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Abstract

In deterministic causal chains the relations ‘4 causes B’ and
‘B causes C’ imply that ‘4 causes C’. However, this is not
necessarily the case for probabilistic causal relationships: 4
may probabilistically cause B, and B may probabilistically
cause C, but 4 does not probabilistically cause C, but rather
—C. The normal transitive inference is only valid when the
Markov condition holds, a key feature of the Bayes net for-
malism. However, it has been objected that the Markov as-
sumption does not need to hold in the real world. In our stu-
dies we examined how people reason about causal chains that
do not obey the Markov condition. Three experiments involv-
ing causal reasoning within causal chains provide evidence
that transitive reasoning seems to hold psychologically, even
when it is objectively not valid. Whereas related research has
shown that learners assume the Markov condition in causal
chains in the absence of contradictory data, we here demon-
strate the use of this assumption for situations in which partic-
ipants were directly confronted with evidence contradicting
the Markov condition. The results suggest a causal transitivity
heuristic resulting from chaining individual causal links into
mental causal models that obey the Markov condition.

Keywords: Transitivity; causal models; Markov condition;
categorization, causal chain; syllogistic reasoning, heuristics

Deterministic Causal Chains

Deterministic causal relations imply transitivity: If 4 causes
B, and B causes C, then 4 causes C. For deterministic rela-
tions this can be justified on a purely logical basis. If one
treats deterministic causal relations as material implications,
the syllogism Modus Barbara applies, which is known since
Aristotle. Expressed in terms of modern predicate logic it
states that ¥(x) (4(x) — B(x)) & (B(x) — C(x)) => (4A(x) —
C(x)). Also according to Mental Model Theory, transitivity
is predicted (cf. Goodwin & Johnson-Laird, 2005). Like-
wise, causal theories of reasoning, using causal strength
estimates such as AP (Jenkins & Ward, 1965) or causal
power (Cheng, 1997) entail transitivity for deterministic
relationships. For instance, if AP, = P(B|A4) — P(B|—4) =
1 and APgc= P(C | B) — P(C | —B) =1, it follows that AP,c =
1. An analogous case can be made for causal power (Cheng,
1997) formalized by w = AP,/ (1 — P(4 | —C)).

Probabilistic Causal Chains and
the Markov Condition

While the validity of transitive inferences in deterministic
chains is undisputed, transitivity is not necessarily entailed
when the causal relations are probabilistic. Nevertheless,
transitivity may intuitively appear reasonable as well. For
example, smoking (4) increases the probability of having tar
(B) in your lungs which, in turn, is causally related to lung

cancer (C). Thus, the three events constitute a generative
causal chain 4—B—C entailing that the probability of lung
cancer is higher for smokers than for non-smokers. (i.e.,
P(C|A)> P(C|—A)). Thus, a transitive inference from 4 to C
seems valid here as well.

The representation of such causal relations in mental
causal models (Sloman, 2005; Waldmann, 1996; Waldmann,
Cheng, Hagmayer, & Blaisdell, 2008) as well as in Bayes
nets (Spirtes, Glymour, & Scheines, 1993; Pearl, 2000) im-
plies transitivity in causal chains. A Bayes net consists of
nodes representing the domain variables and directed edges
(“causal arrows”) representing the causal dependencies
among the variables. At the heart of the Bayes nets formal-
ism is the Markov condition, which states that a variable,
conditioned on its direct causes, is independent of all other
variables in the causal network except its effects (Hausman &
Woodward, 1999; Pearl, 2000; Spirtes, Glymour, &
Scheines, 1993). For example, applying the Markov condition
to the causal chain A—=B—C entails that 4 and C become in-
dependent conditional on B. This assumption is important
since it secures a modular representation of individual
causal links, separate manipulability, and is crucial for infer-
ring causal relations from probabilistic dependencies
(Hausman & Woodward, 1999; Pearl, 2000).

The Markov condition is also essential for basic inferences
across complex causal networks because it allows for chain-
ing the individual links to make quantitative predictions. For
example, the conditional probability P(C | 4) can be derived
by a multiplicative combination of all possible paths leading
from 4 to C:

P(C[A)=P(B|A4) P(C|B)+ P(~B|4) P(C|~B) (1)

Thus, the Markov condition allows us to infer the con-
ditional probability P(C | 4) by combining the causal links
constituting the chain without observing this relation di-
rectly.

The Markov assumption has been postulated to be a nec-
essary and universal feature of causal relations in the world
(Hausman & Woodward, 1999). However, the Markov con-
dition has also been criticized. Particularly Cartwright
(2001, 2002) argued that the proof for the necessity of the
Markov condition in the deterministic case is valid, but va-
cuous, and the proof of necessity in the probabilistic case is
invalid or at least question begging.

Markov Condition on the Type Level

It is possible that some data may provide evidence for a
(probabilistic) generative causal relation between events A
and B on the one hand and events B and C on the other
hand, but this does not necessarily entail that 4 and C are
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positively related. Consider Figure 1, which illustrates this
point. Here P(B|A)> P(B|—A) as well as P(C|B) >
P(C|—B). Thus, both partial relations indicate a generative
causal relationship. Nonetheless, paradoxically, P(C|A4) is
lower than P(C|—A). Thus, although the initial event A
(probabilistically) leads to the intermediate event B, and B
(probabilistically) leads to the final effect C, 4 does not lead
to C but rather to ~C. This paradox would also arise if one
infers P(C | A) using causal strength measures like AP or
causal power. The single links will both be positive. But if
we marginalize over B and then derive estimates of causal
strength directly for the relation 4 and C, one would obtain
a negative (preventive) relationship. A similar logic holds
for refined measures for the existence of single causal links,
like causal support (Griffiths & Tenenbaum, 2005).

Hence, on the level of the categories used here, the
Markov assumption is violated for this data set. While a
causal chain obeying the Markov condition entails that 4
and C become independent when conditionalizing on B, in
this case C does not become independent from 4.

Figure 1: Example for positive causal relations between
classes 4 and B and between classes B and C, but a negative
relation between classes 4 and C.

Note that this paradox only arises because causal relations
are usually defined on the level of types, not on the level of
individual tokens. The paradox does not arise on the level of
individual tokens. For example, in regard of the individual
symbolised by a ‘triangle’ ‘4 — B — C’ and ‘4 — C’ hold;
similarly for the individual symbolised by a ‘heart’ ‘4 — —B
— —C” and ‘4 — —C’ hold. If causal relations were only
concerned with individual tokens the problem would not
arise, but then the very concept of a causal law would be
meaningless and without any predictive content.

Goals and Hypotheses

In this paper we aim to we examine whether participants’
causal reasoning conforms to the Markov condition when
making judgments about the relation between 4 and C, even
when presented with data that violate this assumption.
We predict that participants’ judgments will conform to a
Markov based integration of single links into mental causal
models (Waldmann et al., 2008, cf. in a more general con-
text, Johnson & Krems, 2001), although the presented data
violates the Markov condition thereby invalidating transitive
inferences from 4 to C. To examine peoples’ inferences we
here focus on the simplest and most uncontroversial meas-
ure, conditional probabilities (cf. Oberauer, Weidenfeld, &
Fischer, 2007; Evans & Over, 2004).

Related research (Ahn & Dennis, 2000; Baetu & Baker, in
press), has indicated that positive causal relations between A
and B and between B and C lead participants to assume that

there is also a positive relation between 4 and C. However,
in these experiments covariation information about the A-C
relation was not available, thus participants could not di-
rectly assess the relation between 4 and C. By contrast, in
our studies we provide our participants with data indicating
non-transitive causal relations. The individuating informa-
tion about the involved tokens would allow participants to
construct chains in which the Markov assumption does not
hold. In such chains transitive inferences would not be war-
ranted. Hence, we do not only investigate the assumptions
about the relation between 4 and C in the absence of infor-
mation, but we provide information that runs counter to in-
ferences based on combining single links by applying the
Markov assumption. We tested this prediction in three ex-
periments in which we successively increased the availabil-
ity of the data indicating a violation of the Markov assump-
tion (Table 1). Thus, we investigate whether and under
which conditions participants use the Markov assumption in
causal chains psychologically, even if this assumption is
objectively violated.

Table 1: Overview of the experiments

Intransitive ~ Directly obser- Data available
token data ving data on  while judging
Aand C P(C|A)
Experiment 1 v
Experiment 2 v v
Experiment 3 v v v

Experiment 1

In Experiment 1 we investigated whether and how an infe-
rence regarding the relation between two events 4 and C is
affected by an intermediate event B while keeping every-
thing else equal. In the control condition (A— C) participants
were only presented with data regarding the bivariate rela-
tion between 4 and C, which indicated that the two events
were independent (i.e., P(C|A)= P(C|—A4) =0.5). In the
chaincondition (A—=B—C) participants were additionally
presented with data regarding an intermediate event B.

c
c.0
O —
c O
05
(8}
° P(C|A) = .50 C
c A -A
8 AIDAC:O —|C

Figure 2: Design of Experiments 1 to 3.

The data (cf. Figure 2) showed positive dependencies be-
tween 4 and B as well as between B and C, but the relation
between 4 and C was identical to the control condition (i.e.,
P(C|A) = P(C|—A4) = 0.5). Using individuating item infor-
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mation and simple one-dimensional rules participants could
find out that 4 and C occurred actually independent of each
other. Thus, our study goes beyond previous research in
which the data on the relation of 4 and C was not available
(Ahn & Dennis, 2000; Baetu & Baker, in press).

However, if people only base their judgments on the inte-
gration of individual links, different judgments for the rela-
tion between 4 and C are expected depending on whether
people make a transitive inference from 4 to C based on the
A to B and B to C relations, or estimate the relation between
A and C directly from the data.

Participants Sixty-two students from the Georg-August
Universitit Gottingen took part in exchange for candy. Ad-
ditionally they could win a prize. They were randomly as-
signed to one of the two experimental conditions (4=*B—C
vs. A= ().

Materials Participants were told to imagine being a deve-
lopmental biologist who investigates the metamorphoses of
a species of microbes. The participants were requested to
investigate three phases of the microbes’ metamorphosis. In
each of the three phases they should examine whether the
microbes do or do not generate a certain kind of carotene (o-

carotene, [-carotene and Y-
carotene, respectively). Next size
participants received information R EEEEEE
about 40 individual microbes. 2 =1l

The exemplars (“microbes”) L 5 o
were represented by circles fac- 8 tmm mm mm
torially combining two dimen- 2 Summ mjim][w
. . . 4 mmm EEn
sions, grayscale and size. Figure O mmemEmm=
3 shows the used item space. o, e e e
The circles varied in eight steps 1 =lal=la

along the dimensions grayscale
(white to black) and size (small
to big). A pretest showed that
subjects were clearly able to dis-
tinguish the items. The different
event categories 4, B, and C
were created by rotating the category boundary through the
item space, resulting in orthogonal categories 4 and C (Fig.
2). To allow the three categories to cut clearly through the
item space, we eliminated some items (cf. Fig. 3).

Figure 3: Stimulus ma-
terial: microbes with
three cuts through item
space in Phases 1 to 3.

Procedure First participants were presented with data con-
cerning the first and the second developmental stage (Fig.
4). The data for phase 1 arranged the microbes according to
whether they did have or did not have produced a-carotene
(event A). The data was presented in overviews to ease the
task. The same microbes in the second phase were arranged
according to whether they did or did not generate -carotene
(event B). Both panels — each on a large page - were pre-
sented simultaneously to participants (Fig. 4). Participants
had about a minute time to examine the data sets.

Next, participants were requested to judge whether o-
carotene (A) rather leads to B-carotene (B) or to no-f-
carotene (—B). While asking the question, the experimenter
pointed to the corresponding classes on the panels. Partici-
pants then had to provide an estimate of the conditional

Microbes with Alpha-carotene Microbes with ne Alpha-carotens

0g0 90 OQO.O.O
0% 00% @000

Phasel

O ‘o @%e O i. e @
Microbes with Betarcarotene Microbes with ne Betarcarotene

LI O O OQ....
O. O...O ®
e© 0 *

Phase 2

Microbes with Gc:mmc: carotens Microbes with ne Gamma-car,

* 05 0000 58

OOO
6@ QO . o .%....

Phase 3

Figure 4: Data panels successively shown to the participants.

probability that given a-carotene (A4) in the first phase, these
microbes produced B-carotene (B) (i.e., provide an estimate
of P(B|A)). Because participants may not understand that
the absence of a relation (i.e, P(B|A4) = P(B|—=4) = 0.5)
implies an equal split of cases, we used a rating scale from
-100 to + 100 (cf. Figure 5).

Left side of the scale:
Microbes with Alphacarotine
later tend to develop

no Betacarotine

Middle of the scale:
Alphacarotine and
Betacarotine occurs only
independently together

Right side of the scale:
Microbes with Alphacarotine
later tend to develop
Betacarotine

Onr-0wm-0 -0 -0 O--0---0--0--0
-100 -80 -60 -40 -20 O 20 40 60 80 100

Figure 5: Example of a used rating scale.

Subsequently, the Phase 1 data was removed and the
Phase 3 data was added. These data presented information
which microbes had produced y-carotene (C) or no y-
carotene (—C) (Fig. 4, cf. Fig. 2 and Fig. 3). Participants
then had to estimate the conditional probability P(C | B) (i.e.
asked to estimate whether microbes which produced f-
carotene (B) would also produce y-carotene (C)). Finally, all
the two remaining data sets were removed and participants
were asked to judge whether microbes that produced o-
carotene (4) produced rather y-carotene (C) or rather no y-
carotene (—C). In the control condition, participants were
shown data sets 1 and 3 only and asked to estimate P(C | 4).

Results and Discussion The obtained and predicted condi-
tional probability judgments are shown in Table 2. The pre-
dicted probabilities were linearly transformed to accommo-
date for the used scale between -100 and + 100 (e.g., P(C |
A) = .62 is +24 on this scale, cf. Fig. 2).

With regard to the evaluation of the single links, partici-
pants clearly judged that 4 leads rather to B than to —B and
that B leads rather to C than to —~C. Both estimates differed
significantly from zero (P(4 | B): #(31) = 5.43, p < .001;
PB|C): t31)=8.29, p < .001). The critical judgment on



P(C| A) was significantly higher than zero (#(31) =3.82, p <
.01). A quite different judgment was obtained in the control
condition, in which participants even gave slightly negative
ratings. Consequently, these estimates differed significantly
between conditions, #(60) = 4.03, p < .001). Both estimates
also closely corresponded to the probability estimate derived
from a transitive inference from 4 to C via B (linearly trans-
formed to the scale between -100 and +100).

Table 2: Mean estimates (+SE) in Exp. 1.

B4 C|B C|A4
data transitive
Condition Predicted  +50 +50 +0 +24
1—B—C Human +38 +48 +25
(7.1) (5.8) (6.6)
Condition Predicted ) ) j;g
A—-C Human - ©.7)

Note: All judgments were given on a scale -100 to +100.

These findings indicate that although 4 and C were not sta-
tistically related, participants appeared to reason transitively
based on the type level. Although bottom-up information was
available showing that 4 and C are independent, participants
in the chain condition gave positive ratings that clearly dif-
fered from those obtained in the control condition. These re-
sults are consistent with the idea that participants first induced
two separate causal links 4—B and B—C and then integrated
them into a causal chain obeying to the Markov condition.
Later they used this causal model to make inferences about
the relation between 4 und C. The findings corroborate the
idea that participants reasoned transitively even if there is
bottom-up information available that speaks against a transi-
tive inference.

Experiment 2

In Experiment 1 participants were sequentially provided with
data regarding the relation between A and B, and B and C,
respectively. However, participants never saw the data sets
regarding 4 and C at the same time. Although it should have
been easy to use categories to detect the independence be-
tween 4 and C, one may object that these transitive inferences
were due to the fact that participants could not observe the
violation directly. To test this hypothesis, in Experiment 2 all
three data sets (cf. Fig. 4) were simultaneously presented to
participants. We assumed that despite the simultaneous pres-
entation of the data participants may nevertheless derive the
estimates from causal model representations, thereby making
transitive inferences.

Participants Sixty-four students volunteered in exchange for
candy. They were randomly assigned to either of the two
conditions (A—=B—C vs. A—=C) (cf. Fig. 2).

Material and Procedure We used almost the same material
and procedure as in Experiment 1. To control for potential
salience differences in the stimuli we used several category
schemes in both conditions (Figure 6). In the chain condition,

participants were first pre- O / ) (Y

\ Y

sented with data sets 4 and P )

B (cf. Fig. 2). Then they
had to judge P(B|A4). We C\f‘(‘\
used the same scale as be- O—Q) "O
fore, ranging from -100 to O O C )
33—
——O—C)

+100 (Fig. 5). Subse-

quently, data set C was
added, this time without

Figure 6: Counterbalancing
conditions of Experiment 2

removing the data regard-
ing event 4. Thus, all three

(analogously for the Control
Conditions).

Counterbalancing
Conditions

data sets were visible at the
same time, thereby allow-
ing participants to directly
examine the relation be-
tween 4 and C. Participants had time to inspect the data for
about a minute. Then they were asked to estimate P(C | B).
Finally, all panels were removed and participants were
asked to judge P(C | A).

Table 3: Mean estimates (+SE) in Exp. 2.

B|A4 C|B ClA
data transitive

Condition Predicted  +50 +50 +0 +24
A—B—C Human 30 +39 26
(5.0 (6.9) (7.1
Condition Predicted - - iIOO

A—-C - )

Human (7.6)

Note: All judgments were given on a scale -100 to +100.

Results and Discussion Table 3 shows that participants again
judged the relation between 4 and B and B and C, respective-
ly, as being positive. Again both estimates differed signifi-
cantly from zero [P(4|B): #31)= 9.96, p < .001 and
P(B|C): t(31) = 5.68, p < .001). The result for P(C | 4)
closely resembled the value entailed by a transitive infe-
rence from A4 to C via B. Thus, even in the presence of data
showing that 4 and C are not related, participants gave sig-
nificantly higher estimates in the chain condition than in the
control condition (#62)=3.54, p <.001).

Experiment 3

In Experiment 2 participants could inspect all data sets si-
multaneously, but the data was removed prior to judging
P(C | A). In Experiment 3 we aimed to investigate whether
peoples’ inferences adhere to transitivity even when contra-
dictory data is directly available when judging P(C|A).
Hence, this time participants judged the relation between A
and C in the presence of data indicating a zero contingency.

Participants Sixty-four students from the University of
Gottingen participated voluntarily in exchange for candy.
Participants were randomly assigned to either the chain
condition (4—B—C) or the control condition (4—C).

Material and Procedure We used the same material and
procedure as in Experiment 2. As before, participants were



first presented with data on events 4 and B. After inspecting
the data they were requested to judge the relation P(B | 4).
Then the third data set regarding event C was added to the
two other sets. Then, while all three data sets were visible,
participants were asked to provide an estimate of P(C | 4).
Thus, the data indicating that there is no relation between 4
and C was directly available, so that judgments had not to
be based on inferences from memory at all. In the control
condition participants were only shown the two data sets
regarding 4 and C and asked to judge P(C | 4).

Results and Discussion Table 4 shows that participants
again judged the relations between 4 and B as well as be-
tween B and C positively. Both estimates differed signifi-
cantly from zero P(4 | B): t(31)= 6.89, p < .001; P(B|C):
t(31) = 9.93, p < .001). The main result was that the mean
rating for P(C | A) again closely resembled the value ex-
pected on the basis of the Markov assumption and resulting
transitive reasoning (Table 3). As before, participants gave
significantly higher estimates in the chain condition than in
the control condition, #(62) = 2.84, p <.001.

Table 4: Mean estimates (£SE) in Exp. 3.

B4 Cl|B ClA4
data Transitive
Condition Predicted  +50 +50 +0 +24
A—B—C Human 44 +47 +17
(6.5) 4.7) (5.8)
Condition Predicted ) ) 1(9)
A—-C - - -
Human (6.9)

Note: All judgments were given on a scale -100 to +100.

Thus, although all participants had the same information
available when judging P(C | A), the two conditions strongly
differed. Participants in the chain condition stated that
events 4 and C are positively related, whereas participants
in the control condition judged them to be independent.
Moreover, the absolute mean value in the chain condition
(+17) was very close to the value entailed by a transitive
inference from 4 to C (+24).

General Discussion

Experiment 1 to 3 provide a crescendo of increasingly strict
tests of the hypothesis that people reason transitively even if
the Markov condition does not hold and, therefore, transitive
inferences are not warranted (cf. Table 1). Experiment 1
showed that people made judgments about P(C|A) as if
transitivity and the Markov condition were given, even
when we provided contradictory information. Experiment 2
replicated this finding in a context in which participants had
the opportunity to directly assess the relation between A4 and
C. Nevertheless, the obtained estimates provided strong
evidence for transitive inferences based on a causal model
constructed by chaining the individual causal links. Finally,
Experiment 3 showed that the differences in the judgment
regarding P(C | A) between the chain and control condition
remained stable, even though participants had data about 4

and C available when making their judgment. Hence, even
in presence of contradictory data participants seem to reason
transitively by integrating the two single causal links 4—B
and B—C into one overall mental causal model by using the
(objectively violated) Markov assumption. As a conse-
quence they made transitive inferences, not consistent with
the actual data. Interestingly, the obtained judgments did not
differ much across the three experiments. The deviations
from the bottom-up data were only a bit less pronounced in
Experiment 3. The average ratings were always close to the
predictions derived from the Markov assumption.

These findings go clearly beyond previous studies (Den-
nis & Ahn, 2000; Baetu & Baker, in press) in which reason-
ers were never presented with data that contradict transitivi-
ty and the Markov condition. While these studies showed,
that people seem to believe in the Markov assumption in
general, we were able to show that they do so even when
contradictory evidence was directly available to them.

Cartwright (2001, 2002) criticized that the Markov as-
sumption has been treated as a universal and necessary as-
pect of causal reasoning. One may object that the Markov
assumption always holds on the level of individual links
(i.e., the token level) and that the violation of the Markov
assumption in our experiments only occurred on the cate-
gorical level. However, categories play an indispensible role
in causal prediction and are a necessary prerequisite for
causal induction since causal relations can only be noticed on
the basis of events that are categorized (Waldmann & Hag-
mayer, 2006). Standard Bayes net account assume that
events (or causally effective objects) are classified into cat-
egories, and that causal laws are defined on the categorical
level (cf. Kemp & Tenenbaum, 2009). We here worked with
categories that were given, but did not adhere to the Markov
condition. As Cartwright correctly pointed out, it is perfect-
ly possible that the Markov condition does not hold in the
world. Our results show that participants seem to employ
the Markov condition subjectively, even with categories that
violate Markov objectively. .

Although this is a new finding in the causal domain and in
relation to the discussion of transitivity and the Markov
condition, there are related findings pointing into a similar
direction. For example, Simpson’s paradox, describes the
fact that statistical dependencies can vanish, or even be re-
versed, when moving from populations to subpopulations.
In a number of studies Waldmann and Hagmayer (2001; see
also Fiedler, Walther, Freytag, & Nickel, 2003) demonstrat-
ed that participants have problems to adequately control for
a confounding third variable which reverses the relation
between two events. While in the experiments presented
here participants aggregated the individual causal links and
thereby violated the overall non-existent relation, partici-
pants in these former experiments integrated subpopulations
violating the relation among the variables in the overall
population. In a related context, so-called pseudo-contingen-
cies have been discussed (cf. Meiser & Hewstone, 2004).
Pseudo-contingencies, however, normally result from highly
skewed distributions, which was not the case in the present
studies in which all three events 4, B, and C had equal prob-
abilities. In our studies the paradox arose not because of a
skewed distribution of events but rather are due to the used
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rotation of the used categories over tokens, that is, cate-
gories with overlapping boundaries within a causal chain.

In conclusion, we have provided evidence consistent with
the idea that people derive probability estimates by combin-
ing single causal links into complex causal models in a
modular way (Waldmann, Cheng, Hagmayer, & Blaisdell,
2008). This finding also supports the psychological validity
of a core assumption of the Bayes net account, the causal
Markov assumption. However, for other causal structures
this may not hold. Whether participants believe in the Mar-
kov assumption for other causal structures is still an open
question, although there is some counterevidence (e.g.
Rehder & Burnett, 2005, cf. Mayrhofer, Goodman, Wald-
mann, & Tenenbaum, 2008). Research on common cause
structures (property attribution tasks) suggests that proper-
ties that are actually probabilistically related need not to be
treated independently (cf. v. Sydow, 2009). Future research
needs to investigate these questions in more detail for dif-
ferent causal structures.

In regard of causal chains, however, the current results
suggest a transitivity assumption for non-transitive data
— hence, a kind of transitivity heuristic.
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