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Abstract 
We present an ART-based neural network model (adapted from 

[2]) of the development of discrimination-shift learning that 
models the trial-by-trial learning process in great detail. In 
agreement with the results of human participants (4–20 years of 
age) in [1] the model revealed two distinct learning modes in the 
learning process: (1) a discontinuous rational learning process by 
means of hypothesis testing; and (2) a slow, yet discontinuous 
learning process. Categorical differences in behavior are the result 
of uniformly distributed dimensional preferences. In addition, it 
models the developmental differences between reversal and 
nonreversal-shift learning. The network implements attention-
guided learning by selective sensory processing based on 
dimensional preferences mediated through reinforcement. The 
developmental differences consist of separate adjustment of the 
valuation of negative reinforcement, which is proposed in the 
empirical neuroscience literature [3].  

Keywords: discrimination-shift learning, cognitive 
development, neural network.  

Introduction 
Discrimination-shift learning is a long-standing paradigm 

in the investigation of human category learning and concept 
formation. A typical discrimination-shift learning task 
consists of two phases: discrimination learning and shift 
learning. Discrimination learning requires participants to 
choose the correct stimulus from a pair of stimuli.  The 
stimuli presented differ on two or more dimensions (e.g. 
color and shape). Each of the dimensions has two possible 
values (e.g. white and black; circle and triangle), resulting in 
four possible stimuli. Reinforcement contingencies are such 
that only the choice of one value on a particular dimension, 
the so-called relevant dimension, is reinforced positively. 
Choosing the opposing value on the relevant dimension 
leads to negative reinforcement. The other dimension is 
irrelevant with respect to reinforcement and thus choices 
based on either value on this dimension lead to positive 
reinforcement in 50% of the choices made.  

During the second, shift phase of the task, which starts 
once a specified learning criterion has been reached in the 
first phase, reinforcement contingencies are shifted. 
Numerous developmental differences have been found in 
comparing performance of children and adults on 
discrimination-shift tasks (see the literature on 

(non)reversal-shift learning and reviews by [4-7]). In the 
current paper we focus on the developmental findings 
related to the difference between reversal shifts (RS) and 
nonreversal shifts (NRS). After a RS, all contingency 
relations are reversed leaving the same stimulus dimension 
relevant for discrimination (e.g., black is correct instead of 
white). A NRS makes a formerly irrelevant dimension 
relevant, shifting only two out of four contingency relations 
(e.g., circle is correct instead of white).  

Developmental differences in discrimination learning, the 
first phase of the task, are mainly manifested as an increase 
in learning efficiency from childhood to young adulthood 
[6]. In the Levels-of-function theory two distinct learning 
modes are posited to account for the observed difference: 
(1) an hypothesis-testing, rational learning mode; and (2) a 
slow and incremental learning mode. 

Subsequent analysis of these hypothesized learning modes 
has led to a refining of their proposed nature. A finite 
mixture model analysis on the error distribution of simple 
discrimination learning data gathered from subjects aged 6 
to 10 was conducted in [8]. The error distribution was found 
to be bimodal, i.e. the distribution was best described as 
composed of two components. One component best 
describes a model of learning through hypothesis testing. 
The other component included slow learners who did not 
show any increase in performance during the first 16 trials 
(although criterion was reached in 48 trials). 

These findings are extended by a more detailed 
investigation of the aforementioned learning modes [1]. 
Data from a simple discrimination-learning task (230 
subjects, ages 4--20) was analyzed by fitting several 
mathematical learning models to the sequences of responses 
produced by the participants, i.e. the trial-by-trial learning 
process was modeled. Learning models were specified as 
latent Markov models (or mixtures thereof). The best fit on 
the data was obtained by a mixture model with a component 
of discontinuous rational learning through hypothesis testing 
and a component of slow, yet discontinuous learning (as 
opposed to incremental learning). The relative proportions 
of the components depend on age and relevant dimension 
(with respect to reinforcement contingencies) in the 
following two ways: (1) the proportion of rational learners 
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increases with age; and (2) in the younger age groups, the 
proportion of rational learners is higher when the relevant 
dimension is color than when the relevant dimension is 
shape. In the older age groups there was no such difference.  

Several phenomena in childrens’ and adults’ 
discrimination-shift learning (DSL) are evident in the 
literature. One basic effect, with regard to discrimination 
learning in adults (and children older than 10), is that RS are 
executed more quickly than NRS.  

In contrast, for children below 10, some studies show that 
the NRS require fewer trials to learn than the RS, whereas 
other studies fail to show any difference [5,6,9,12]. Another 
relevant finding is that learning RS on a child’s ‘preferred’ 
dimension (e.g. color as opposed to shape) results in better 
performance than on a relatively less salient dimension 
relative to NRS; this was not found in experiments with 
adult subjects. Finally, the overtraining effect is also 
apparent, where training, continued after the learning 
criterion is reached, facilitates RS but not NRS in children.  

The purpose of this paper is to model the two modes of 
discontinuous learning and the basic developmental results 
of discrimination-shift learning using a neural network 
architecture with incremental-learning rules. The network 
architecture will be implemented such that a cognitively 
plausible and developmentally relevant parameter accounts 
for systematic variation in learning behavior.  

Models of Discrimination-Shift Learning 
Krushke [9] developed the AMBRY connectionist model of 
DSL that qualitatively fits adult data. Two important 
components are contextual bias and response-to-category 
mapping. The biased attention to input leads to preservation 
of dimensional attention, which would account for ease of 
RS over NRS. The separation of responses from the internal 
category structure is considered essential for shift learning.  

Raijmakers, et al. [10] created a neural network utilizing 
the backpropagation error correction algorithm and one 
hidden layer to model DSL. The networks often learned 
NRS faster than RS, although a trial-by-trial analysis 
performed similarly to preschool children during shift 
learning. Overtraining however did not help the network to 
perform as adults, but also not as children. This lead to the 
conclusion that these particular feedforward networks that 
have been applied as models of higher cognitive tasks such 
as balance-scale learning, being bottom-up associative 
systems, are inadequate models of human learning as it is 
involved in discrimination learning, as they cannot 
incorporate the top-down categorization of adults and 
children on discrimination shift learning. 

Sirois & Shultz [12] use a cascade-correlation algorithm 
to overcome the shortcomings of previous DSL neural 
network models. Given that these feedforward networks can 
adapt their topology, and therefore allow for structural 
plasticity, they are of great relevance in modeling 
developmental phenomena. Essentially, the architecture of 
the adult and child networks do not differ in DSL modeling 
as discrimination shifts are linearly separable problems. The 

researchers argue that overtraining leads to differences in 
children and adults on these tasks. This coincides with 
findings in which overtraining preschoolers leads task 
performance similar to that of older subjects [5,6]. This is 
implemented in the network through a lowering of the 
allowed discrepancy between desired input and output. This 
lowered score-threshold fine-tunes pattern discrimination 
through extensive training, leading to fewer learning trials 
for child as opposed to adult networks; this is in contrast 
with humans. The results do reflect empirical data in that RS 
are learned more quickly than NRS in adult networks and 
equally quickly in child networks. The authors did not 
compare the trial-by-trial learning in the pre-shift phase of 
the network. However, it is typically expected that these 
incremental learning models show an incremental learning 
process in contrast to the all-or-none learning observed by 
humans, both children and adults.  

Model specification 
To model sequential learning behavior on a simple 
discrimination task, an ART (Adaptive Resonance Theory, 
[23]) neural network architecture was chosen that was 
adapted to simulate perseveration behavior on the 
Wisconsin Card Sorting Task (WCST) [2]. The original 
architecture consists of an input-to-category node structure 
mediated by an attentional gating system of biases acting 
selectively on dimensional attributes in the input. Biases are 
mediated by so-called habit nodes which detect how often 
classifications have been made irrespective of feedback. 
Bias activation is controlled by a reinforcement signal. This 
signal is mediated by the reinforcement gain parameter. 
Lowering the value of this parameter will increase the 
likelihood of dimensional perseveration through the bias 
nodes. It thus models a decrease in the ability to adjust 
categorization behavior based on changing reinforcement 
contingencies. 
The model was adapted to perform a simple discrimination 
task. Two major structural changes were made: 
1. The reinforcement gain parameter was split in two to 

reflect the different influences of positive (α+) and 
negative (α-) reinforcement on responding. Frank et al. 
[15] made a similar distinction. They report empirical 
support for the dissociation between learning from 
positive reinforcement and learning from negative 
reinforcement in a study on how dopamine affects these 
distinct learning processes in Parkinson's patients. They 
present a computional model [16, 17] that accounts for 
this dissociation by proposing that two distinct 
dopamine-dependent pathways exist in the basal 
ganglia (BG), one excitatory pathway for positive 
reinforcement learning and one inhibitory pathway for 
negative reinforcement learning. These pathways are 
part of a larger model incorporating cortical structures 
as well as the basal ganglia and thalamus. The basal 
ganglia are influenced top-down by the orbitofrontal 
cortex (OFC) which represents positive and negative 
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reinforcement values separately in the medial OFC and 
lateral OFC, respectively.  

2. A layer of two response nodes was added on top of the 
category layer. This allows the network to differentiate 
not only between categories, but also between 
responses to categories (as in AMBRY where internal 
category knowledge is separated from overt category 
responses in a similar manner). A stochastic process 
based on the negative reinforcement gain parameter (α-) 
controls the update of the connections between the 
category nodes and the response nodes.  

Learning in the ART network takes place in two ways: (1) 
updating the bias nodes and (2) updating the weights from 
category to response nodes. The final network topology is 
given in figure 1 (A full specification is supplied as an 
appendix). As can be seen a total number of four nodes code 
for input features. There are two nodes per dimension of the 
discrimination task (color and shape). Input signals 
propagate to category nodes, one for each of the four 
possible stimuli (white circle, white triangle, black circle, 
and black triangle). The category nodes mutually inhibit 
each other. Signals from the input to the category nodes are 
mediated by attentional gating through bias node activation. 
Response nodes determine the response of the network by 
comparing the activation values of the category nodes using 
weighted connections between category and response nodes. 
These weights are randomly initialized per dimensional pair 
as either zero or one.  This thus expresses a response 
preference within each dimension. 

 

 
Figure 1: ART discrimination network. 

 
Attentional gating of signals from input to category nodes 

is done through bias nodes acting on input dimensions. Bias 
nodes are initialized uniformly random as either high or low 
such that if one bias has a value greater than two, the other 
bias node is smaller than two by the same amount. The 
deviation from two is uniform. This expresses an initial 

dimensional preference of the network. Bias activation is 
determined by six factors. A bias node is excited by (1) its 
own activation, (2) positive reinforcement mediated by the 
learning parameter, (3) by a match-signal computed 
between input and the category node with the highest 
activation value, and (4) by the corresponding habit node 
(provided its activation exceeds a specified threshold). It is 
inhibited by (5) the competing bias node and by (6) negative 
reinforcement. The separation of bias and habit subsystems 
in the current model is an implementation of the idea that 
memory for reinforcement value and (motor) response 
memory are functions of interacting, but distinct, 
subsystems in the brain [2]. A similar distinction has been 
shown to account for different types of errors subjects make 
on the WCST, namely failures to maintain set and 
perseverative errors [14]. Cortical-subcortical computational 
models have also been developed that make a similar 
distinction (e.g. [13,16,17]; see also [20] for a 
neurobiological discussion). 
In [18] a neural model of perseveration is developed based 
on a distinction between active (in the prefrontal cortex) and 
latent memory representations (in the posterior cortex). This 
is comparable to, although not identical with, the distinction 
between active bias memory and latent habit memory in the 
current model. For any category-learning task (e.g. WCST, 
discrimination learning etc.) distinguishing between 
perseverative errors and errors of set-maintenance seems to 
require a distinction between a memory system that can 
implement active and flexible responses and a memory 
system for latent representations of previous responses. This 
is what we have attempted to implement using the bias and 
habit subsystems. 

With respect to the current model, these two views are not 
radically different. The bias system is the driving force 
behind dimensional preference and thus responding in the 
network. Mediation through reinforcement controls 
response shifting (i.e. new response-behavior). The habit 
system keeps track of the responses gives and influences the 
bias-system to continue in its previous response-behavior 
(i.e. maintaining response-behavior). 

 
Modeling Development Whereas originally reinforcement 
mediation was used to model differences in perseveration 
behavior on the WCST between healthy subjects and frontal 
patients [2], in the current study such mediation is used to 
model developmental differences in simple discrimination-
shift learning.  It has been observed that the perseverative 
errors seen in frontal patients behavior are comparable to the 
mistakes children make [21]. Our hypothesis is that these 
mistakes are the result of a reduced effect of corrective 
feedback, i.e. children have trouble shifting from one rule to 
another because responding to changing reinforcement 
contingencies is not as efficient in children as it is in adults. 

We test this hypothesis by modeling a simple discrimi-
nation task (which is similar to the WCST) using the 
specified neural network model. Developmental differences 
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are modeled using different values for the negative feedback 
component of the reinforcement gain parameter.  

As mentioned, individual networks differ with respect to 
their dimensional preference (bias) and response preference 
per dimension (response nodes). These differences are not, 
however, related in any systematic way to the value of the 
reinforcement gain parameter. Therefore, any difference in 
performance between adult and child networks will be the 
result of a difference in negative reinforcement gain.   

Simulations and Results 
The networks were submitted to RS and NRS shift tasks. 
Stimuli follow one of four learning rules: (1) black maps to 
A, white maps to B, (2) white maps to A, black maps to B, 
(3) triangle maps to A, circle maps to B and (4) circle maps 
to A, triangle maps to B. Through a binary encoded vector 
of one of four stimuli, a black or white triangle or circle, 
was presented to the network. The network then chooses 
response category A or B and is given reinforcement 
dependent upon correct categorization. One fourth of each 
developmental group began with each rule. Initial 
dimensional preference was uniformly distributed over all 
networks via random initialization. The networks were 
given 48 trials to reach a learning criterion of 10 
consecutive correct responses for this initial discrimination-
learning rule. The rule was then shifted with either a 
reversal or non-reversal rule and 48 trials were presented. 
Networks that failed to reach the 10 sequentially correct 
criteria were removed from analyses (as is standard 
procedure in human studies). Further details and parameter 
values are presented in the Appendix.  
 

Discrimination Learning An analysis of variance on the 
number of trials in the preshift phase reveals a main effect 
of age (i.e. adult versus child) on the number of trials. Adult 
networks learn significantly faster than child networks. F(1; 
418) = 466.46, p < 0.001. An interaction effect between 
initial bias and rule was also found. Networks with an initial 
bias-matching rule (i.e. the initial bias matches the rule to be 
learned) learn significantly faster than networks with an 
initial bias not matching rule (non-matching networks). F(3; 
418) = 160.63, p < 0.001. Finally, an interaction effect was 
found between age, initial bias and rule. F(3; 418) = 67.09, 
p < 0.001. That is, the difference in number of trials to 
criterion between matching and non-matching networks is 
greater for child networks than for adult networks (a similar 
effect is reported in [1]). The reduced effect of corrective 
feedback for child networks thus magnifies, as expected, the 
differences in learning rate between matching and non-
matching networks.  
 
Markov Model Analysis Several hidden Markov models 
were fit to the trial-by-trial data generated by adult and child 
networks. These statistical models include single component 
models of incremental learning and of discontinuous 
learning. In addition also combination of all single 
component models, i.e. two-component models, are fitted to 

the data. For the simulation data generated by the adult 
networks, a single component discontinuous-learning model 
provided the best fit. The learning parameter, i.e. the 
probability of moving from the presolution state to the 
learned state, was estimated at 0.19. For the data generated 
by the child networks, a two-component model consisting of 
two discontinuous learning modes provided the best fit. For 
the slow, discontinuous learning component (describing 
70% of the data), the learning parameter was estimated at 
0.064. For the fast learning component the learning 
parameter was estimated at 0.35. Estimated parameters were 
very similar to the parameter estimates in [1].  
 

 
Figure 2: Backward learning curves of simulation data. 

Note that the peak at trial 0 is an artifact of the method 
because all sequences are aligned at the last error.  
 
Backward Learning Curves The discontinuity of the 
learning process is apparent from the backward learning 
curves. As can be seen from figure 3 for both adult (a) and 
child (b) networks the curve is flat at the 0.5 level before 
learning (left of the dashed line). It then jumps to near zero 
once the criterion is mastered (right of the dashed line). This 
clearly indicates the existence of a discontinuous learning 
process. 

 
Figure 3: Shift learning in adult and child networks 
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Discrimination-Shift Learning The mean number of trials 
to learning criterion post-shift is less for adult than child 
networks. An ANOVA with number of trials to learning 
criterion as dependent variable and age (adult/child), rule 
matching bias (yes/no) and shift type (reversal/non-reversal) 
revealed a significant main effect for age: F(1,625)=586.22, 
p<.001. Matching nor shift type revealed main effects, 
F(1,625)=1.83, p=.176 and F(1,625)=1.92, p=.678 
respectively. A significant effect of shift type on trials-to-
criterion is found for adult networks: F(1,398)=67.15, 
p<.001. No significant result for child networks was found: 
F(1,398)=.869, p=.176. See Figure 3.  
 

Conclusion 
 
We have presented a neural network model of the 
development of discrimination-shift learning that shows 
discontinuous learning in distinct learning modes. The 
effectiveness of negative reinforcement was varied between 
adult networks (high) and child networks (low). Networks 
modeling adult performance learn fast and are modeled by a 
fast, discontinuous learning process. The learning process is 
discontinuous for all child networks, and is best modeled by 
a two-component model with components for fast and slow 
learners. That is, only a subset of the child networks learn 
slower than the adult networks. Differences in learning rate 
were caused by an interaction between initial bias and the 
rule to be learned. Child networks are less able to switch 
dimensional preference and category-to-response connec-
tions because of the decreased influence of negative 
reinforcement compared to the adult networks. For child 
networks this results in a mixture of learning modes as 
found in the empirical study [1]. Note that the two-
component structure of the trial-by- trial learning data of the 
child networks is the result of a uniform distribution of 
initial dimensional preferences. That is, a continuous 
variation in networks’ initial state results in categorical 
difference in performance.  

The implementation of the stochastic process within the 
category-to-response connection based on the negative 
reinforcement parameter provided the required different-
tiation between stages of development after the shift has 
occurred. As expected, child networks executed shifts 
slower than adult networks. Also, reversal shifts were easier 
than non-reversals for adult networks, yet for child networks 
no significant difference was found. These results concur 
with empirical evidence (e.g. Espirito, 1975). From the 
model we can predict that children have a larger variation in 
the number of trials they need for shift learning than adults. 
This would also explain the inconsistent results presented in 
literature.  

A next step towards a more complete model of 
discontinuous discrimination-shift learning is a network that 
is able to induce its own representational categories based 
purely on input. In addition, future research could examine 
whether the overtraining effect can also be reproduced, 

whereby child networks with further training beyond 
criterion would perform like adult networks. 
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Appendix: Network Specification 
The network specification agrees with [22] with a few 
modifications for this DSL model. Input Ii is set to 5 when 
feature i (i=1,2,3,4: 1=black, 2=white, 3=triangle, 4=circle) is 
present in the stimulus and 0 otherwise. The feature nodes 
xi=1,2,3,4 are activated depending on Ii and category node 
activation, represented by yj (j=1,2,3,4: 1=black, 2=white, 
3=triangle, 4=circle) and weighted by zji: 
 

(1)  
 
 
with A=10, B=5, C=1, D=1 and f defined by: 
 

(2)  
 

Feature nodes xi activate category nodes yj weighted by zij 
and bias nodes Ωk (k=1,2: 1=color, 2=shape): 

 
(3)  

 
with I=100 and g defined by: 
 

(4)  
 
Weights zij and zji between x and y are fixed. If i=j , zij=5 

and otherwise zij=0.; zji=zij/5 resulting in 0 and 1 values. The 
category node yi with the highest activation value and the 
negative reinforcement gain α-determines the response a 
weighted by the weights between the two, initialized randomly 
at 1 or 0 and updated by: 

 
(5)  

 
with S=6.5 and ychoice represents y node activity where 

ychoicej=1 if yj=max(y) and 0 otherwise. The stochastic 
process added to augment response choice samples from a 
uniform random distribution between 0 and 6.5; if the value is 
< α- then σ is 1 and otherwise 0. Weights wyr are updated as 
follows:  

 
(6)  

 
with tr  set to 1 if response is correct and 0 if incorrect. The 

bias node activates itself, is inhibited by the competing bias 
node and is activated by the corresponding habit node and the 
reinforcement value mediated by positive and negative 
reinforcement, α+ and α- respectively. 

 
(7)  

 
 
 
with E=.01, F=3, G=1.1 and θ1=1. The reinforcement 

value is 1 for correct and -1 for incorrect response. Initial bias 
values are sampled from a uniform random distribution 
between 1.7 and 2.3 for adult and child networks. Positive and 
negative reinforcement gain is set to 1.2 and 8 for adult 
networks and 1.2 and .8 for child networks. Variable is a 
match signal occurring between input I and category node y: 

 
(8) 

 
in which i is the index of feature node x. J is the index of 

max(y), and k the index of the corresponding bias node. Ii is 
the input signal (5 or 0). Activation of the habit nodes is given 
by with H=.1, J=3 and θ2=.5. 

 
(9) 
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