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Abstract

Studies have shown a positive priming effect with a short time
between the prime and the target. The prime increases the
performance on the target if they are congruent and decreases
the performance when they are incongruent. Paradoxically, a
negative priming effect has been found with a long time between
the prime and the target. A major hypothesis argues that the
prime initiates a motor self-inhibitory process that causes these
effects. This hypothesis has been criticized and the model based
on this hypothesis does not fit human data. A model was
developed that fits the human data. It depends on attentional
neuro-modulation not motor self-inhibition.

Keywords: Masked priming; Negative congruency effect;
modelling; attention; conflict.

Introduction

In masked priming tasks, a brief masked stimulus (the
prime) can affect the processing of the stimulus that follows
(the target). A prime, a mask, and a target are presented
sequentially and the task is to make a decision on the target.
The result is usually a Positive Congruency Effect (PCE),
also known as the positive compatibility effect. In PCE, the
prime increases the performance on the target if they are
congruent and decreases the performance if they are
incongruent (Dehaene et al.,, 1998; Schlaghecken & Eimer,
2000). Conversely, a negative priming effect has been
found, called the Negative Congruency Effect (NCE). This
effect is also known as the negative compatibility effect,
where paradoxically the prime increases the performance on
the target if they are incongruent and decreases the
performance if they are congruent (e.g., Schlaghecken &
Eimer, 2000, 2002; Eimer & Schlaghecken, 1998;
Jaskowski & Slosarek, 2006). The PCE has been shown
with a short mask-target Stimulus Onset Asynchrony
(SOA), while the NCE has been shown mainly with a longer
mask-target SOA (e.g., 100 ms). To explain these results,
some researchers (Schlaghecken & Eimer, 2000; Bowman
et al, 2006), based on Event Related Potential (ERP)
measurements and computational modelling, argue that
when SOA is short, response selection can already take
place during the initial response activation phase; this is
reflected as an early increase in ERP for the congruent
compared to incongruent trials, and this should result in the
congruency effects in the form of a PCE. When SOA is
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longer, responses have to be selected during the subsequent
inhibitory phase. This is reflected as a late decrease in ERP
for congruent compared to incongruent trials, and this
should be demonstrated as a negative effect (i.e., NCE). In
these studies, the reduction in ERP activity has been
attributed to a motor self-inhibition, causing the NCE effect.
The mask causes this inhibition to be reversed, by removing
the sensory evidence for the corresponding response and
initiating its suppression.

The previous model of PCE and NCE (Bowman et al,,
2006) depends on motor self-inhibition and does not show a
decline in NCE and overall Reaction Times (RTs) through
time and shows a huge PCE eventually at very long SOAs.
However, human data shows that NCE decreases and
disappears or turns into a very small PCE at very long
SOAs. The current model does show these effects and does
not depend on motor self-inhibition, but it works through
attentional modulation driven by conflict. The same model
that shows the PCE with strong prime and target and NCE
with weak prime and target, without any changes in the
parameters, shows a PCE at short mask-target SOA and an
NCE at long mask-target SOA. It also shows the effect of
other factors such as degradation (Schlaghecken & Eimer,
2002), mask density (Eimer & Schlaghecken, 2002), and
prime duration (Eimer & Schlaghecken, 2002). The model
is based on previous models that have been used to simulate
different tasks such as target detection and simple decisions
in monkeys and humans (Gilzenrat et al., 2002; Usher &
Davelaar, 2002; Nieuwenhuis, et al., 2005).

The Current Model

Modeling methods. The processing elements in the model
are a few neurons with self-excitation, lateral inhibition, and
accumulative activation that have a strong computational
power in simulating basic neural and cognitive processes
(e.9., Usher & Davelaar, 2002; Gilzenrat et al., 2002). It has
been demonstrated that these types of reduced models can
resemble the neural computation of a large group of neurons
(e.g., Wong & Wang, 2006).

The model (Figure 1) is a multi-layer dynamic neural
model that consists of a feed-forward component for
perceptuo-motor processing from the Input Layer (IL) to an
intermediate layer, called Representation Layer (RL), and
from there to the Cognitive Layer (CL) and Motor Layer



(ML, not shown in Figure 1). An assumption is that the
cognitive processing, including the response, is modulated
by attention. The Alert Attention layer (AA) simulates
attentional modulation, that is supposed to be a model of
Locus Coeruleus (LC) that potentiates cortical areas through
norepinephrine  (Aston-Jones & Cohen, 2005). The
executive attention is only modelled through its effects on
AA, using a Cognitive Layer (henceforth, CL) for conflict
monitoring. The CL effect on AA simulates direct cortical
projections to LC (Aston-Jones & Cohen, 2005). The CL
and ML are affected by both prime and target. The ML is
not shown in Figure 1 for the sake of simplicity, but its
architecture is identical to CL, with the exception that it
sends no outputs to AA, is slower, and noisier (see Table 1).
Each condition in a simulation consists of 20,000 trials (200
independent blocks of 100 trials each, with congruent and
incongruent trials counterbalanced randomly within each
block). A single trial takes 1100 cycles. Each block starts
with 500 cycles without changes in IL to let the units in
other layers reach a steady state of activation. Similarly the
Inter-Trial Interval (ITI) for each trial is 500 cycles, which
allows the activation of units to return to baseline following
the responses. The prime is presented by clamping one of
the two units in the IL to 1, intended to be smaller or larger
than five, or left or right in the case of arrows. The mask
units in IL are set to 1 at the time of mask presentation and
are otherwise set to 0. Therefore, the recognition of the
stimuli is implemented with a localized representation, for
example, the left unit is turned on when the stimulus is less
than five in the case of numerals and symbols, or points left
in the case of arrows; otherwise the right unit is turned on.
Accordingly, as will be described below, in a congruent trial
the two corresponding units (e.g., the left unit of the prime
and target in IL) is set to 1 or O at the time of stimulus
presentation, while in an incongruent trial, one of the two
relevant units of the prime or target is set to 1 and the other
to 0.

The units in each layer make connections, via excitatory
weights, to their corresponding units in other layers. The
activations of these units (except IL) are calculated by a
sigmoid (logistic) function of the incoming information, and
a small amount of random noise. The RL sends excitatory
activities to ML and CL continuously but activates AA only
if a unit of the prime or target reaches a designated threshold
of .62. Similarly, when one of the two units in the ML
reaches the same designated threshold it triggers a manual
response (i.e., initiating a hand movement). When AA is
activated and its activation reaches a threshold, it starts
modulating information processing in RL, CL, and ML by
making the activation function of their units steeper.

Modelling details. As shown in Figure 1, the IL encodes
the prime, the mask, and the target, and projects to RL
through excitatory connections. For the sake of simplicity,
prime and target, as well as an identical mask for each
(shown as a single unit in Figure 1, for the sake of
simplicity) were implemented in two separate paths. All
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units in RL have a self-excitation connection, intended to
simulate mutual excitation among a group of neurons.
Connections between mutual units (for prime and target and
to the mask) from IL to RL have small cross-talks (see
Table 1), indicating feature overlaps or similarities among
stimuli. The wunits also have lateral inhibition with
neighboring units within the same layer.

The mask units are activated after the prime and before the
target for a specific time. They have lateral inhibition with
prime and target. In addition to lateral inhibition, the model
simu lates the similarity of the mask to the prime and target
through a lateral excitation from mask to the prime and
target. It plays a role using this lateral excitation and can
affect MLand AA (and CL), indirectly, through its effect on
both prime and target. Moreover, the prime and target units,
but not the mask, have feed-forward projections into the
ML, CL, and AA layers. Therefore, the mask acquires
meaning through its relationship with the prime and target.
Because it comes right after the prime, it can activate the
prime through its excitation. So, it can act partially like the
prime and increase the attentional responses to it, forcing it
to stay longer, but, on the other hand, its inhibitory effect
usually dominates its excitatory effect and interrupts the
prime, causing it to decay faster. This interplay depends on
the similarity of the mask to the prime and target (Sohrabi,
2008).

Prime Mask Target
Left Right Left Right
Input [ ] [ ]

Layer (IL)

-y
Representation
Layer (RL)

Alert Attention
(AA)

Cognitive Layer
(cL)

Figure 1: The architecture of the model. The IL projects
to the RL. The RL excitates AA, CL, and ML (not
shown). The AA modulates all other layers except IL.
The CL changes the AA response mode in the event of
conflict. Different connections are depicted with
different arrows: —e  modulatory; —e conflict
monitoring; O self-excitation and lateral excitation;
e—e Lateral inhibition; -» Feed-forward activation.



The units in all layers (except IL and AA) receive additive
Gaussian noise (zero mean and variance o), intended as
general, irrelevant incoming activities. The activations in
the model are represented using units with real valued
activity levels. The units excite and inhibit each other
through weighted connections. Activation propagates
through the network when the IL is clamped with input
patterns, leading to a final response. As will be described
below, the states of units in RL, ML, and CL are adopted in
a method similar to a noisy, leaky, integrator algorithm
(Usher & Davelaar, 2002; Gilzenrat et al., 2002). These
types of models are noisy versions of previous connectionist
models.

In a typical masked trial or epoch, one of the prime units
in the IL is turned on and the network is left active for 43
cycles. Then the mask units in IL are turned on for 71
cycles, followed by turning on the target input in IL for 200
cycles. This is similar to a trial in the experiment, except no
forward mask is presented, for the sake of simplicity. The
prime and target units in the IL are used to represent the
stimulus features (i.e., direction or magnitude). However, as
mentioned before, the recognition of the stimuli is not
implemented in detail, but is encoded as a binary code. For
example, in the case of arrows, 1 is used for the left unit if it
points left, or in the case of numerical stimuli, if the number
is less than five, and 0 is used for the opposite (reciprocal)
unit. In the congruent condition, the RL units of the prime
and target at the same side (left or right randomly) are
turned on (1) or off (0) in each trial at the time of stimulus
presentation. By contrast, in the incongruent condition, the
two units at the opposite sides are turned on and the other
two are left off, with random selection of the two possible
cases.

The RL is governed by a modified version of previous
models (Usher & Davelaar, 2002; Gilzenrat et al., 2002),
which is calculated with discrete integrational time steps
using the dynamic equation:

X(t+ 1) = A X(1)
+ (1- Ay f [WXiXi Xi(t) + WXl 1i(t)
- WXiXj Xj(1) - 0Xi+ X D)
Likewise, ML and CL are modelled in a similar way with
their inputs coming from RL:

Y(t+1) =, Y(1)

+ (1-4y) f [WYiYi Yi(t) + WYiX; Xi(1)

WYiY; Yj() - 0Yi+ ¢Yi] (2
In equations (1) and (2), X and Y denote the activity of units
through time t. W is the weight of the connections between
units, | is the input, and the subscripts i and j are indexes of
the units. The three weight parameters in the brackets
correspond to recurrent self-excitation, feed-forward
excitation, and lateral inhibition, respectively. However, for
the sake of simplicity in equation 1, the lateral excitation
from mask units to the prime and target, WXiXj Xj(t), and the
cross-talk in prime and target to reciprocal units and mask
units, WXilj lj(t), are not present. The term 6 is the bias, the
term  is noise, and f is a sigmoid function (see equation 3).
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The term A represents neural decay which is related to the
discrete integrational time steps in the underlying equation
The AA modulates other layers by changing their
activation from sigmoid toward binary responses. The
and modulatory gain, g, to its activity state, implementing
the firing rate of a neuron or the mean firing rate of a group
f(X)=1/(1+exp (-XQ)) 3)

A conflict-monitoring measurement was employed to take
and tonic response modes of AA. The activation of the CL
units was used to measure the Hopfield energy function
(Botvinick et al., 2001). Conflict can be defined as the
concurrent activation of the competing units and as the joint
be calculated as

E = —5X'"WX
I [%:]
where E denotes energy, X denotes the activity of a unit, W
subscripts 1and 2 are indexes of the two units.

As noted above, CL combines prime and target activations
unit is active and the other is inactive, conflict is low.
However, when both units are active concurrently, the
they are equal to or greater than .5, and to 0 otherwise (i.e.,
using a threshold function). Also, E > .5 is considered as a
prime or target unit in RL reaches the designated threshold,
62, the AA is activated with a phasic or tonic mode,
change in AA response mode usually occurs by the
presentation of a target that is incongruent with the prime.
version of LC neurons in a Willson-Cowan type of system
(e.g., Wilson & Cowan, 1972) adopted recently (Usher &
implementations of this type of attention (Gilzenrat et al.,
2002):

+ (1- 2 f[c (axX (1) = bY(t) + L (1) - &1,

Y(t+1)=2,Y(t)

G(t+ 1) =14 G(t)

+ (1-4g) X(9) ()
the fast variable representing AA activity and Y is a slow
auxiliary variable, together simulating excitatory/inhibitory
and Y variables have decay parameters Ax and Ay,
excitatory/inhibitory coefficients, ax and ay, as well as

(Usher & Davelaar, 2002).

activation function, f, transfers the net input, X, of a unit,
of neurons:

the activations of the units in the CL layer to adjust phasic
between units (Hopfield, 1982), as used previously
effect of both prime and target in CL. Hopfield energy can

—. 5 [X, X2 | o -1
is the weight of the connection between units, and the
and measures conflict between its two units. When one CL
conflict is high. Activations in CL units are converted to 1 if
conflict, otherwise as no conflict. When the activation of a
depending on the absence or presence of conflict in CL. The
Here the AA is modelled using a reduced or abstracted
Davelaar, 2002) (there are similar models and detailed
X(t+ 1) = A X(t)
+ (1-4y) f [c (ay X(1) - &)1,

where f is again a sigmoid function (as in equation 3), X is
neuron groups in the LC (Usher & Davelaar, 2002). The X
thresholds 6x and Oy, respectively. The G variable is the



output of the AA, which is based on X. The g (used in
equation 3) is computed from G: g = G * K. The AA
modulates other layers when g crosses a threshold, 1. Its
activity modes can be phasic or tonic depending on the
conflict state, low or high, respectively. In all conditions the
CL can change the AA mode according to the conflict
between prime and target (i.e., using within-trial conflict).
The phasic and tonic modes of AA responses are
implemented using high or low ¢ value (3 or 1) (see
equation 5). The c value is 3 at the beginning of each trial
(for the prime), but it is set to 1 (for the target) if conflict
occurs. The number of computer simulation cycles from the
target onset until one of the ML units reached a designated
threshold, .62, was considered as RT. A constant, as other
sensory and motor processes, could be added to this RT, to
increase the match between simulation and human data.

Simulation Results

Simulation 1: mask-target SOA. To simulate the data from
previous studies i.e., a PCE and an NCE with short and long
mask-target SOAs, respectively (e.g., Schlaghecken &
Eimer, 2000; Jaskowski & Slosarek, 2006) a simulation was
run with no changes in the parameters except the mask-
target SOA. Seven intervals of the mask-target SOA (from
71 to 251, with 30 cycles interval) were used to show the
effect of SOA on priming pattern. To maintain consistency,
the duration of the mask was again 71 cycles, but a longer
mask duration has a similar effect (as used in the following
simu lations).

Simulation 2: stimulus degradation

A previous study (Schlaghecken & Eimer, 2002, Exp. 4)
found that degradation of stimuli, by adding small random
dots to all stimuli, turns NCE into PCE. Here, the
degradation of stimuli was simulated by using lower input
activation in IL (for both prime and target) compared to the
usual 1 and 0 and increasing the noise of the prime and
target in RL. Two levels of degradation were created by
using .85 (opposite unit .15) and .75 (opposite unit .25),
while 1 (opposite unit 0) was used to encode an intact
stimulus. For a better fit between simulation and human
data, the noise of the prime and target units in RL was
increased from .2 to .3. The IL-RL strength for the prime
and target was 2.5 and the mask-target SOA was 125 cycles.
The model successfully simulated the human data as shown
in Figure 3, top. With degradation, the NCE turned into
PCE and RTs were increased by more degradation.

In another experiment in the same study (Schlaghecken &
Eimer, 2002, Exp. 3), randomdots were added to all stimuli,
but the dots did not cover the target (presented above or
below the target, randomly). In this case, while degradation
turned the NCE into PCE, it did not increase the RTs. For
simulating this experiment, a simu lation was run identical to
the previous one but only the prime was degraded. The
result was similar to the human data. As shown in Figure 3,

914

bottom, if the target is not degraded the RTs do not increase
(because it is stronger and is processed faster).
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Figure 2: The result of Simulation 1, mask-target SOA. Top:
Modelling results at seven levels of mask-target SOA,
starting from 71 cycles. Each SOA follows 30 cycles after
the previous one, with mask duration of 71 cycles. Bottom:
The same result was shown by the congruency difference
(Incongruent - Congruent) in the seven SOAs. This is
similar to the different lags in attentional blink paradigm,
showing a similar attentional basis for priming and
attentional blink.

Simulation 3: mask density

It has been shown that the mask needs to be dense enough at
a specific rate to cause NCE, and that decreasing the density
changes NCE to PCE (e.g., Eimer & Schlaghecken, 2002),
although beyond that it has no major effects. In this
simulation, mask density was simulated by changing the
inputs of the mask units to .55 (medium density) and .45
(low density), instead of 1 (very high density, used in
simulations of usual masked conditions). The IL-RL
strength for the prime and target was 2.5 and the mask-
target SOA was 125 cycles. As shown in Figure 4, top,
similar to human data (e.g., Eimer & Schlaghecken, 2002,
Exp. 1) decreasing the mask density from 1 to .55 decreased
NCE and then to .45 and 0 turned NCE to PCE (low mask
density and no mask are supposed to invoke other types of
processes, Sohrabi, 2007, not discussed here).



Simulation 4: prime duration

Prime duration has an important role in the priming effect.
Stimuli with longer duration have stronger representations
and also activate more attentional responses. It has been
shown that increasing the prime duration increases NCE to
some extent and turns it to PCE after a specific rate (Eimer
& Schlaghecken, 2002). The current simulation shows the
priming effects for three prime durations: 43, 48, and 53
cycles. The IL-RL strength for the prime and target was 2.5
and the mask-target SOA was 125 cycles.

As shown in Figure 4, bottom, increasing the prime duration
caused larger NCE, but a further increase turned it into PCE.
Interestingly, increasing the prime duration does not
decrease RTs and even has an opposite effect, similar to
human data (e.g., Eimer & Schlaghecken, 2002, Exp. 2)
(longer duration is supposed to invoke other types of
processes, Sohrabi, 2008, not discussed here).
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Figure 3: Results of Simulation 2, degradation effect. Top:
Degrading the prime and target with three levels of prime
and target inputs in IL: 1 (no degradation), .85 (medium
degradation), and .75 (high degradation), as well as an
increase in noise. With degraded unit activations NCE
turned into PCE and RTs increased. Bottom: Degrading
only the prime turned NCE to PCE but did not increase RTSs.

Discussion
When the mask-target SOA was short, the target could be
processed primarily with the initial activation and
attentional response to the prime. When a delay was
introduced between them (as with longer mask-target SOA),
the second phase of attention (for the target) was not strong

enough to activate the target quickly. This happened
because attention showed a phasic response with a
refractory period. The conflict was measured based on the
incongruency in the stimuli relationship. It decreased the
effect of the refractory period by putting the second phase of
attention (to the target) in a tonic mode, enhancing the
processing of the incongruent trials where conflict occurred.
This was not the case in the congruent trials. The NCE
found in previous studies (Schlaghecken & Eimer, 2000,
2002; Eimer & Schlaghecken, 1998, 2002; Jaskowski &
Slésarek, 2006) was simulated by increasing mask-target
SOA, with no other changes in the model. A PCE and an
NCE were found with short and long mask-target SOA,
respectively.
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Figure 4: Results of Simulations 3 (mask density) and 4
(prime duration). Top: Four levels of mask density were
employed: 1 (no mask), 2 (low density), 3 (medium
density), and 4 (high density), simulated by IL mask unit
inputs 0, .45, .55, and 1 compared to masks withd 15, 10,
5, and 0 random lines in human data, respectively (Eimer &
Schlaghecken, 2002, Exp. 1). Bottom: Simulation results for
three levels of prime duration: 53 cycles (long), 48 cycles
(medium), and 43 cycles (short), compared to 64, 32, and 16
ms in human data (Eimer & Schlaghecken, 2002).
Increasing the prime duration increased the NCE but a
further increase turned the NCE into PCE.

The model also showed the effects of other factors on
priming directions such as prime duration, stimulus
degradation, and mask density. For example, a prime with
longer duration and less degradation has a strong
representation that causes a large NCE if the target comes
late (and a large PCE if it comes early). The model also



showed that decreasing the activation of input units (e.g.,
from binary, 1 and 0, to real normalized numbers, .9 and .1,
or less, for simulating stimulus degradation) turns NCE into
PCE. This supports the idea that the NCE is not caused
merely by a decrease in the incoming perceptual
information but by a decrease in the representation strength.
The current model, in addition to being more biologically
compelling, showed many dynamic effects in RT and error
patterns that have not been shown previously (such as the
changes in RT and the size of priming effects through time).
While in the current model the NCE disappeared and
became a very small PCE at very long SOAs, the previous
model (Bowman et al., 2006) showed a huge PCE at very
long SOAs inconsistent with human data (e.g., JaSkowski &
Slésarek, 2006). The present model is similar to some other
previous neuro-computational models, especially those
employed to simulate the attentional blink (Mathis &
Mozer, 1996; Nieuwenhuis, et al., 2005). In these models
blink for the second target occurs at lag 2 (after 100 ms
from the first target) and no blink occurs at lag 1 (if the
second target appears during 100 ms after the first target),
related to NCE and PCE in the current model, respectively.

Table 1. Parameters in the model, fixed for all simulations,
unless otherwise mentioned.

WXli (ILto RL) [P & T] & WY;X; (RL | 2-3& 1.5
toML) [P & T]
WXil; (ILto RL) [M] & WY;X; (RLto | 1.5&1
CL)[P&T]
WXiXi (RL) [P & T], WX;X; (RL) [M], | 1.5, 1.25, 1, &
WY;Yi (CL), & WY;Y; (ML) 9
WXiX; (RL) & WY;Y; (ML & CL) 1&1
WXiX; (RL) [Mto P & T] & WXl (IL | .75& .33
to RL)
K(AA) 4.52
O, 6, (AA), 6, (RL), 6, (CL), & 6, | 1.25, 1.5, .5,
(ML) 85, &2
b,c, ax& ay (AA) 4,1-3,2, &3
Axs Agy & Ay (AA) .92, .98, & .996
A(CL). A (ML) & A (RL) .75, .925, & .95
6(CL),c (RL)[P& T],6 ML) &c | .025, .2, .25, &
(RL) [M] 1.25

IL=Input Layer; RL=Representation Layer; CL= Cognitive
Layer; ML=Motor Layer; AA=Alert Attention; P=Prime;
T=Target; M=Mask.
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