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Abstract

A model relating eye-movements and decision making is
proposed focused on the iterated prisoner’s dilemma game. Its
main aim is to model previous experiments with eye-tracking
recordings which show that participants attend to only a small
part of the game payoff information. The model presented
generates eye-movements based on two main mechanisms.
The first takes into account the importance of the information
attended with respect to the decision making process and
while the second takes into account the variability of the
information attended. The model is a discrete dynamical
system which integrates learned selective attention with move
choice. The model is found to reproduce fairly well the
sensitivity to the payoff structure of the game and the
attendance to payoffs found in experiments with human
subjects. These results seem to be a promising first step in
explaining the impact of partial and selective information
acquisition in the prisoner’s dilemma.

Keywords: eye-movements models; eye-tracking; selective
attention; decision making; Prisoner’s Dilemma.

Goals of the Present Work

It is the main goal of the current work to present a model in
which decision making is integrated with information
acquisition in a single integrated mechanism. The model is
tested against experimental data if it is able to account for
both behavioral and information acquisition data.

The model we present in this paper (SARL) is based on a
model proposed and used earlier (Hristova & Grinberg,
2005a) for describing playing in iterated Prisoner’s
Dilemma (PD) games with different payoffs and
cooperation indexes. The new model also uses the expected
subjective utility framework combined with reinforcement
learning; however, it also incorporates selective attention
mechanisms. The name of the model SARL comes from
Selective Attention and Reinforcement Learning. This work
is part of a larger effort of clarifying the cognitive processes
underlying PD game playing (e.g. Hristova & Grinberg,
2005b, 2008; Grinberg et al., 2005). In this series of
research not only behavioral data was gathered, but also
information acquisition data (using eye-tracking recordings
and computerized process tracing system). The results
obtained in these studies show that players do not use all the
information available and that there is dependence between
the playing strategy and the information acquisition
patterns. The experimental results show that under the
condition of playing different PD, participants sometimes
miss completely the payoff structure of the game which
automatically makes any model relying on full information
about the payoffs useless. The model SARL has been
developed to account for such situations and be able to

describe and predict eye-movement and behavioural data at
the same time and provide explanations about the relation
between them.

The Prisoner’s Dilemma Game

The Prisoner’s dilemma (PD) game is one of the most
extensively studied social dilemmas. PD is a two-person
game. The payoff table for this game is presented in Figure
1. In PD games, the players simultaneously choose their
moves — C (cooperate) or D (defect) — without knowing
their opponent’s choice.

In order to be a Prisoner’s dilemma game, the payoffs
should satisfy the inequalities T >R >P > S and 2R > T+S.
Due to the payoff structure of this game a dilemma appears
— there is no obvious best move. On one hand, the D choice
is dominant for both players — i.e. each player gets larger
payoff by choosing D than by choosing C no matter what
the other player chooses. On the other hand, the payoff for
mutual defection (P) is lower than the payoff S if both
players choose their dominated C strategies (R for each
player).

Player 11
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o R, R S, T
o
z
= D T,S P, P

Figure 1: Payoff table for the PD game. In each cell the
comma separated payoffs are the Player I’s and Player II’s
payoffs, respectively.

As PD game is used as a model for describing social
dilemmas and studying the phenomena of cooperation, there
is a great interest in the conditions that could promote or
hinder cooperation. There are many factors, identified
experimentally, that influence the cooperation rate in
playing iterated PD. Among them are framing (or the way
of describing the game to the participants in a experiment),
players’ goals and motivation, opponent strategy, etc.
(Colman, 1995; Sally, 1995).

One important characteristic which accounts for the
relation between payoff structure and cooperation in PD is a
quantity called cooperation index (CI) which was
introduced by Rapoport and Chammah (1965). It is
calculated using the equation: CI = (R-P)/(T-S). CI may
vary from 0 to 1 (see Figure 2) and it is positively correlated
with the percentage of C choices. An advantage in using
such an index for predicting cooperation is that the
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probability of a C choice should depend not on the payoffs
(T, R, P, S) individually but rather on the ratios of their
differences.

Player I Player IT
C D C D
- C 66, 66 | 10, 70 n C | 66,66 10, 70
2 2
= D 70,10 | 12,12 = D | 70 10 60, 60

Figure 2: Examples of PD games with different CI. The
first game has a CI=0.9, the second one has CI=0.1.

Information Acquisition in Decision Making

Information acquisition studies explore what information is
sought, how long the information is examined, the sequence
of acquisition, and the amount of information acquired. The
data made available are essential for studying the decision
making process as a process taking place in time and based
on a specific sequence of information acquisition. The
patterns of information acquisition impose constraints on
the possible strategies of information evaluation and
decision making. Taking this into account, the importance
of studying information acquisition patterns is emphasized
in numerous research papers (see e.g. Einhorn & Hogarth,
1981; Johnson, Payne, & Bettman, 1988).

The fact that humans use part of the information and still
behave in a consistent manner, shows the importance of the
decision making process based on incomplete information —
how and what information is gathered, how and in what
order it is evaluated and processed to reach a decision. In
order to understand these processes, the models of human
judgment and decision making, including game playing
models, should be built on what we know about the real
mind’s capacities and limitations.

Many studies in judgment and decision making are aimed
at the development and testing of models that deal with
evaluation and use of information. In many of them it is
implicitly assumed that information is already available and
judgment and choice are considered on the basis of
information which is already given. However, there is
strong evidence that the information acquisition process is
part of the decision making process and thus can influence it
(e.g., Einhorn & Hogarth, 1981; Lohse & Johnson, 1996).

Information acquisition studies give us information not
only about the way in which reduction of information
occurs (if it is the case), but also on the pattern or temporal
order of acquisition. Such data provide important constraints
for any decision making model.

Eye-tracking is one of the most popular methods for
studying information acquisition. It is considered that the
pattern of eye movements can provide objective and
quantitative evidence on what is being processed at the
moment. Many studies investigate cognitive processes as
reading, visual search, scene perception and other

information  processing  tasks
recordings (Rayner, 1992, 1998).

The results of all empirical studies stress the essential role
of the amount and type of information on the decision
making process.

using eye-movement

The SARL Model

The model we propose here is a modification of the model
proposed in Hristova & Grinberg (2005a) and has as goal to
incorporate elements of active and selective attention.
SARL can be viewed as based on the general framework of
the subjective utility theory (Schoemaker, 1982) but with
dynamic determination of the utilities and of the
expectations about the other player move probabilities based
on an information acquisition mechanism.

Models, similar in spirit have been used in different
contexts by Antonides (1994) and Piunti et al. (2007). The
latter approach is interesting in combining a simple
subjective expected utility model with affections which
control the speed of learning in the model. These models
however lack any selective attention mechanisms.

In order to benefit from the continuity in the two models,
we briefly present the model used in Hristova & Grinberg
(2005a). It can be defined as follows:

M) = wee PIICC) Poy(C) + wep PICD) Pop(D)

V(D) = wpc PI{DC) P,,(C) + wppPff{DD) P,(D)
where:
e  P(C) is the probability of move C for the player
e J(C) and V(D) are the values of moves C and D;
e P(CC), Pff (CD), Pff (DC), and Pff(DD) are the
current payoffs R, S, T and P, respectively;
e P(C) is the predicted probability for the opponent
to play C.

The quantities wce , Wep, Wpe, and wpp are weights that
stand for the importance of the specific game outcome (CC,
CD, DC or DD). These weights are computed as running
averages of the payoffs received in the games with
respective outcome and thus depend on previous payoffs:

[WxYlnew = (1-0) [Wxylola T & PAHXY), (3)
where X and Y stand for C or D, respectively, PXY) is
the received payoff corresponding to a game outcome XY
and 0<a<l1.

P,(C) is also calculated as a running average over the
past opponents moves:

[Pop(Cnew = (1-8) [Pop(C)]ota + B Map,
where 0< 3 <1 and M, is the opponent’s move.

Because of the way the weights w’s and the probabilities
Py(C) are calculated (see eqs. (3) and (4)) they are
responsible for the context sensitivity of the model and are
dynamically updated after each game. In egs. (1) and (2),
the use of the current-game payoffs ensures that the move
will depend also on the game at hand and on its CI (Hristova
& Grinberg, 2005a). This property is not available in typical
reinforcement based models used in PD (Erev & Roth,
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2001; Camerer et al., 2002; Macy & Flasche, 2002) in
which the probability for a move is based only on the
previous games.

The parameters for this part of the model are the
averaging parameters (o and f) and the initial cooperation
probability P(C).

In SARL egs. (1) and (2) become iterative and depend on
the look patterns and thus on the payoffs ‘perceived’ by the
model. They are generated on the basis of learned
information about the game. Two are the main factors which
underlie the mechanism of simulated eye-movements. The
first is based on the idea that game outcomes which are
wished and important (as measured by the magnitude of the
weights w’s in eqs. (1) and (2)) attract attention to the
payoffs related to them in a top-down fashion (e.g. the
payoff R is more likely to be attended to the larger the
weight wee is). The second factor is related to the rate of
change of the information relevant for the decision making
— in our case the rate of change of the payoffs. This factor is
regarded to be related to a bottom-up mechanism and is
similar to some extent to the uncertainty minimization
principle proposed in Hayhoe & Ballard (2005). In other
words, information related to wishful outcome and
information which is changing fast, tends to attract the
attention of the model and its ‘gaze’. The gaze pattern
generator proceeds in two stages. Firstly, a transition matrix
giving the transition probabilities between any two look
zones z; and z;, is calculated using the equation:

®)

where z; and z; are the initial and final look zones for a
saccade; a,q and ay, are coefficients standing for the relative
importance of top-down and bottom-up influences,
respectively. The quantity r(z;, z) can encode spatial
information about the relative position of z; and z;, or can be
related to the learning of looking patterns based on the
received payoff compared to the expected one, or to the
level of surprise related to predictions about the opponent’s
move or game outcome. In general it may be non-
symmetric with respect to the two zones reflecting spatial
asymmetries related, for instance, to cultural differences.
For the simulations in this paper it is set to zero. For goal-
directed behavior, like the one in PD, the top-down
influences are expected to be larger than the bottom-up ones
(Hayhoe & Ballard, 2005). The matrix 7(z;, z;) is updated
after each game.

When the game starts based on the updated matrix an
initial zone (payoff) is selected. It corresponds to a game
outcome and with the respective moves of the opponents
(e.g. R corresponds to a CC outcome). Depending on these
moves (X for the player and Y for its opponent) the values
of the moves C and D are updated using the equation:

(X, nt1) = (1-¢) V(X, n) + & wxy PAXY)Pop(Y) (6)
where ¢ is between 0 and 1; X and Y can be C or D,
depending on the payoft attended.

Eq. (6) replaces egs. (1) and (2) of the model in Hristova
& Grinberg (2005a) and is used several times before

T(Zi: Zj) = ay ny(Zj)Jrabu Any(Zj) + I’(Z,-, Zj)

reaching a decision within one and the same game. The
initial value for the move values — V(X, 0) — is calculated as

the average of the respective weights times the
corresponding probabilities for the opponent’s move:
(X, 0) = wxc Pop(C) + wxp Pop(D) (7

where X can be C or D.

The stopping criterion for this deliberation process is the
reaching of a threshold (see Roe et al., 2001) by the quantity
(the softmax rule for V(C)):

1
V= 1+ o< VC)VD) ®

and the move is determined according to the rule:
ifv>6

C
M =
{D ifV<l1-6

where the threshold 6 can depend on behavioural
characteristics such as received payoff, verification of
expectations, etc. In the present version 6 is taken to be 0.8.
The rule (9) is deterministic but can also be made
probabilistic. It requires the reaching of one of two
attractors in order to make a move C or D. The speed of
reaching the attractors depends on the parameter & in the
softmax rule given in eq. (8).

)

Simulations and Experiments

In this section, SARL predictions are compared to the
results of an eye-tracking study with human participants. In
the experiment and in the simulations one and the same set
of PD games were used. We compare both information
acquisition patterns and choices for human participants and
the model.

PD games used

A set of 100 PD different payoff matrices, containing an
equal number of games with CI equal to 0.1, 0.3, 0.5, 0.7,
and 0.9 was used in the experiment. The payoff matrices
were randomly generated with the payoff magnitudes kept
within certain limits. T was between 36 and 97 points (mean
69), R was between 29 and 95 points (mean 60.7), P was
between 15 and 59 points (mean 32.5), and S was between
10 and 20 points (mean 15). The games were presented
randomly with respect to their CL.

Experimental procedure with human participants

Game presentation The game was presented in a formal
and a neutral formulation to avoid other factors and contexts
as much as possible. The terms ‘cooperation’ or ‘defection’
were not mentioned in the instructions or in the interface to
further avoid influences other than the payoff matrix. On the
interface, the moves were labeled in a neutral manner as ‘1’
and 2. ’Subjects were not informed about the existence of
Cl. The game interface is presented in Figure 3. The

823



participants had to choose their move by mouse clicks on
one of the button on the left (move ‘1’ or move “2).

Participants were instructed to try to maximize their
payoffs and not to compete with the computer. The payoffs
were presented as points, which were transformed into real
money and paid at the end of the experiment.

The information about the games played was fully
available. After each game the participants got feedback
about their and the computer’s choices and payoffs in the
current game. Participants could also permanently monitor
the total number of points they have won and its money
equivalent. They had no information about the computer’s
total score. This was made to prevent a possible shift of
participants’ goal — from trying to maximize the number of
points to trying to outperform the computer.

Opponent’s strategy Participants played PD games against
a computer opponent. The computer player used a
probabilistic version of the tit-for-tat strategy: it takes into
account the two previous moves of the player and plays the
same move with probability 0.8. The latter makes the
computer’s strategy harder to be discovered by the
participant and in the same time allows the participant to
cooperate if they wish (and be followed by the computer).

Eye movements recordings Eye movements were recorded
using the ASL 501 eye-tracker with 60 Hz sampling rate.
The light head mounted optics recorded the left eye
movements. The centre of the pupil and the corneal
reflection were tracked to determine the relative position of
the eye. A magnetic head tracking equipment (Ascension
Flock of Birds) was used in order to compensate for the
possible head movements and ensure sufficient precision of
the measurements. Integration of the eye movements and
head movements made it possible to compute point of
regard on the computer screen. Gaze tracker software for
data recording and analysis was used.

The eye-tracker was calibrated using a 9-point grid. The
accuracy of the gaze position record is about 0.5 degrees
visual angle.

The game was presented on a 17”” monitor (see Figure 3).
Each box containing payoffs or moves occupied about 1
degree visual angle on the screen. The distance between two
adjacent boxes was at least 1 degree visual angle to ensure
stable distinction between eye-fixations belonging to
respective zones.

Participants and procedure 40 participants (17 males, 23
females) with normal or corrected to normal vision took part
in the eye-tracking experiment. All were university students
with average age of 23 years.

After receiving instructions, participants were asked
several questions to make sure they have understood the
game. Each participant played the set of 100 PD games,
described above. First 20 games are considered training and
are not included in the subsequent analysis.

All participants were paid for their participation. The
amount received depended on the points gained in the
experiment.

[Rc.
Ts

Your ¥ Computer

move

Computer
Points

Your
paints

— >>

KN [

Total
points

Figure 3: Game interface and areas of interest (AOIs) used
in the experiment. The index ‘s’ and ‘c’ denote ‘subjects’
and ‘computer’ respectively.

Simulations

SARL was run 30 times using the same procedure as in the
experiment. The same set of PD games was used and the
model played against the same computer opponent. The first
20 games were considered as training games and were
excluded from the analysis.

The averaging parameters a and f were fixed to 0.5 and
0.4, respectively. The initial cooperation probability P(C)
was set to 0.5 and the initial perceived probability of
opponent playing C (Pop(C)) was also set to 0.5. These
values are psychologically plausible as in the beginning of
the game players probably do not posses clear preferences
between choices or expectations about the play of the
opponent. The move threshold 4 is set to 0.8.

The speed of reaching the attractors depends on the
parameter & in the softmax rule given in eq. (8) and is fixed
to 0.01.

Comparison between SARL and Experimental
Data

The model predictions and data from the experiment with
human subjects are compared on number of measures. First,
they are compared on the basis of playing choices, more
specifically, number of cooperative choices. Next, we
compared the eye-movement data from the experiment and
model predictions about the zone attendances and
transitions between zones.
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Cooperation

The first analysis compared the number of cooperative
choices for each experimental condition (model or
experiment) and each level of the CI. Repeated measures
analysis of variance revealed that there is a significant main
effect of CI on cooperation (F(4, 272) = 11.23, p < 0.001)
and that there is no main effect of experimental condition
(human experiment or model) (F(1, 68) = 0.67, p = 0.41)
and that there is no interaction between the CI and the
experimental condition (F(4, 272) = 0.33, p = 0.85) (see
Figure 4).
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Cooperation Index (CI)'

Figure 4: Comparison of the dependence of the rate of
cooperation on the CI of the PD game between the
theoretical and experimental results (error bars represent
standard errors).

Attention to different zones

The eye-tracking data were analyzed using the number of
fixations in each AOI as a measure for attention paid to each
AOI. This measure reflects the relative importance of the
information presented in the AOI (Jacob & Karn, 2003). 8
areas on the screen that are important in studying
information acquisition during PD game playing were
defined (see Figure 3). Each Area of Interest (AOI) contains
the box in which the information is presented and a small
region around it.

The following AOIs were defined: 4 AOIs containing the
participant’s possible payoffs; 4 AOIs containing the
computer’s possible payoffs. The results showed that
players do not pay equal attention to all available
information. They look at their own payoffs more often than
the computer’s payoffs (2.71 fixations per game on all 4
AOIs with their payoffs and 1.14 fixations per game on all 4
AOIs with their opponent’s payoffs). The low number of
zone attendances per game indicates that players do not
always attend to all information before making a decision.
They even do not attend their own payoffs in each game
(see Figure 5).

In the comparisons with the model only the 4 AOIs
containing the participant’s possible payoffs are analyzed
referred to as Ts, Rs, Ps, and Ss.

The number of zone attendances for the model and for the
eye-tracking data were compared for each zone using
independent samples t-test. The tests showed no significant
differences (all p>0.05) between the model and the

experiment for each zone (see Figure 5).
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Figure 5: Comparison of the number of fixations per zone
obtained with the model and in the experiment.

Transitions between different zones

As a next step in the analysis, the number of transitions
between zones containing participant’s possible payoffs was
considered. Transitions are assumed to indicate the
comparisons made between the payoffs. Averaged data for
all participants in the eye-tracking study and for the model
predictions is presented in Figure 6. The players made more
transitions between their bigger payoffs (Ts and Rs; and Ts
and Ps); however, in general the number of transitions is
pretty low.

08 -
0,7 M Experiment
06 - W Model

0,5

0.4 -

game

0,3 A

0,2 A

0,1 A

Mean number of transitions per

o 4

Ts-Rs  Ts-Ps  Ts-55 Rs-Ps

Transitions

Rs-55  Ps-5s

Figure 6: Comparison of the number of transitions for zones
containing player’s possible payofts (Ts, Rs, Ps, and Ss) for
the experimental and the model data.

Discussion and Conclusion

The paper presented a model based on reinforcement
learning and top-down selective attention mechanisms.

The comparison with eye-tracking and behavioural data,
showed a reasonable agreement with respect to the average
cooperation rates, the dependence of cooperation on CI, and
the number of fixations in the payoff looking zones.
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The number of transitions between the payoff zones,
predicted by the model was larger than the experimental
value. The latter could be explained by the fact that only
four payoff zones (Ts, Rs, Ps, Ss) were taken into account
and all of the model transitions are between them leading to
a unrealistically large number of transition. The human
players had access to many more zones when playing the
game and only direct transition between zones were counted
(with no intermediate fixation). The interface in the
simulations didn’t account for the opponent’s payoffs and
possible distraction outside the looking zones. Future
versions of the simulations should account for these
differences.

Despite these discrepancies, the results obtained show that
a reinforcement learning model with selective attention as
SARL can display a behaviour which is reasonably similar
to the one displayed by human subjects. The latter seems to
indicate that the model captures important features of
decision making in iterated PD games. It is important to
stress that the model presented meets the requirements set in
the beginning: it displays behaviour (decision making) and
information acquisition patterns simultaneously based on an
integrated decision making mechanism.

At the same time, it is evident that more exploration of the
dynamical properties of the model with respect to its
parameters is needed. Application of the model on existing
data and design of new experiment based on its predictions
are also planned for the near future.

Acknowledgements

We would like to acknowledge the fruitful discussions and
the participation in the experiments and data collection of
Maria Popova, Emilian Lalev, and Vladimir Haltakov.

References

Antonides, G. (1994). Mental accounting in a Sequential
Prisoner’s Dilemma game. J. Econ. Psychol.15,351-374.]

Camerer, C., Ho, T.-H., & Chong, J. (2002). Sophisticated
EWA Learning and Strategic Teaching in Repeated
Games. J. Econ. Theory 104, 137-88.

Colman, A. (1995). Game theory and its applications in the
social and biological sciences. Oxford: Butterworth-
Heinemann Ltd.

Einhorn, H., & Hogarth, R. (1981). Behavioral decision
theory: Processes of judgment and choice. Annual Review
in Psychology, 32, 53-88.

Erev, 1., Roth, A. (2001). Simple reinforcement learning
models and reciprocation in the prisoner's dilemma game.
In: G. Gigerenzer & R. Selten (Eds.), Bounded
rationality: the adaptive toolbox. Cambridge, Mass. MIT
Press.

Grinberg, M., Hristova, E., Popova, M. & Haltakov, V.
(2005). Strategies in Playing Iterated Prisoner’s Dilemma
Game: An Information Acquisition Study. In:
Proceedings of the International Conference on Cognitive
Economics. Sofia, NBU Press.

Hristova, E. & Grinberg, M., (2005a) Investigation of
Context Effects in Iterated Prisoner’s Dilemma Game. In:
Dey, A., Kokinov, B., Leake, D., Turner, R. (Eds.)
Modeling and Using Context. LNCS (LNAI), 3554,
Springer Verlag.

Hristova, E., & Grinberg, M. (2005b). Information
acquisition in the iterated Prisoner’s dilemma game: an
eye-tracking study. Proceedings of the 27" Annual
Conference of the Cognitive Science Society. Elbraum,
Hillsdale, NJ.

Hristova, E., & Grinberg, M. (2008). Disjunction effect in
prisoner's dilemma: Evidences from an eye-tracking
study. In B. C. Love, K. McRae, & V. M. Sloutsky (Eds.),
Proceedings of the 30th Annual Conference of the
Cognitive Science Society. Austin, TX: Cognitive Science
Society.

Jacob, R. & Karn, K. (2003). Eye tracking in human
computer interaction and usability research: Ready to
deliver the promise. In: Hyona, J., Radach, R., & Deubel,
H. (Eds.), The mind’s eye: cognitive and applied aspects
of eve movement research. Elsevier Science BV.

Johnson, E., Payne, J., & Bettman, J. (1988). Information
displays and preference revearsals. Organizational
Behavior and Human Decision Processes, 42, 1-21.

Hayhoe M., Ballard, D. (2005). Eye movements in natural
behavior. Trends in Cognitive Science, 9 (4), 188-193.

Lohse, G. & Johnson, E. (1996). A comparison of two
process tracing methods for choice tasks. Organizational
Behavior and Human Decision Processes, 68, 28-43.

Macy, M., & Flache, A. (2002). Learning dynamics in social
dilemmas. PNAS, 99, 7229-7236

Piunti M., Castelfranchi, C. & Falcone, R. (2007). Surprise
as shortcut for Anticipation: clustering Mental States in
Reasoning. In Proceedings of the IJCAIO7, Hyberabad,
India.

Rapoport, A., & Chammah, A. (1965). Prisoner’s dilemma:
a study in conflict and cooperation. Univ. of Michigan
Press.

Rayner, K., & Pollatsek, A. (1992). Eye movements and
scene perception. Canadian Journal of Psychology, 46,
342-376.

Rayner, K. (1998). Eye movements in reading and
information processing: 20 years of research.
Psychological Bulletin, 124, 372-422.

Roe, R. M., Busemeyer, J. R., & Townsend, J. T. (2001).
Multi-alternative decision field theory: A dynamic
connectionist model of decision making. Psychological
Review, 108, 370-392.

Sally, D. (1995). Conversation and cooperation in social
dilemmas. A meta-analysis of experiments from 1958 to
1992. Rationality and Society, 7, 58-92.

Schoemaker, P. (1982). The expected utility model: Its
variants, purposes, evidence and limitations. Journal of
Economic Literature, 20, 529-563.

826



