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Abstract

For statistical learning to aid in language learning, learners
must resolve statistical information along multiple dimensions
of the same linguistic signal. Given that infants show
evidence of lexical knowledge while they are still learning
how to categorize speech, infant learners are likely presented
with at least two statistical learning problems simultaneously.
In an effort to approximate this scenario, we presented adult
participants with multiple exemplars of sounds from 4
experimenter-defined categories. These sounds were novel
and thus, adult have not developed specialized processing for
these sounds. Stimuli were presented in a regular, continuous
stream containing statistical structure between sound-category
types with variable exemplars (i.e. pairs of sound categories
but with variable exemplars of each category presented
instead of just one). Participants were tested for familiarity
with high probability pairs. We found that participants can
learn from statistical structure based on varying exemplars of
novel sounds but they learn based on the perceptual grouping
biases that they bring into the experiment and not based on
the experimenter-defined categories (groupings they would
have to form ad hoc in the experiment). We discuss these
results in relation to language learning.
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Introduction

Throughout development, humans are highly sensitive to
statistical regularities in the environment. From these
regularities, it is possible to learn a large amount about the
structure of the world without explicit feedback or innate
knowledge. Statistical learning has been intensely studied
in relation to one of the most formidable tasks that humans
face: learning language. It has been established that
statistical information can aid infants in many aspects of
language development including speech categorization,
lexical development, and syntactic processing, even in the
first year of life (see Thiessen & Saffran, 2007 for a review).

For a colloquial example, take the phrase “pretty baby”
(Saffran, Newport, & Aslin, 1996) which would typically be
produced as a continuous utterance /prl’tibel’bi/. In the
ambient language, the transitional probabilities (as well as
co-occurrence frequency) are higher within syllables of
words than between the syllables at the boundaries of
words. Not only have infants have been shown to be
sensitive to these transitional probabilities as early as 2-
months of age (Kirkham, Slemmer, & Johnson, 2002),
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syllables linked by high transitional probability are more
likely to be used as lexical labels (Graf-Estes, Evans,
Alibali, & Saffran, 2007). Thus, it is thought that this
learning ability is likely to contribute to lexical
development, characterized in part by the word explosion
beginning around 14-months (Thiessen & Saffran, 2007).

However, in the infant's acoustic environment, these
transitional probabilities are necessarily accumulated over
many, many instances of hearing different productions of
the same continuous utterance (e.g. "pretty baby" or
/prI’tibel’bi/). Across these utterances, there is a large
amount of acoustic variability that functionally belong to the
same speech category.' This variation is thought to be dealt
with through the process of speech categorization. However,
even though infants in the first year begin to preferentially
discriminate the acoustic contrasts employed in their
ambient language (Werker & Tees, 1984), the solidification
of speech categories continues well beyond infancy (e.g.
Hazan & Barrett, 2000).

Thus, the process of speech categorization has a largely
overlapping developmental time-course to statistical
learning of transitional probabilities and the early stages of
language learning. In order for infants to learn words based
on the statistical information in their ambient language, they
are likely presented with at least two statistical problems
simultaneously: infants have to learn that syllables cohere to
form a word while simultaneously resolving that the many
variable productions are functionally equivalent in their
native language.

In previous studies examining statistical learning of
transitional probabilities, participants are exposed to a
corpus that consists of acoustically identical repetitions of
sounds. This is markedly different from the multiple
varying productions as exist in infants’ early language
experience. In these experiments, stable physical properties
across multiple presentations eliminates the problem of
categorization across multiple, varying productions of
speech. Likewise in adulthood, speech processing is largely
robust to variations across speech productions.

! There are many other sources of information that vary across
productions, including contextual information, visual environment,
and interaction with the caregiver, all of which have been shown to
modify cognitive processing in infancy and later in development
and thus will alter the informational content of each utterance.



In an attempt to approximate the task facing an infant
attempting to form lexical knowledge while lacking
completed speech categorization, the current experiments
investigate statistical learning using multiple, varying
exemplars of novel, complex sound categories in adults. The
stimuli were adapted from the training study of Wade and
Holt (2005) which employed a video game paradigm to
implicitly train listeners to learn categories of novel,
spectrotemporally complex non-speech stimuli. These
sounds are carefully designed to capture some of the
spectral complexities that exist within natural speech
categories without sounding speech-like. For current
purposes, it is essential to note that adult participants have
not heard these sounds before nor have they undergone any
experiences that would result in the formation of functional
categorization of these sounds.

In the current experiments, we employed the 4
experimenter-defined sound categories from Wade and Holt
(2005) and grouped these sound categories into pairs (i.e.
pairs of sound categories were linked by high transitional
probability). We presented 6 different exemplars of these
novel sounds. Thus, participants have to group sounds
across multiple productions in order for the transitional
probabilities to be reliable. This is similar to what an infant
faces when learning transitional probabilities without fully
developed functional sound categories.
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Figure 1: Schematic diagram of the spectrotemporal

properties of the stimuli employed in all experiments. Each
sound has two components: P1 (constant over all stimuli in
a category) and P2 (varies for each stimulus).
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Experiment 0: Naive Perceptual Biases

Adapted from Wade and Holt (2005), six stimuli from
each of four experimenter-defined categories were used. All
sounds were designed to have two spectral peaks, P1 and P2
with both steady-state and gradually changing portions,
similar to syllables containing a vowel and a semivowel or
liquid, (for a schematic diagram of the four categories of
stimuli, see Figure 1).

The two “Easy” categories comprise stimuli that begin
with a steady state period and then either rise or fall. These
were designed to be easy to learn because they are reliably
discriminable by the direction of the transition period. The
two “Hard” categories begin with a transition, followed by a
steady state. Note that stimuli from both Hard categories
should, therefore, be highly discriminable from the Easy
stimuli. The contrastive cue that distinguishes Hard
categories is the onset frequency of the transition period.
Both contain rising and falling frequency patterns and
completely overlap in their steady-state frequencies, and
thus, only a higher-order interaction between these two cues
creates a perceptual space in which the two hard categories
are discriminable (see Wade & Holt, 2005 for a
comprehensive discussion and http://www.psy.cmu.edu/
~lholt/php/gallery irfbats.php to hear the sounds).

Because the stimuli and experimenter-defined categories
are spectrotemporally complex and completely novel to
participants, two consequences follow: 1) participants do
not have specialized processing for these sounds like they
do with speech processing. Therefore, we believe there is no
a priori categorical perception of these stimuli (see Wade &
Holt, 2005). 2) However, it is unlikely that experimenter-
defined categories will be perceived to be equally distinct.
To investigate the perceptual biases participants bring to the
learning tasks, we asked naive participants to perform a
perceptual similarity judgment.

Methods

Participants 28 students participated in the current study.
All participants reported in this paper were undergraduates
at Cornell University who participated in exchange for
course credit. Participants were asked to report any
auditory, visual, or neurological deficits via post-
experimental questionnaire; no participants reported any
such deficits.

Stimulus presentation All sounds were presented using
over-the-ear headphones (Sony MDR-V150) at a
comfortable, above-threshold volume. Instructions and
stimuli were presented using PsyScope X B53 on MacMini
computers. During sound presentation, participants
observed blank, white screens on 17in CRT monitors. All
sounds were presented for 300ms. Each trial began and
ended with 500ms of silence and the two sounds were
presented separated by a pause of 500ms.



Similarity Judgment After hearing both sounds,
participants were asked to report how similar the sounds
were on a scale of 1 to 4 (1 = the same and 4 = completely
different) on a keyboard. Participants were given an
unlimited amount of time to make their responses.

For practical purposes it was necessary to limit the
number of trials by partitioning the full set of 24 exemplars
(6 from each of the 4 categories) into two subsets; one
subset contained exemplars 1, 3, 5 from each category and
the other subset contained exemplars 2, 4, 6. Half the
participants performed similarity judgment on one subset,
the other half on the other subset.

Results and Discussion

Similarity for each stimulus pair was computed for each
participant. Similarity judgments for each contrast were
analyzed directly in a one-way ANOVAs with subject (F,)
as a random factor (F,(1,27) = 1982.1, p < 0.0005) revealing
contrast (E1-E1, E1-E2, E1-HI1, E1-H2, etc.) as a significant
variable: F,(9,243)= 58.92, p < 0.0005. Within category
judgments were smallest, indicating the most similar
judgments, for E1 and E2 judgments (1.45 and 1.53
respectively) and larger for H1 and H2 judgments (2.23 and
2.20 respectively) with a significant main effect of category
in an ANOVA (F(3,81) =24.42, p < 0.0005). These results
reveal within category cohesion for both Easy categories
indicating that they are “perceptually grouped” naively.

Both our graphical results (Figure 2) and the statistical
analyses indicate that E1-E1 and E2-E2 exemplars are rated
more similarly than any other exemplar comparison.
However, participants do not rate HI-HI or H2-H2
exemplar pairs more similarly than they do H1-H2 pairs
suggesting that they do not treat H1 and H2 as two separate
groups but as one single “perceptual group” separate from
El and E2.

E2
0 _ E2
- 2 5
o EE
s S| HR12
5 E1
: S| Ex
£
“ o E1E1 H2
0 |
T E1 Ho
o
' H2
o |

-15 10 -05 0.0 0.5 1.0 1.5
Dimension1

Figure 2: Perceptual Distance between all stimuli for all
subjects. Similarity judgments were entered into MDS
analysis with two dimensions.

Experiment 1: Statistical Learning Using
Multiple Auditory Exemplars

After establishing the perceptual biases and groupings that
participants bring to the corpus of sounds, we presented a
new group of participants with the sounds in a continuous
stream with statistical structure (i.e. pairs) defined over
sound category (e.g. E1-H2). Critically, we presented one
exemplar of an El1 sound of which there are 6 and one
exemplar of an H2 sound, of which there are also 6. In
other words, multiple exemplars from each sound category
are presented.

In the current paradigm, statistical learning can take place
based on specific exemplars (e.g. E1 _1-H2 5 vs. E1 1-H2-
2), consistent with previous findings, or over groups of
multiple exemplars of sounds (e.g. E1-H2). We didn’t
anticipate that participants would learn based on the
individual exemplars (of which there are 24), two specific
exemplars (e.g. E1 1-H2-2) are only presented together
twice during the entire familiarization stream. Thus, we
focused our analyses on how learning takes place across
groups of sounds.

Although the corpus we employed has four categories of
sounds constructed a priori (see Introduction), results from
Experiment 0 indicate that naive participants do not equally
distinguish all 4 categories of sounds. Thus, if participants
are able to learn across multiple exemplars of sounds, it is
possible that they could learn based on different perceptual
groupings of stimuli. Specifically, we examined whether
the pattern of behavioral results is consistent with
participants learning based on different levels of perceptual
grouping:

1) Four groups of sounds (E1, E2, H1, H2) based on the
four experimenter-defined categories, but not distinguished
by naive participants;
2) Three groups of sounds (E1, E2, H) as seen in the naive
perceptual groupings. Thus exemplars of E1 and E2 sounds
would be grouped separately and the two Hard categories
(H1 and H2) would be treated as distinct from the two Easy
categories but being indistinguishable from each other.
3) Two groups only (E, H) with the Easy categories (E1
and E2) being perceived as a single group and the Hard
categories (H1 and H2) being perceived as a second group.
Based on how participants group the different exemplars
(perceptual grouping) as well as the sound-pair assignment
(discussed below), we made specific predictions as to
whether or not participants would be able to demonstrate
learning at test (see the table in Figure 4 for a summary of
these predictions).

Methods

Participants 45 participants were recruited for this
experiment. One participant was excluded for failing to
complete the entire experiment.

Sound-Pair Assignment For each participant, the four
categories are grouped into two pairs (e.g. E1-H2, H1-E2).
We will refer to this as a sound-pair assignment.



Familiarization Each sound was presented for 300ms with
a 115ms inter-stimulus interval (ISI) for a 415 stimulus
onset asynchrony (SOA). All the exemplars from each
category are paired with all other exemplars from the paired
category of sounds twice resulting in a familiarization
stream of 648 pairs of sounds constructed from 24 different
exemplars from the four categories of sounds presented in
randomized order (see Figure 3, top row).

Cover Task In order to encourage participants to pay
attention to the familiarization stream without explicitly
asking them to track the relationships between sounds heard,
a cover task was employed which consisted of participants
detecting ‘soft’ sounds by pressing the SPACE bar. A
sound attenuated version of each exemplar was added into
the familiarization six times resulting in 144 ‘soft’ sounds
out of the 1296 sounds presented. These were incorporated
into the familiarization stream and thus did not disrupt the
statistical structure of the stream. Participants were
instructed that they would hear a stream of sounds and to
press the SPACE bar when they heard the stream get
quieter. They were also told that the task would last 7
minutes. Button presses within 1.6 seconds of presentation
of the soft sound were considered a correct response.

Test for Statistical Learning After familiarization,
participants were given a self-timed break and then told that
they would be presented with two pairs of sounds separated
by a long pause (1000ms) and after hearing both, they
would be asked to report which pair of sounds is more
familiar based on their previous task. They used the ‘g’ and
‘h> keys to indicate which pair was more familiar. They
were also told that no new sounds are being introduced and
encouraged to go with their intuition or 'gut instinct’. The
responses were self-timed.

Participants were given 48 test trials. In each trial, one
pair was composed of two exemplars consistent with those
in familiarization and the other was a foil that violated the
statistical structure from familiarization. Foils were
constructed based on the 4 experimenter-defined sound

categories: if pair 1 is AB and pair 2 is CD then the foils are
CA and DB. All exemplars were heard and each pair was
paired with each foil an equal number of times and
counterbalanced order.

Perceptual Similarity Judgment After completion of the
SL test, participants were asked to perform a perceptual
similarity judgment, as described in Experiment 0.

Results

Cover task results Participants responded correctly to the
‘soft’ sound with an average of 76% accuracy. We didn’t
exclude any participants based on Cover Task performance.

Perceptual Similarity Judgments: We did the same
analyses on the perceptual similarity judgments as in
Experiment 0 and found identical results indicating that
participants have a stable perceptual bias in relation to the
corpus of sounds throughout the experiment. An ANOVA
with subject as a random factor (F;) revealed a significant
effect of category comparison (F, (9,387) = 65.13, p <
0.0005; F(1,43) = 2501.1, p < 0.0005) with the lowest
average judgments for within E1 and within E2 trials (1.39
and 1.61 respectively). Within H1 and H2 trials were on
average much greater (2.08 and 2.09 respectively). Within
category comparisons also yielded a significant effect of
category (F,(3,129) =25.93, p < 0.0005).

Discrimination at test We first examined behavioral
responses for evidence of learning for all participants
together, regardless of which sound-pair assignment. When
evaluated against chance performance (24 out of 48 or 50%
performance), we find that overall, participants were able to
reliably distinguish the category pairs heard during
familiarization from foils: mean performance = 27.93, std =
6.65,1(43) =3.93, p <0.001.

Transitional Probabilities in Familiarization and at
Test The experimental organization of the four categories of
sounds creates an a priori set of transitional probabilities
which are higher within pairs of sound categories (100% or
1.0 transitional probability within pairs) than between pairs.

Pairs by Perceptual
Grouping

Sample Familiarization Stream
With Transitional Probabilities

Exp. 1
Foils

Exp. 2
Foils

El -
E2 — H2

El H2 E2 E2 E2 H2

E2 — E1
H2 -

El — H2
E2 —

El—H
E2 - H

E2 — E1
H-H

El—H
E2 - H

E —-E
H-H

E—H
E—H

Figure 3: Differences in transitional probabilities and foils for both Experiment 1 and 2 across the 3 levels of perceptual
grouping: E1, E2, H1, H2 (experimenter-defined categories); E1, E2, H (naive perceptual groupings), and E vs. H (minimal

naive groupings).
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However, because the statistics are defined at the level of
category rather than exemplar, the statistical information
could differ from the experimental design is participants’
groupings differ from the a priori categories. Figure 3
illustrates how different perceptual groupings of multiple
exemplars change transitional probabilities during
familiarization and how different perceptual groupings will
change transitional probabilities of the foils at test.

Using the transitional probabilities during familiarization
and of the foils, we made predictions for the test conditions.
Specifically, if the transitional probabilities between pairs
are 1.0 during familiarization”> and the transitional
probability of the foils averaged less than the transitional
probabilities between pairs during familiarization (i.e., less
than 0.5), we predicted above-chance performance in
discriminating learned pairs from foils. A summary of
predictions is presented in Figure 4.

Analysis based on Sound-Pair Assignments Next, we
divided participants into three subgroups based on sound-
pair assignment. All possible sound-pair assignments were
used in the experiments equally often. However, as seen in
both the perceptual judgment of naive participants and
participants who have undergone familiarization, the
perceptual space is not homogenously parsed for all
categories. Thus, not all sound-pair assignments (which
differ across participants) are equivalent. For the purposes
of defining subgroups we equated both Easy and Hard
categories and defined three subgroups as follows:

Sound-Pair Assignment 1 participants who had both
Easy categories assigned to one pair and the two Hard
categories assigned to the other (i.e. EE, HH).

Sound-Pair Assignment 2 participants who had Easy and
Hard categories mixed between pairs but in consistent
ordinal position in both pairs (i.e. EH, EH or HE, HE)

Sound-Pair Assignment 3 participants who had Easy and
Hard categories mixed between pairs in different ordinal
position (i.e. HE EH).

A one-way ANOVA revealed a significant effect of
Sound-Pair Assignment (F(2, 41) = 7.71, p = 0.001).
Performance for each group (see Figure 4): S-P Assign. 1
and S-P_Assign. 2 reliably discriminated correct pairs from
foils (S-P Assign. 1: mean = 28.5, std = 7.06, t(13) =2.37, p
< 0.05; S-P Assign. 2: mean = 31.8, std = 5.83, t(14) =5.18,
p < 0.001) whereas participants in S-P_Assign. 3 failed to
discriminate correct pairs from foils: mean = 23.53, std =
4.27, t(14) = -0.423, p > 0.5. Thus, we find differences in
the ability of participants to distinguish foils from pairs
depending on Sound-Pair Assignment. Comparing this
pattern of results to our predictions (Figure 4), we find
evidence that participants learned across multiple sound
exemplars based on the perceptual groupings that they had
prior to the experiment (results from Exp. 0).

% This is true in all cases except for perceptual grouping of less
than 4 groups for the third Sound-Pair Assignment possibility.
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Discussion

These results indicate statistical learning is possible
across multiple exemplars of sounds from novel, complex
categories. However, in order to accomplish this,
participants relied on the perceptual groupings of these
sounds that they bring into the task as demonstrated by the
large effect of Sound-Pair Assignment. Our predictions,
based on transitional probabilities during familiarization and
at test, predict test performance across Sound-Pair
Assignment only with the assumption that participants
group the sound exemplars according to their initial
perceptual biases and not according to either the
experiment-defined categories or according to a two-way
discrimination of Easy and Hard categories (perceptual
grouping of E1, E2, and H; see Figures 3 and 4).

Experiment 2: Changing the Foils

We presented evidence in Experiment 1 that participants
are able to learn statistical structure of novel, complex
auditory categories and they learn based on their naive
perceptual groupings. In the current experiment, we change
the foils that we employ at test to produce different
predictions for learning across Sound-Pair Assignments (see
Figure 4), thereby allowing us to further test our assumption
that participant learn over multiple sound exemplars based
on their naive perceptual groupings of the stimuli.

Methods

40 participants were recruited. Methods were the same as
Experiment 1 with the exception of the foils: if pairs are AB
and CD (with A — D being the 4 categories of sounds), the
foils in the current experiment were AD and CB (cf CA and
DB in Experiment 1; shown in the last column in Figure 3).

Results and Discussion

Cover task results: Participants responded correctly to
the ‘soft’ sound with an average of 73% accuracy.

Perceptual similarity results: As in Experiments 0 and
1, an ANOVA with subject as a random factor (F,) revealed
a significant effect of category comparison (F, (9,351) =
46.73, p < 0.0005; F, (1,39)=2305.6, p < 0.0005) with the
lowest average judgments for within E1 and within E2 trials
(1.45 and 1.65 respectively). Within H1 and H2 trials were
on average much greater (2.30 and 2.23 respectively).
Within category comparisons also yielded a significant
effect of category (F, (3,117) =40.44, p < 0.0005).

Statistical learning results: Overall, participants show
ability to correctly discriminated pairs from foils (mean =
26.4, std = 4.63, t(39) = 3.31, p < 0.01), however, as in
Experiment 1, performance was not uniform across Sound-
Pair assignment (F(2,39) = 546, p < 0.01). Unlike
Experiment 1, we find reliable evidence for in S-P Assign. 1
(mean = 29.54, std = 4.63, t(12) = 4.31, p = 0.01; S-P
Assign.2: mean = 24.54, std = 3.23, t(13) = 0.601, p > 0.5;
S-P_Assign.3: mean = 25.29, std = 4.50, t(3) = 1.07, p >
0.25).
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of whether or not we
predict discrimination of pairs from foils based on both the
transitional probabilities during familiarization and at test.

General Discussion

We find that adult participants can learn statistical
structure using multiple exemplars from novel, complex
auditory categories. Further, we demonstrate that in learning
across multiple, varying exemplars, participants use the
perceptual groupings available to naive listeners rather than
experimenter-defined categories.

To our knowledge, this is the first example of learning
using multiple exemplars of auditory stimuli in a statistical
learning paradigm. Two previous studies have used varying
exemplars of visual scenes (Brady & Oliva, 2008) and
human action (Loucks & Baldwin, in press). However,
participants have had considerable exposure to the
categories from which the variable stimuli are derived (e.g.
kitchen scenes employed by Brady & Oliva, 2008), so there
would be little doubt that participants would group these
stimuli into the experimenter-defined categories before the
experiment.

By contrast, participants in the current study have not had
previous experience with the corpus of stimuli and thus have
not established categorical perception of the stimuli. They
do, however, have perceptual biases as determined in
Experiment 0. Moreover, participants maintain their naive
perceptual groupings throughout the experiment. Both
Experiments 1 and 2 demonstrate that participants rely on
these groupings to learn from the transitional probabilities.
Our results provide evidence that, in adults, categorical
knowledge of sounds is not needed in order to learn across
varying exemplars. Instead, non-categorical perceptual
biases can be used to learn environmental structure (based
on transitional probabilities).

To sum, we find that participants can learn based on
transitional probabilities of varying exemplars for which
they have no a priori sound categorization ability. This is a
comparable task to that faced by infants in the first year of
life: having to simultaneously resolve the variation in
speech production and learn to segment chunks of highly
coherent speech in the speech stream. We believe that the
current results provide initial insight into how infants are
able to learn their first words while forming their speech
categories.
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