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Abstract

Evolutionary simulations of foraging agents, controlled by
artificial neural networks, unexpectedly yielded oscillating
node activations in the networks. The agents had to navigate a
virtual environment to collect food while avoiding predation.
Between generations their neural networks were subjected to
mutations and crossovers in the connection strengths. The
oscillations drastically enhanced the agents’ performance,
which was due primarily to an increased switching efficacy
from approach to avoidance behavior. In this paper we further
analyzed networks from the last generation and found that
oscillations modulated winner-take-all competition. On
average the oscillations had a much higher frequency when an
agent was foraging (i.e., in an appetitive state) than when it
was trying to escape from a predator (i.e., in an aversive
state). We suggest that also in real brains oscillation
frequencies correspond with particular types of action
preparations.
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Competitive

Emerging Oscillations

Insight into the selective pressures that shaped the brain’s
architecture is probably necessary for understanding its
functional mechanisms. The brain, however, does not
fossilize, and there is no fossil record of the brain’s
evolutionary development. Computational simulations may
instead provide a suitable approach to investigate the
evolutionary development of the brain’s functional
architectures. In the simulations discussed here, we
extended earlier work (den Dulk, Heerebout & Phaf, 2003)
on the evolutionary justification of LeDoux’s dual-pathway
model (1996). Agents were controlled by an artificial
network and had to collect plants in a virtual environment
while avoiding predation. We investigated the adaptive
value of recurrent connections to a new layer in the indirect
pathway of this dual-route model (see Figure 1).
Surprisingly, the added layer not only led to a major
increase in the agents’ success, but simultaneously induced
oscillations of activations in the network, which were not
previously observed by den Dulk et al..

LeDoux (1996) suggested that affective stimuli are
processed via two neural pathways running in parallel from
the sensory thalamus to the amygdala. One pathway projects
directly from the sensory thalamus, the other indirectly by
running through the cortex before reaching the amygdala.

The direct pathway is faster and is more coarsely grained
than the indirect pathway. LeDoux gave an evolutionary
justification of the dual-pathway architecture by arguing
that in threatening situations the evolutionary cost of a miss
exceeds the sum of the costs of the many false alarms
produced by the short pathway. When there is more time to
process stimuli extensively, the costs of false alarms may
even be reduced through inhibition of the direct action
tendencies via the long pathway. LeDoux’s formulation in
terms of evolutionary benefits and costs clearly facilitated
the translation into evolutionary simulations.

After one thousand generations of random variation and
selection of the fittest, the agents of den Dulk et al. (2003)
developed networks with dual-processing dynamics
resembling LeDoux’s model. These agents were only found
in simulations when the scents (i.e., the stimulus properties)
of plant and predator were hard to distinguish and the fitness
(i.e., “lifetime” multiplied by the total number of plants
collected) reflected time pressures in escaping from the
predator. Processing in the direct pathway induced fast
avoidance of both predator and plant, whereas slower
indirect processing led to plant approach and facilitated
predator avoidance. The qualitatively different types of
processing in the two pathways were further supported by
lesion studies (of the separate pathways) in the artificial
neural networks.
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Figure 1: Schematic view of the network’s architecture.
After the initial simulations a ‘context layer’ (in gray) was
added, allowing for recurrent processing.

We will first briefly describe the general simulation setup
and its recent extensions (for a comprehensive specification,
see Heerebout & Phaf, 2009). Next, the oscillatory effects of
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the added recurrent connections will be presented, and
analyzed in terms of competitive processes. Finally, we will
argue that positive, appetitive stimuli lead to higher
frequency oscillations than negative, aversive stimuli, and
that these modulate attentional processing by facilitating
disengagement or maintenance of focus, respectively.
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Figure 2: The artificial world with an agent, predators,
and plants. The magnification shows an agent’s network
from the control simulation.

The Simulation Setup in Short

The setup largely followed the simulations of Beer (1990) in
which he used Braitenberg vehicles (Braitenberg, 1984) to
collect plants through chemotaxis. In our virtual
environment the number of plants, ten, was kept constant.
When eaten it would instantly be replaced by a new plant at
a random location. Furthermore, there were six predators
that the agents had to avoid (see Figure 2). Each agent was
equipped with an artificial neural network that processed
input from the agent’s sensors, located at the left and right
front side of the agent’s round body. The sensors detected
the scents emitted by all entities, with quadratically
decreasing intensity with respect to the distance from the
entity. The network produced output to the motor actuators
on both sides of the agent, enabling a tank like propulsion.
The strength of the network’s connections, which were
hereditary, and could only change over generations,
determined the behavior of the agent. For instance, if the
connections from each sensor relayed the sensors’ activation
to the motor actuators on the opposite side, the agent turned
toward the source of the scent. The sensor closest to the
source would detect the scent with greater intensity,
resulting in a greater thrust by the motor actuator on the
opposite side than the thrust on the sensor’s side. In
contrast, if the networks had parallel excitatory connections,
the agent would turn away from the source. In the
simulations of den Dulk et al. (2003) the network processed
the input via feed-forward connections, directly to its two
output nodes and, in parallel, indirectly via hidden nodes.
Plants and predators both emitted mixtures of scent ‘a’ and
scent ‘b’ and only differed with respect to the ratio of the
smell intensities (0.5a and 1.0b for plants vs. 1.0a and 0.5b
for predators). By mixing the scents the information
processing performed by the agent was made more complex.
This allowed for the evolutionary development of an

indirect route that processed the sensors’ information more
elaborate, but slower than the direct route.

The evolutionary process was implemented by a genetic
algorithm (Holland, 1975) which was applied to the weights
of the agents’ network connections. The networks of the
first generation were initialized with small random numbers.
To ensure that both plants and predators would be relevant
to evolutionary development, an agent’s fitness was
measured as the number of collected plants multiplied by
the number of time steps (i.e., the time needed for activation
transfer by a node) the agent managed to evade predators.
All agents were tested twelve times. A high fitness
increased the odds of producing offspring and of remaining
in the population for another generation. Agents selected to
reproduce were copied and recombined into a pair of
offspring. In addition, the offspring connection weights
were mutated slightly. The mutations were drawn from a
Poisson distribution (the average weight change, in absolute
value, was 0.13, with connection weights ranging from -
10.0 to 10.0) ensuring that small mutations were more likely
to occur than large mutations. Some offspring would
outperform others and so increase the probability to pass on
their advantageous hereditary connection weights onto their
offspring. This cycle was repeated for 10,000 generations,
after which the final generation’s networks were analyzed.

An Adaptive Function for Oscillations

In the new simulations of Heerebout and Phaf (2009) a four
node ‘context’ layer was added (see Figure 1). Originally,
we aimed at the development of a working memory capacity
for previously processed stimuli. The activations stemming
from the hidden nodes were sent back in the following time
step, so that previous stimuli, which were kept active in the
context layer, could influence current processing.
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Figure 3: The fitness (in energy units x time steps spent in
the environment) development as a function of generation
(averaged over clusters of 50).

The fitness development for agents with the recurrent
architecture initially resembled that of our control
simulation, which replicated the results of den Dulk et al.
(2003), but showed a sudden jump in fitness around
generation 7500 (see Figure 3). The doubling in fitness (i.e.,
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from about 3000 to 6000) indicated a qualitative change in
the agents’ weight configuration that had a major impact on
their performance. Contrary to our initial expectations, the
jump did not result from the development of some working
memory capacity, but coincided with the emergence of the
oscillations in the agents’ networks (see Figure 4).
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Figure 4: The recorded node activations sorted per layer
when the agent was confronted with a plant (A) and a
predator (B). The plant stimulus caused oscillating
activations. With the predator stimulus the nodes in the
context layer were not activated and the output nodes
reached steady activation levels.

To analyze these results, Heerebout and Phaf (2009) first
averaged the networks of the last-generation agents, which
all showed oscillations. The node activations of the resulting
agent were recorded when confronted with a plant (see
Figure 4a) or with a predator (see Figure 4b), both at 45
degrees left of the agent. With the plant the network showed
steady oscillating activations with a period of two time
steps. Because the context nodes were not activated by the
predator stimulus, avoidance behavior was not modulated
by oscillations. Hence, due to these ‘food oscillations’ the
agent zigzagged toward plants, but, in contrast, followed a
smooth curve when moving away from predators. Instead of
temporarily maintaining  activations, the recurrent
connections between hidden and context layers acted as
oscillation generators.

A core assumption in the evolutionary justification of
LeDoux (1996) is that the dual-pathway architecture enables
a fast switch in behavior as soon as stimuli that are crucial

for survival are detected. Heerebout and Phaf (2009) also
analyzed the agents’ behavior when a food stimulus was
suddenly switched to a predator stimulus. To investigate the
agents’ switching efficacy its translational and rotational
speed were recorded right after a plant was replaced with a
predator (switch condition), and these data were compared
to when there was no stimulus switch (no-switch condition).
The difference in translational speed between switch and
no-switch condition was 5.57 times larger for the oscillating
than for the non-oscillating agent from the last generation of
the control simulation. The difference in rotational speed
was 1.72 times larger for the oscillating agent than for the
non-oscillating agent. In six out of seven replications
oscillating agents emerged with similar increases in
switching efficacy. A new type of dual-processing dynamics
emerged in these simulations. The direct route was no
longer biased towards avoidance, but had a general
energizing function. Without direct activation, approach and
avoidance were distinguished in the indirect route but not
actually performed. These results show that oscillations
have similar effects on switching speed as dual processing,
as postulated by LeDoux, but that the former enhanced
switching efficacy to a much larger degree. The enhanced
ability to reorganize behavior after a threatening stimulus
appears, thus, seems to account for the doubling of fitness.

Oscillations in Competitive Networks

In this study we derived an abstract connection structure
(see Figure 5) from the last-generation agents of Heerebout
and Phaf (2009) in order to investigate the underlying
mechanisms. Negligible weights were set to zero, and nodes
that received no activation due to this elimination of
connections were omitted. The oscillatory mechanism was
superimposed in this scheme on a competitive network with
a winner-take-all function. The enhanced switching ability
due to oscillations may solve one of the major problems of
competitive networks. Such networks can, through a process
of constraint satisfaction, settle in a steady state.
Competitive networks do not, however, possess a
supplementary mechanism to swiftly escape from the steady
state in which they have settled. In order to start a new
process of constraint satisfaction, all the activations in the
network need to be reset to zero by the modeler, or must
have decayed to zero after the stimulus has disappeared. If
the winning state consisted of oscillations, it would,
according to our hypothesis, be able to switch to another
state in the periodically occurring troughs of low, and near-
zero activation.

In the symmetrical connection scheme of Figure 5 (for
reasons of computational parsimony all networks were
symmetrical). Activations were mirrored with respect to
input from node I, and I,,. Activation of Ny, by input node I,
for instance, triggered activation of N,. Positive feedback
from N, to N helped to sustain the activation in both nodes.
The excitatory connection to the inhibitory node NG,
however, implemented a “flip-flop” mechanism and caused
these activations to oscillate. Interestingly, this type of
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recurrent inhibition has also been identified as a neural
oscillation generator by Ritz and Sejnowski (1997; see also
Dupret, Pleydell-Bouverie & Csicsvari, 2008). In addition,
the strong inhibitory crossed connections from N, to Ny and
from Ns to N; caused N; and N, to compete for activation.
When the context nodes N3 and Ny are removed from the
connection scheme, a classical competitive network
remains. The N; and N, nodes compete for activation when
input activation is applied, and the most strongly activated
node keeps a non-zero activation.

1

Figure 5: A schematic model of the network configuration

that generates the oscillations. The ‘I’ nodes provide input

of scent a and scent b. The solid lines with the arrowheads

depict excitatory connections and the dashed lines with the
round endings depict inhibiting connections.

The switching efficacy of the oscillatory network is
shown by comparing its performance on a switching task
with the performance of a non-oscillatory competitive
network (see Figure 6). The artificial input consisted of a
steadily increasing signal for the input node I,, which was
abruptly replaced by a strong signal for the I, input node
(see upper panel (A) of Figure 6). Panels B and C show the
ensuing activations of the nodes Nj, N,, N3, and N, of the
non-oscillatory and oscillatory competitive networks,
respectively. The non-oscillatory network is unable to
overcome the winner-take-all mechanism and remains stuck.
The oscillatory network, however, smoothly switched in a
few time steps due to the inhibitory pulses from node Nj
which caused the intermittent deactivation of node N, and
provided an opportunity for N, to become activated.

Stimulus-specific Oscillation Frequency

According to LeDoux (1990) activation via the faster, more
coarsely grained, direct pathway is biased to invoke an
aversive response, because the costs of hesitation are higher
when confronted with a threat than with food. We wondered
whether a similar bias towards attending negative stimuli
might be found in the oscillating networks. When a predator
approaches there is little need to switch attention to other
stimuli. A plant stimulus, on the other hand, should induce
high frequencies so that the agent can switch its behavior

rapidly if it should suddenly encounter a predator. Thus, we
would expect to find higher oscillation frequencies for
foraging agents than for fleeing agents.
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Figure 6: The input activations to both networks (A),
activations in the non-oscillatory network (B), and in the
oscillatory network (C). The scale of the x-axis (time
steps) and the y-axis (activation) is the same for the three
panels.

To investigate stimulus-specific oscillations, we here
further replicated the simulations with the recurrent
connections 32 times. These were exact replications of the
previous simulations by Heerebout and Phaf (2009), but
new pseudo-random numbers were of course used in the
stochastic decisions (e.g., the weight mutations). Although
the initial chance of the evolutionary ‘discovery’ of
oscillations may not be very high, we expected the trait
would prosper once one individual had acquired it.
Therefore, the replications were allowed to continue for
20.000 generations.

We found 438 agents with oscillating networks in the last
generation of 27 out of 32 simulations. The oscillation
frequencies, both with food and predator stimuli, ranged
from zero to 0.5 time step (frequency was measured as the
inverse of the number of time steps in a complete activation
cycle; periods ranged from infinite, 6, 5, 4, 3 to 2 time
steps). Some (n = 347) networks oscillated both with plant

1021



and predator, sometimes with different frequencies, whereas
62 networks showed only plant oscillations and 29 networks
showed only predator oscillations. The presence of
oscillations had a clear effect on the agents’ fitness. The
oscillating agents (n = 438; average fitness = 20,112; SD =
17,833 energy x time step) reached significantly higher
levels of fitness (F(1,546) = 7.67; p < 0.01, n,,z = 0.014)
than the non-oscillating agents (n = 110; average fitness =
15,220; SD = 12,493 energy x time step).

Over the total 548 agents the average frequency was
significantly higher (F(1,547) = 25.27, p < 0.0001, iyp2 =
0.044) when an agent detected a plant (f = 0.22, SD = 0.19
time step’) than when an agent detected a predator (f =
0.18; SD = 0.17 time step”). The frequency difference
between stimulus types supports the conclusion that
oscillations increase the agents’ ability to switch behaviors,
and that the difference arises from the differential
environmental demands posed by food and predators.

Neural Oscillations

In contrast to Heerebout and Phaf (2009), Borgers, Epstein
and Kopell (2005) reasoned on the basis of their (non-
evolutionary) simulations that oscillations suppressed
distracters and thus enhanced, inhibition and competition.
We argued that the main function of these neural
oscillations is to provide an organism with the ability to
switch effectively from one type of behavior to another.
Processing in an oscillating network is never completely
fixed to one type and it does not take much change of input
to tip over to another type. Our simulations show that this
ability is highly adaptive in realistic environmental
conditions when sudden switches are sometimes required.
Competitive neural processing has been hypothesized to
play a crucial role in attention (i.e., biased competition;
Duncan, 1996; see also Phaf, van der Heijden, & Hudson,
1990). Competition and oscillation appear to have
complementary functions with regard to attention. The main
function of competition may be to direct attention towards a
particular stimulus object, whereas oscillations come into
play when attention has to be disengaged and redirected to a
new stimulus object.

Due to the high level of abstraction of our model, the
oscillations cannot be directly be associated with specific
frequency bands found in biological neural networks.
However, the proposed function of the emerging oscillations
may provide important clues. Several roles have been
proposed for the oscillations in different areas of the
mammalian brain. These possible functions include the
binding of cell assemblies (Gray, Konig, Engel & Singer,
1989), input selection (Hutcheon & Yarom, 2000),
representation by phase information (Buzsdki & Draghun,
2004), selective amplification (Lengyel, Huhn & Erdi,
2005) and sequence learning (Ulanovsky & Moss, 2007).
The enhanced capability to organize behaviour in response
to specific stimuli of the agents in our simulations
corresponds with the suggestion of Schaefer, Angelo, Spors,
and Margrie (2006) who argued that oscillations serve to

discriminate between stimuli. According to Fries, Nikolic,
and Singer (2007) stimuli can be distinguished because the
interaction between excitatory pyramidal neurons and
inhibitory interneurons results in a time critical competition.
Only the few pyramidal cells that are able to spike
sufficiently early in the oscillation cycle, are able to spike at
all. In this manner the weaker cells are suppressed (see also
Brody & Hopfield, 2003, who showed that simple
oscillating  network models implemented sensory
segmentation). Fries et al. (2007) tie this winner-take-all
mechanism specifically to oscillations with frequencies in
the gamma band (20-70 Hz). Because the mechanism
closely resembles the flip-flop mechanism we encountered
in the agents’ networks both in structure and in function,
gamma oscillations thus seem a likely candidate for the
oscillations we obtained. Similar to the stimulus dependency
of the frequencies in our simulations, the frequency of
actual gamma oscillations also appears to depend on the
state of the organism (Dupret et al., 2008).

The sensorimotor role of gamma oscillations is, moreover
supported by a study of Rougeul-Buser and Buser (1997).
They observed 40 Hz oscillations in the motor, parietal, and
visual cortices when a cat was waiting in front of a hole in
the wall from which at times a mouse could pop out and
then quickly disappear. When the cat was simply watching
the mouse in a perspex box, however, lower frequencies of
10-15 Hz showed up. We would argue that the cat in the
former situation has prepared itself to quickly switch from
immobility to vigorous attack, whereas in the latter
situation, where the cat cannot reach the mouse, both the
need for this preparation and the corresponding oscillation
frequency may be lower.

Frequency Reflects Affective and Motivational
State

Specific stimuli have acquired their positive value, because
they generally raised fitness levels throughout evolutionary
history (Johnston, 2003). Inversely, negative stimuli are
characterized by their recurrent potential to lower fitness.
Also appetitive, approach, and aversive, avoidance,
tendencies have likely developed in evolution to maximize
fitness benefits and to minimize fitness costs, respectively.
Such action tendencies at least emerged from the
undifferentiated initial networks in our simulations as a
response to fitness-relevant stimuli. Fitness costs are
minimized by a focusing of attention on the negative
stimulus and low distractibility. Fitness benefits are
maximized by an approach to all positive stimuli and a high
level of distractibility by negative stimuli. The level of
distractibility in our simulations corresponded to oscillation
frequency. On average, oscillations had a higher frequency
when the agent was foraging than when it was trying to
escape from a predator. We suggest that a specific
oscillation frequency sets the network in a suitable
attentional mode to deal with affectively valenced stimuli.
The neural architectures resulting from these simulations,
and the mechanisms they implement (i.e., competition and
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oscillations), are also likely to have evolved in biological
neural networks. The genetic algorithm produced them
under environmental conditions that also applied to much of
our evolutionary history. Empirical research, moreover,
supports the role of competition (e.g., Duncan, 1996) and of
neural oscillations (e.g., Rougeul-Buser & Buser, 1997) in
attention. Recent advances in human experimental
psychology have also revealed similar modulatory
influences of motivational (e.g., Forster, Friedman, Ozelsel
& Denzler, 2006) and affective state (e.g., Gasper & Clore,
2002; Rowe, Hirsh & Anderson, 2007) on the breadth of
attention. The present simulation results integrate these
different viewpoints by suggesting that high oscillation
frequencies are elicited by positive, appetitive, stimuli and
lower frequencies by negative, aversive, stimuli and that the
latter help to sustain attentional focus, whereas the former
facilitate attentional disengagement.

Conclusion

This study illustrates the productive capacity of
evolutionary simulations. The model was not built by the
modeler but by the simulated evolutionary process. The
solutions produced by the genetic algorithms are
unpredictable, but generally have much higher fitness levels
than the initial configurations. Novel models with
unexpected mechanisms and functions may emerge from
these undirected optimization procedures. The simulations
thus contradict the often heard prejudice that with neural
modeling you get what you put into the model. Evolutionary
computation adds automatic model production to the tools
of the model builder, and ensures the emergence of the most
biologically plausible models within the available search
space.
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