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Abstract 

In deterministic causal chains the relations „A causes B’ and 
„B causes C’ imply that „A causes C’. However, this is not 
necessarily the case for probabilistic causal relationships: A 
may probabilistically cause B, and B may probabilistically 
cause C, but A does not probabilistically cause C, but rather 
¬C. The normal transitive inference is only valid when the 
Markov condition holds, a key feature of the Bayes net for-
malism. However, it has been objected that the Markov as-
sumption does not need to hold in the real world. In our stu-
dies we examined how people reason about causal chains that 
do not obey the Markov condition. Three experiments involv-
ing causal reasoning within causal chains provide evidence 
that transitive reasoning seems to hold psychologically, even 
when it is objectively not valid. Whereas related research has 
shown that learners assume the Markov condition in causal 
chains in the absence of contradictory data, we here demon-
strate the use of this assumption for situations in which partic-
ipants were directly confronted with evidence contradicting 
the Markov condition. The results suggest a causal transitivity 
heuristic resulting from chaining individual causal links into 
mental causal models that obey the Markov condition. 
 
Keywords: Transitivity; causal models; Markov condition; 
categorization, causal chain; syllogistic reasoning, heuristics  

Deterministic Causal Chains 

Deterministic causal relations imply transitivity: If A causes 
B, and B causes C, then A causes C. For deterministic rela-
tions this can be justified on a purely logical basis. If one 
treats deterministic causal relations as material implications, 
the syllogism Modus Barbara applies, which is known since 
Aristotle. Expressed in terms of modern predicate logic it 
states that (x) (A(x) → B(x)) & (B(x) → C(x)) => (A(x) → 
C(x)). Also according to Mental Model Theory, transitivity 
is predicted (cf. Goodwin & Johnson-Laird, 2005).  Like-
wise, causal theories of reasoning, using causal strength 
estimates such as ΔP (Jenkins & Ward, 1965) or causal 
power (Cheng, 1997) entail transitivity for deterministic 
relationships. For instance, if PAB = P(B | A) – P(B | ¬A) = 
1 and PBC = P(C | B) – P(C | ¬B) =1, it follows that PAC = 
1. An analogous case can be made for causal power (Cheng, 
1997) formalized by w = PAC / (1 – P(A | ¬C)). 

Probabilistic Causal Chains and  
the Markov Condition 

While the validity of transitive inferences in deterministic 
chains is undisputed, transitivity is not necessarily entailed 
when the causal relations are probabilistic. Nevertheless, 
transitivity may intuitively appear reasonable as well. For 
example, smoking (A) increases the probability of having tar 
(B) in your lungs which, in turn, is causally related to lung 

cancer (C). Thus, the three events constitute a generative 
causal chain ABC entailing that the probability of lung 
cancer is higher for smokers than for non-smokers. (i.e., 
P(C | A) > P(C | ¬A)). Thus, a transitive inference from A to C 
seems valid here as well. 

The representation of such causal relations in mental 
causal models (Sloman, 2005; Waldmann, 1996; Waldmann, 
Cheng, Hagmayer, & Blaisdell, 2008) as well as in Bayes 
nets (Spirtes, Glymour, & Scheines, 1993; Pearl, 2000) im-
plies transitivity in causal chains. A Bayes net consists of 
nodes representing the domain variables and directed edges 
(“causal arrows”) representing the causal dependencies 
among the variables. At the heart of the Bayes nets formal-
ism is the Markov condition, which states that a variable, 
conditioned on its direct causes, is independent of all other 
variables in the causal network except its effects (Hausman & 
Woodward, 1999; Pearl, 2000; Spirtes, Glymour, & 
Scheines, 1993). For example, applying the Markov condition 
to the causal chain ABC entails that A and C become in-
dependent conditional on B. This assumption is important 
since it secures a modular representation of individual 
causal links, separate manipulability, and is crucial for infer-
ring causal relations from probabilistic dependencies 
(Hausman & Woodward, 1999; Pearl, 2000). 

The Markov condition is also essential for basic inferences 
across complex causal networks because it allows for chain-
ing the individual links to make quantitative predictions. For 
example, the conditional probability P(C | A) can be derived 
by a multiplicative combination of all possible paths leading 
from A to C:   

 
 P(C | A) = P(B | A) P(C | B) + P(¬B | A) P(C | ¬B)  (1) 
 

Thus, the Markov condition allows us to infer the con-
ditional probability P(C | A) by combining the causal links 
constituting the chain without observing this relation di-
rectly.  

The Markov assumption has been postulated to be a nec-
essary and universal feature of causal relations in the world 
(Hausman & Woodward, 1999). However, the Markov con-
dition has also been criticized. Particularly Cartwright 
(2001, 2002) argued that the proof for the necessity of the 
Markov condition in the deterministic case is valid, but va-
cuous, and the proof of necessity in the probabilistic case is 
invalid or at least question begging.  

 
Markov Condition on the Type Level 

It is possible that some data may provide evidence for a 
(probabilistic) generative causal relation between events A 
and B on the one hand and events B and C on the other 
hand, but this does not necessarily entail that A and C are 
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positively related. Consider Figure 1, which illustrates this 
point. Here P(B | A) > P(B | ¬A) as well as P(C | B) > 
P(C | ¬B). Thus, both partial relations indicate a generative 
causal relationship. Nonetheless, paradoxically, P(C | A) is 
lower than P(C | ¬A). Thus, although the initial event A 
(probabilistically) leads to the intermediate event B, and B 
(probabilistically) leads to the final effect C, A does not lead 
to C but rather to ¬C.  This paradox would also arise if one 
infers P(C | A) using causal strength measures like ΔP or 
causal power. The single links will both be positive. But if 
we marginalize over B and then derive estimates of causal 
strength directly for the relation A and C, one would obtain 
a negative (preventive) relationship. A similar logic holds 
for refined measures for the existence of single causal links, 
like causal support (Griffiths & Tenenbaum, 2005).  

Hence, on the level of the categories used here, the 
Markov assumption is violated for this data set. While a 
causal chain obeying the Markov condition entails that A 
and C become independent when conditionalizing on B, in 
this case C does not become independent from A. 

 
Figure 1: Example for positive causal relations between 

classes A and B and between classes B and C, but a negative 
relation between classes A and C. 

 
Note that this paradox only arises because causal relations 

are usually defined on the level of types, not on the level of 
individual tokens. The paradox does not arise on the level of 
individual tokens. For example, in regard of the individual 
symbolised by a „triangle‟ „A → B → C’ and „A → C’ hold; 
similarly for the individual symbolised by a „heart‟ „A → ¬B 
→ ¬C’ and „A → ¬C’ hold. If causal relations were only 
concerned with individual tokens the problem would not 
arise, but then the very concept of a causal law would be 
meaningless and without any predictive content.  

Goals and Hypotheses 

In this paper we aim to we examine whether participants‟ 
causal reasoning conforms to the Markov condition when 
making judgments about the relation between A and C, even 
when presented with data that violate this assumption.  
We predict that participants‟ judgments will conform to a 

Markov based integration of single links into mental causal 

models (Waldmann et al., 2008, cf. in a more general con-

text, Johnson & Krems, 2001), although the presented  data 

violates the Markov condition thereby invalidating transitive 

inferences from A to C. To examine peoples‟ inferences we 

here focus on the simplest and most uncontroversial meas-

ure, conditional probabilities (cf. Oberauer, Weidenfeld, & 

Fischer, 2007; Evans & Over, 2004). 
Related research (Ahn & Dennis, 2000; Baetu & Baker, in 

press), has indicated that positive causal relations between A 
and B and between B and C lead participants to assume that 

there is also a positive relation between A and C. However, 
in these experiments covariation information about the A-C 
relation was not available, thus participants could not di-
rectly assess the relation between A and C. By contrast, in 
our studies we provide our participants with data indicating 
non-transitive causal relations. The individuating informa-
tion about the involved tokens would allow participants to 
construct chains in which the Markov assumption does not 
hold. In such chains transitive inferences would not be war-
ranted. Hence, we do not only investigate the assumptions 
about the relation between A and C in the absence of infor-
mation, but we provide information that runs counter to in-
ferences based on combining single links by applying the 
Markov assumption. We tested this prediction in three ex-
periments in which we successively increased the availabil-
ity of the data indicating a violation of the Markov assump-
tion (Table 1). Thus, we investigate whether and under 
which conditions participants use the Markov assumption in 
causal chains psychologically, even if this assumption is 
objectively violated.  

 
Table 1: Overview of the experiments 

 

 Intransitive 
token data 
 

Directly obser-
ving data on  
A and C 

Data  available 
while judging 
P(C | A) 

Experiment 1    
Experiment 2    
Experiment 3    

Experiment 1  

In Experiment 1 we investigated whether and how an infe-
rence regarding the relation between two events A and C is 
affected by an intermediate event B while keeping every-
thing else equal. In the control condition (AC) participants 
were only presented with data regarding the bivariate rela-
tion between A and C, which indicated that the two events 
were independent (i.e., P(C | A) = P(C | ¬A) = 0.5). In the 
chaincondition (ABC) participants were additionally 
presented with data regarding an intermediate event B.  

Figure 2: Design of Experiments 1 to 3.  
 

The data (cf. Figure 2) showed positive dependencies be-
tween A and B as well as between B and C, but the relation 
between A and C was identical to the control condition (i.e., 
P(C | A) = P(C | ¬A) = 0.5). Using individuating item infor-
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mation and simple one-dimensional rules participants could 
find out that A and C occurred actually independent of each 
other. Thus, our study goes beyond previous research in 
which the data on the relation of A and C was not available 
(Ahn & Dennis, 2000; Baetu & Baker, in press). 

However, if people only base their judgments on the inte-
gration of individual links, different judgments for the rela-
tion between A and C are expected depending on whether 
people make a transitive inference from A to C based on the 
A to B and B to C relations, or estimate the relation between 
A and C directly from the data.  
 
Participants Sixty-two students from the Georg-August 
Universität Göttingen took part in exchange for candy. Ad-
ditionally they could win a prize. They were randomly as-
signed to one of the two experimental conditions (ABC 
vs. AC). 

 
Materials Participants were told to imagine being a deve-
lopmental biologist who investigates the metamorphoses of 
a species of microbes. The participants were requested to 
investigate three phases of the microbes‟ metamorphosis. In 
each of the three phases they should examine whether the 
microbes do or do not generate a certain kind of carotene (α-
carotene, β-carotene and γ-
carotene, respectively). Next 
participants received information 
about 40 individual microbes. 

The exemplars (“microbes”) 
were represented by circles fac-
torially combining two dimen-
sions, grayscale and size. Figure 
3 shows the used item space. 
The circles varied in eight steps 
along the dimensions grayscale 
(white to black) and size (small 
to big). A pretest showed that 
subjects were clearly able to dis-
tinguish the items. The different 
event categories A, B, and C 
were created by rotating the category boundary through the 
item space, resulting in orthogonal categories A and C (Fig. 
2). To allow the three categories to cut clearly through the 
item space, we eliminated some items (cf. Fig. 3).  

 
Procedure First participants were presented with data con-
cerning the first and the second developmental stage (Fig. 
4). The data for phase 1 arranged the microbes according to 
whether they did have or did not have produced α-carotene 
(event A). The data was presented in overviews to ease the 
task. The same microbes in the second phase were arranged 
according to whether they did or did not generate β-carotene 
(event B). Both panels – each on a large page - were pre-
sented simultaneously to participants (Fig. 4). Participants 
had about a minute time to examine the data sets.   

Next, participants were requested to judge whether α-
carotene (A) rather leads to β-carotene (B) or to no-β-
carotene (¬B). While asking the question, the experimenter 
pointed to the corresponding classes on the panels. Partici-
pants then had to provide an estimate of the conditional 

probability that given α-carotene (A) in the first phase, these 
microbes produced β-carotene (B) (i.e., provide an estimate 
of P(B | A)). Because participants may not understand that 
the absence of a relation (i.e, P(B | A) = P(B | A) = 0.5) 
implies an equal split of cases, we used a rating scale from  
-100 to + 100 (cf. Figure 5). 

 

Figure 5: Example of a used rating scale. 
 
Subsequently, the Phase 1 data was removed and the 

Phase 3 data was added. These data presented information 
which microbes had produced γ-carotene (C) or no γ-
carotene (¬C) (Fig. 4, cf. Fig. 2 and Fig. 3). Participants 
then had to estimate the conditional probability P(C | B) (i.e. 
asked to estimate whether microbes which produced β-
carotene (B) would also produce γ-carotene (C)). Finally, all 
the two remaining data sets were removed and participants 
were asked to judge whether microbes that produced α-
carotene (A) produced rather γ-carotene (C) or rather no γ-
carotene (¬C). In the control condition, participants were 
shown data sets 1 and 3 only and asked to estimate P(C | A).  

 
Results and Discussion The obtained and predicted condi-
tional probability judgments are shown in Table 2. The pre-
dicted probabilities were linearly transformed to accommo-
date for the used scale between -100 and + 100 (e.g., P(C | 
A) = .62 is +24 on this scale, cf. Fig. 2). 

With regard to the evaluation of the single links, partici-
pants clearly judged that A leads rather to B than to ¬B and 
that B leads rather to C than to ¬C. Both estimates differed 
significantly from zero (P(A | B): t(31) = 5.43, p < .001; 
P(B | C): t(31) = 8.29, p < .001). The critical judgment on 

Figure 3: Stimulus ma-
terial: microbes with 

three cuts through item 
space in Phases 1 to 3. 

P2 and P3. 

Figure 4: Data panels successively shown to the participants. 

Left  side of the scale:
Microbes with Alphacarotine

later tend to develop 
no Betacarotine

o---o---o---o---o---o---o---o---o---o---o
-100 -80  -60  -40  -20  0  20   40      60 80  100

Right side of the scale:
Microbes with Alphacarotine
later tend to develop 
Betacarotine

0 in the middle means that Alphacarotine and Betacarotine only occur indepentently together.
-100 means that Alphacarotine-microbes will later never become Betacarotine-microbes. 
100 means that Alphacarotine-microbes later never become Betacarotine-microbes. 
Please use the values in between for intermediate strengthes of the relation.

Middle of the scale:
Alphacarotine and 

Betacarotine occurs only 
independently together
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P(C | A) was significantly higher than zero (t(31) = 3.82, p < 
.01). A quite different judgment was obtained in the control 
condition, in which participants even gave slightly negative 
ratings. Consequently, these estimates differed significantly 
between conditions, t(60) = 4.03, p < .001). Both estimates 
also closely corresponded to the probability estimate derived 
from a transitive inference from A to C via B (linearly trans-
formed to the scale between -100 and +100). 

 
Table 2: Mean estimates (±SE) in Exp. 1. 

 

 B | A C | B C | A 

data transitive 

Condition 
ABC 

Predicted +50 +50 ±0 +24 

Human 
+38  
(7.1) 

+48  
(5.8) 

+25  
(6.6) 

Condition 
AC 

Predicted - - ±0 

Human - - 
-12  

(6.7) 

Note: All judgments were given on a scale -100 to +100.  
 
These findings indicate that although A and C were not sta-

tistically related, participants appeared to reason transitively 
based on the type level. Although bottom-up information was 
available showing that A and C are independent, participants 
in the chain condition gave positive ratings that clearly dif-
fered from those obtained in the control condition. These re-
sults are consistent with the idea that participants first induced 
two separate causal links A→B and B→C and then integrated 
them into a causal chain obeying to the Markov condition. 
Later they used this causal model to make inferences about 
the relation between A und C. The findings corroborate the 
idea that participants reasoned transitively even if there is 
bottom-up information available that speaks against a transi-
tive inference. 

Experiment 2  

In Experiment 1 participants were sequentially provided with 
data regarding the relation between A and B, and B and C, 
respectively. However, participants never saw the data sets 
regarding A and C at the same time. Although it should have 
been easy to use categories to detect the independence be-
tween A and C, one may object that these transitive inferences 
were due to the fact that participants could not observe the 
violation directly. To test this hypothesis, in Experiment 2 all 
three data sets (cf. Fig. 4) were simultaneously presented to 
participants. We assumed that despite the simultaneous pres-
entation of the data participants may nevertheless derive the 
estimates from causal model representations, thereby making 
transitive inferences. 

 
Participants Sixty-four students volunteered in exchange for 
candy. They were randomly assigned to either of the two 
conditions (ABC vs. AC) (cf. Fig. 2). 

 
Material and Procedure We used almost the same material 
and procedure as in Experiment 1. To control for potential 
salience differences in the stimuli we used several category 
schemes in both conditions (Figure 6). In the chain condition, 

participants were first pre-
sented with data sets A and 
B (cf. Fig. 2). Then they 
had to judge P(B | A). We 
used the same scale as be-
fore, ranging from   -100 to 
+100 (Fig. 5). Subse-
quently, data set C was 
added, this time without 
removing the data regard-
ing event A. Thus, all three 
data sets were visible at the 
same time, thereby allow-
ing participants to directly 
examine the relation be-
tween A and C. Participants had time to inspect the data for 
about a minute. Then they were asked to estimate P(C | B). 
Finally, all panels were removed and participants were 
asked to judge P(C | A). 

 
Table 3: Mean estimates (±SE) in Exp. 2.  

 

 B | A C | B C | A 

data transitive 

Condition 
ABC 

Predicted +50 +50 ±0 +24 

Human 
+50  
(5.0) 

+39  
(6.9) 

+26  
(7.1) 

Condition 
AC 

Predicted - - ±0 

Human - - 
- 10  
(7.6) 

Note: All judgments were given on a scale -100 to +100.  
 

Results and Discussion Table 3 shows that participants again 
judged the relation between A and B and B and C, respective-
ly, as being positive. Again both estimates differed signifi-
cantly from zero [P(A | B): t(31)= 9.96, p <  .001 and  
P(B | C): t(31) = 5.68, p <  .001). The result for P(C | A) 
closely resembled the value entailed by a transitive infe-
rence from A to C via B. Thus, even in the presence of data 
showing that A and C are not related, participants gave sig-
nificantly higher estimates in the chain condition than in the 
control condition (t(62)= 3.54,  p < .001). 

Experiment 3 

In Experiment 2 participants could inspect all data sets si-
multaneously, but the data was removed prior to judging 
P(C | A). In Experiment 3 we aimed to investigate whether 
peoples‟ inferences adhere to transitivity even when contra-
dictory data is directly available when judging P(C | A). 
Hence, this time participants judged the relation between A 
and C in the presence of data indicating a zero contingency.  
 
Participants Sixty-four students from the University of 
Göttingen participated voluntarily in exchange for candy. 
Participants were randomly assigned to either the chain 
condition (ABC) or the control condition (AC).  

 
Material and Procedure We used the same material and 
procedure as in Experiment 2.  As before, participants were 

Figure 6: Counterbalancing 
conditions of Experiment 2 
(analogously for the Control 

Conditions). 
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first presented with data on events A and B. After inspecting 
the data they were requested to judge the relation P(B | A). 
Then the third data set regarding event C was added to the 
two other sets. Then, while all three data sets were visible, 
participants were asked to provide an estimate of P(C | A). 
Thus, the data indicating that there is no relation between A 
and C was directly available, so that judgments had not to 
be based on inferences from memory at all. In the control 
condition participants were only shown the two data sets 
regarding A and C and asked to judge P(C | A). 

 
Results and Discussion Table 4 shows that participants 
again judged the relations between A and B as well as be-
tween B and C positively. Both estimates differed signifi-
cantly from zero P(A | B): t(31)= 6.89, p <  .001; P(B | C): 
t(31) = 9.93, p <  .001). The main result was that the mean 
rating for P(C | A) again closely resembled the value ex-
pected on the basis of the Markov assumption and resulting 
transitive reasoning (Table 3). As before, participants gave 
significantly higher estimates in the chain condition than in 
the control condition, t(62) = 2.84,  p < .001.  

 
Table 4: Mean estimates (±SE) in Exp. 3.  

 

 B | A C | B C | A 

data Transitive 

Condition 
ABC 

Predicted +50 +50 ±0 +24 

Human 
+44 

 (6.5) 
+47  
(4.7) 

+17  
(5.8) 

Condition 
AC 

Predicted - - ±0 

Human - - 
- 9  

(6.9) 

Note: All judgments were given on a scale -100 to +100.  
 

Thus, although all participants had the same information 
available when judging P(C | A), the two conditions strongly 
differed.  Participants in the chain condition stated that 
events A and C are positively related, whereas participants 
in the control condition judged them to be independent. 
Moreover, the absolute mean value in the chain condition 
(+17) was very close to the value entailed by a transitive 
inference from A to C (+24).  

General Discussion 

Experiment 1 to 3 provide a crescendo of increasingly strict 
tests of the hypothesis that people reason transitively even if 
the Markov condition does not hold and, therefore, transitive 
inferences are not warranted (cf. Table 1). Experiment 1 
showed that people made judgments about P(C | A) as if 
transitivity and the Markov condition were given, even 
when we provided contradictory information. Experiment 2 
replicated this finding in a context in which participants had 
the opportunity to directly assess the relation between A and 
C. Nevertheless, the obtained estimates provided strong 
evidence for transitive inferences based on a causal model 
constructed by chaining the individual causal links. Finally, 
Experiment 3 showed that the differences in the judgment 
regarding P(C | A) between the chain and control condition 
remained stable, even though participants had data about A 

and C available when making their judgment. Hence, even 
in presence of contradictory data participants seem to reason 
transitively by integrating the two single causal links AB 
and BC into one overall mental causal model by using the 
(objectively violated) Markov assumption. As a conse-
quence they made transitive inferences, not consistent with 
the actual data. Interestingly, the obtained judgments did not 
differ much across the three experiments. The deviations 
from the bottom-up data were only a bit less pronounced in 
Experiment 3. The average ratings were always close to the 
predictions derived from the Markov assumption.  

These findings go clearly beyond previous studies (Den-
nis & Ahn, 2000; Baetu & Baker, in press) in which reason-
ers were never presented with data that contradict transitivi-
ty and the Markov condition. While these studies showed, 
that people seem to believe in the Markov assumption in 
general, we were able to show that they do so even when 
contradictory evidence was directly available to them.  

Cartwright (2001, 2002) criticized that the Markov as-
sumption has been treated as a universal and necessary as-
pect of causal reasoning. One may object that the Markov 
assumption always holds on the level of individual links 
(i.e., the token level) and that the violation of the Markov 
assumption in our experiments only occurred on the cate-
gorical level. However, categories play an indispensible role 
in causal prediction and are a necessary prerequisite for 
causal induction since causal relations can only be noticed on 
the basis of events that are categorized (Waldmann & Hag-
mayer, 2006). Standard Bayes net account assume that 
events (or causally effective objects) are classified into cat-
egories, and that causal laws are defined on the categorical 
level (cf. Kemp & Tenenbaum, 2009). We here worked with 
categories that were given, but did not adhere to the Markov 
condition. As Cartwright correctly pointed out, it is perfect-
ly possible that the Markov condition does not hold in the 
world. Our results show that participants seem to employ 
the Markov condition subjectively, even with categories that 
violate Markov objectively. .  

Although this is a new finding in the causal domain and in 
relation to the discussion of transitivity and the Markov 
condition, there are related findings pointing into a similar 
direction. For example, Simpson’s paradox, describes the 
fact that statistical dependencies can vanish, or even be re-
versed, when moving from populations to subpopulations. 
In a number of studies Waldmann and Hagmayer (2001; see 
also Fiedler, Walther, Freytag, & Nickel, 2003) demonstrat-
ed that participants have problems to adequately control for 
a confounding third variable which reverses the relation 
between two events. While in the experiments presented 
here participants aggregated the individual causal links and 
thereby violated the overall non-existent relation, partici-
pants in these former experiments integrated subpopulations 
violating the relation among the variables in the overall 
population. In a related context, so-called pseudo-contingen-
cies have been discussed (cf. Meiser & Hewstone, 2004). 
Pseudo-contingencies, however, normally result from highly 
skewed distributions, which was not the case in the present 
studies in which all three events A, B, and C had equal prob-
abilities. In our studies the paradox arose not because of a 
skewed distribution of events but rather are due to the used 
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rotation of the used categories over tokens, that is, cate-
gories with overlapping boundaries within a causal chain.  

In conclusion, we have provided evidence consistent with 
the idea that people derive probability estimates by combin-
ing single causal links into complex causal models in a 
modular way (Waldmann, Cheng, Hagmayer, & Blaisdell, 
2008).  This finding also supports the psychological validity 
of a core assumption of the Bayes net account, the causal 
Markov assumption. However, for other causal structures 
this may not hold. Whether participants believe in the Mar-
kov assumption for other causal structures is still an open 
question, although there is some counterevidence (e.g. 
Rehder & Burnett, 2005, cf. Mayrhofer, Goodman, Wald-
mann, & Tenenbaum, 2008). Research on common cause 
structures (property attribution tasks) suggests that proper-
ties that are actually probabilistically related need not to be 
treated independently (cf. v. Sydow, 2009). Future research 
needs to investigate these questions in more detail for dif-
ferent causal structures.  

In regard of causal chains, however, the current results 
suggest a transitivity assumption for non-transitive data  
– hence, a kind of transitivity heuristic.  
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