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Abstract

Mathematics is often seen as the uncovering of eternal truths
that exist independently of the human mind. However, even
if this epistemological view is correct, the mathematics that
humans can know can only be the result of cognitive processes.
We investigate this ability of the human mind to make math-
ematical discoveries. More precisely, we present a cognitive
model of how the ability to use metaphors and analogies plays
a key role in such discoveries. As a proof of concept we present
an ACT-R model that uses path-mapping and that is capable
of discovering the commutativity property of addition.

Keywords: analogy; metaphor; mathematics; scientific discov-
ery; cognitive modelling.

Mathematical Discoveries
The Cognition of Mathematics

The way in which people construct, evaluate and modify math-
ematical concepts has received relatively little attention from
cognitive science. Likewise, automated mathematical theory
formation has so far put little emphasis on cognitively plausi-
ble mechanisms. In the Wheelbarrow project, we are, therefore,
working towards a cognitive theory of mathematical thought
in order to substantiate the existing theories and to improve
automated theory formation systems.

We build on two streams of research: embodied conceptual-
isation, which analyses mathematical ideas from a cognitive
perspective (Lakoff & Nufiez, 2000), and societal conceptuali-
sation based on Lakatos’s (1976) philosophical account of the
evolution of mathematical ideas. Both argue strongly against
the ‘romantic’ (Lakoff and Nifiez) or ‘deductivist’ (Lakatos)
style in which mathematics is presented as an ever-increasing
set of universal, absolute, certain truths which exist indepen-
dently of humans.

Our main interest is how mathematical concepts are formed
and modified by the embodied and situated human mind. For
instance, Euclid formulated geometric axioms to describe the
physical world — the foundations of Euclidean geometry. Eu-
clidean geometry was later modified by rejecting the parallel
postulate (one of the axioms), and non-Euclidean geometries
were formed, along with new sets of concepts. On a less cele-
brated but equally remarkable level children are able to formu-
late and modify mathematical rules about their environment
such as transitivity or the commutativity in arithmetic. Lakoff
and Nafiez’s theory of embodied mathematics and Lakatos’s
philosophy of mathematics suggest explanation of how this
may work.
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The Role of Metaphors

In this paper, we focus on the approach by Lakoff and
NUfiez (2000). They propose that the human embodied mind
brings mathematics into being. That is, human mathematics
is grounded in the bodily experience of a physical world, and
mathematical entities inherit properties of objects in the world,
such as being consistent or stable over time. Via exploration of
the physical world we build up mini-domains, which we then
map to abstract mathematical domains, allowing us to make
inferences in the abstract world by transferring knowledge
about the physical world. The main process enabling humans
to make this transfer is the ability to use metaphors.

Metaphors and analogies in mathematics have so far been
mainly documented by educators (for example, English, 1997;
Sfard, 1996). Despite the importance of metaphors and analo-
gies for discovering new concepts in mathematics, historians
and philosophers of mathematics, and mathematicians them-
selves have tended to be silent on the matter, with notable
exceptions such as Lakatos (1976, p 9; who recommends em-
bedding a conjecture in a distant body of knowledge, eg a
conjecture about solids in the theory of rubber sheets), Polya
(1954, p 15-22; who describes and analyses Euler’s appli-
cation of rules for finite equations to infinite equations) and
Weil (see Krieger, 2003; who discusses a number of fruitful
historical mathematical analogie.s)

Metaphors and Detecting New Scientific Concepts

Lakoff and N{fiez (2000) argue that our ordinary conceptual
system is fundamentally metaphorical in nature: metaphor
makes abstract thought possible, and the development of
thought is the process of developing better metaphors. They
characterise metaphors as a ‘grounded, inference-preserving
cross domain mapping’ (p 6), thus enabling us to use the infer-
ential structure of one domain to reason about another. They
catalogue a large number of mathematical metaphors, thus
suggesting how highly abstract mathematical ideas may be
discovered and understood, and how they can be traced back
to human embodiment.

Lakoff and N{fiez show how conceptual metaphors are re-
vealed by everyday language, eg the expression adding onions
to soup, suggests that add can mean physically placing objects
in a container. They place great emphasis on the type of do-
mains in a metaphor and distinguish two types of metaphor:
grounding metaphors, in which one domain is embodied and
the other abstract, and linking metaphors, in which both do-
mains are abstract. Many linking metaphors in mathematics
conceptualise some domain of mathematics in terms of arith-



metic, ie arithmetic is used as a source for many mathematical
metaphors, including points in space, spaces of any number
of dimensions and functions (p 387). Lakoff and NUfez’s
four different physical domains of Object Collection, Object
Construction, Measuring Stick and Motion Along A Path all
map to the domain of arithmetic, thus showing a many-to-one
mapping between the domains (chapter 3). An example of
such many-to-one mappings is addition, which is the target
of a mapping from putting collections together, putting ob-
jects together with other objects to form larger objects, putting
physical segments together end-to-end to form longer physical
segments and moving a distance away from an origin location.

Examples of one-to-many mappings include the domain
of sets, which is mapped to ordered pairs (p 150), natural
numbers (p 150) and naturally continuous space with point
locations (p 263). In these examples different components of
the source domain sets are identified and mapped, suggest-
ing that the domains are not fully pre-represented but consist
in different, interrelated schemata where the most relevant
schema is selected or constructed for each new metaphor. This
is in line with Hofstadter’s (1994) argument that finding a
good metaphor relies on extrapolating the currently useful
‘gist’ from a domain (which depends on the purpose of the
metaphor). These ideas go back to William James’s (1890)
claim that there is no property that is absolutely essential to
one thing.

Metaphor and Analogy

Metaphors are similar to analogies. Gentner (1983; see also
Gentner & Markman, 1997, p 48) proposes that when com-
paring two concepts we can distinguish whether there is an
analogy, a metaphor, a literal similarity or a mere appearance
similarity by looking at the number of relations and properties
that the two concepts have in common, see table 1. These no-
tions can, thus, be placed in a two-dimensional space. Accord-
ing to this classification there is no binary distinction between
analogy and metaphor but only a difference in degree.
Making these distinctions assumes that source and target
domains are represented in terms of objects and predicates.
Theories of mapping usually rest on the distinction between
attributes, predicates with one argument (to describe object
properties) and relations (predicates with more arguments to

Table 1: Metaphors and analogies. (Abstraction differs from
analogy in that it has only few object attributes in the source
as well as the target domain.)

mapped attributes mapped relations

literal similarity many many
appearance many few
analogy few many
metaphor some some
abstraction few many
anomaly few few
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describe interactions between objects). This is a fuzzy distinc-
tion even in natural language, but perhaps even more so in
mathematics: for instance, polyhedron might be the relation-
ship between the objects edge, face and vertex, an attribute of
a specific shape or an object itself.

Lakoff and Nufiez do not explicitly make this distinc-
tion. However, translating their natural language examples
of metaphor, some favour relation over attribute mappings,
placing these examples close to analogy. For instance, in the
Infinite Sums Are Limits Of Infinite Sequences Of Partial
Sums metaphor (p 197), in which limits of infinite sequences
are compared to infinite sums, limits of sequences are mapped.
Given the similarity between metaphor and analogy, we use a
cognitive model of creating analogies: path-mapping.

Modelling Scientific Discovery

Building computational cognitive models of scientific discov-
ery is difficult, because it requires the building of comprehen-
sive models that comprise many different cognitive abilities.
Nevertheless, such models have been built with some success,
for example by Schunn and Anderson (1998). They conducted
experiments and built a model of discovering the fan effect!
in psychology. However, in order to be able to control their ex-
periments (to allow a statistical analysis of the collected data)
they strictly limited the participants’ options — something very
much unlike real scientific work. Furthermore, their partic-
ipants were given a preexisting scientific hypothesis. (The
hypothesis was set as the goal of the cognitive model.) The
task was to confirm or disprove the hypothesis. This is dif-
ferent from the step that we are addressing here, namely the
formulation or discovery of a new hypothesis.

Related cognitive models also include algebra learning
(Anderson, 2007). However, these are models of learning from
instruction not of discovery. Thus, they are models of the ef-
fects of increased practise, ie they describe the speedup of
solving algebraic equations with increased practise.

A Case Study: Discovering Commutativity
Why Commutativity?

As a first case study we built a computational cognitive model
of discovering commutativity for addition, ie the fact that the
result of an addition is not affected by the order of the addends
(1+2=2+1). This seems an appropriate example, because
this rather elementary (albeit not trivial) discovery does not
require an extraordinary mathematical gift or a particular con-
stellation in mathematical history but has almost certainly
been made many times independently and spontaneously. The
main cognitive process driving this discovery is analogy (or
metaphor). As this process has already been studied in cog-
nitive science it lends itself to cognitive modelling. However,
we do not propose that it is the only way in which discoveries

1The fan effect is the observation that the time for memory recall
increases with the number of relevant facts. Thus, the more relevant
knowledge is available, the longer the retrieval of a fact takes. One
explanation is that the facts compete to be retrieved, and that resolving
this competition takes longer the more facts are available.



are made; insight can take many other forms.

Preconditions

Discovering commutativity requires a number of cognitive
abilities and some preexisting knowledge. Because the make
or break condition for developing a cognitive model of dis-
covery is to make sure that what the model discovers is not
something that the modeller already built in, we will describe
the cognitive abilities that can rather safely be assumed to
exist when a person (be it a mathematician or a second-grader)
discovers commutativity and take this as starting point.

By linking the discovery of certain mathematical facts to
using particular metaphors, Lakoff and N(fiez (2000) provide
us with a useful starting point. They list a number of cognitive
abilities required to make a discovery like commutativity.

Subitising and cardinality Psychological experiments with
young babies show that there is an innate ability to distinguish
object collections of different sizes. This subitising ability
enables babies (and older humans) to immediately identify
the cardinality of small object collections of sizes up to 3 or
4. In the classic experimental setup babies see a display of
objects within the subitising range. A screen is placed between
the objects and the baby, so that the objects are hidden from
view. Then an object is moved behind the screen (added) or
appears from behind the screen (subtracted). When the screen
is removed again and the resulting number of objects is as
expected (say, starting with 2 objects, removing 1 object and
revealing 1 object) the babies show no surprise. If the result is
unexpected (say, starting with 2 objects, removing 1 object and
revealing 2 objects) the babies do show surprise, eg by staring
at the objects for a longer period of time or by sucking on a
pacifier with an increased frequency. See Lakoff and NUfiez
(2000, p 18) for a discussion. Even though humans usually
have developed an abstract notion of number by the time they
are able to discover commutativity, it gives our model a firm
footing.

The screen experiments also show that babies have a notion
of cardinality. In versions of the experiment where, for exam-
ple, puppets were changed to balls, the babies did respond to
differences in the number of objects, but not to differences in
the identity of objects (see, Lakoff & Nufiez, 2000, p 18).

Arithmetic Is Object Collection Metaphor Lakoff and
NUfiez (2000) argue that the Arithmetic Is Object Collection
metaphor (the ability to understand arithmetic operations in
terms of manipulating collections of physical objects) is al-
ready available to the student when formal education in mathe-
matics begins. They point out that many techniques in teaching
arithmetic assume that this metaphor is available. For the case
of commutativity this means that the student already knows
that the cardinality of an object collection is not affected by
the order in which smaller object collections are put together
to form it.

Argument Ordering In addition to the knowledge that com-
mutativity holds for object collections the student/model must
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know that the order of arguments of an operation can affect the
result (as it does in removing objects from an object collection).
The ordering of arguments is a property of the path-mapping
model (see below), where the roles that objects fill in relations
are explicitly represented.

Mapping Knowledge In addition to having the knowl-
edge the model must also have the ability to create analo-
gies/metaphors that make use of the existing knowledge. For
this, we use the path-mapping algorithm.

Symmetry detector We finally assume that the model has a
subprocess (a production in our model) that is specialised on
detecting the symmetry of roles in path-mapping. Ferguson
(1994) provides an account of the role of symmetry in such
tasks. This certainly is the strongest assumption, but given
the omnipresence of symmetry in the cognition of humans
and animals, it seems justified. It ranges from mate selection,
where symmetry correlates with mate quality (eg Manning,
Scutt, Whitehouse, & Leinster, 1997), to spatial cognition, eg
Silverman (2002) makes this point.

Path-Mapping
Overview

The path-mapping model of analogy formation (Salvucci &
Anderson, 1998, 2001) is a cognitive model of how an in-
terconnected substructure of a knowledge representation (the
source domain) is mapped onto another substructure (the target
domain). It is essentially a structure mapping model (Gentner
& Markman, 1997) that includes a more detailed account of
the cognitive mapping processes. For example, when gener-
ating analogies the system could try to map infinitely many
possible relations between source and target domain. For an
agent acting in the real world, it is computationally too costly
to explore all of them, because such agents operate under real
time constraints.

Salvucci and Anderson use the ACT-R cognitive architec-
ture, which provides a framework of the invariant or slowly
changing parts of cognition, so that these (1) do not need to
be implemented again for each model and (2) can provide
explanations of parts of the phenomenon by reducing them
to already well-established facts about cognition. Put simply,
ACT-R is a production system with (1) a model of human
declarative memory, (2) a subsymbolic layer and (3) modules
for perception and motor control. The problem of the large
number of possible relations, for example, is partially solved
by ACT-R’s declarative memory, which leads to models that
consider only a subset of relations — those relations that have
a high likelihood of being relevant for the given task.

We decided to use path-mapping, because it already proved
its cognitive adequacy for a number of cases (Salvucci &
Anderson, 2001). The fact that it is implemented in ACT-
R allows us to investigate metaphor and analogy in a wider
cognitive context, in particular, how these cognitive abilities
work in interaction with the environment (a main aim of our
project, on which we do not report here). In line with Gentner’s



(1983, p 156) structure mapping, the main feature of path-
mapping is that analogies are created by mapping (higher-
order) relations.

Reimplementation

Many aspects of the ACT-R architecture have changed since
the original path-mapping model was published. (The orig-
inal model was written in ACT-R 4.0, the current version
is ACT-R 6.0.) Because the changes affect many parts of
the architecture that are needed for path-mapping, it seemed
appropriate to reimplement the model. We just mention three
of the most notable changes here. Firstly, there is no goal
stack in ACT-R 6.0, which means that all goals that are not
currently pursued must be stored in declarative memory. Sec-
ondly, there is now a limited set of buffers that contain all
temporary information. Each buffer can only hold one chunk
(fact), and modules interact by placing chunks in buffers and
reading chunks from buffers. The set of all buffers is usually
considered ACT-R’s working memory. Thirdly, the archi-
tecture now has perceptual and motor modules that allow a
cognitively adequate interaction with the environment.

An Example

For our case study we used a simple example where the model
mapped two additions: 1+2 =3 and 2+ 1 = 3, see figure 1.

addend1 operator addendz equality result
1 + 2 = 3
2 + 1 = 3

Figure 1: Example of two equations with symmetrical ad-
dends.

There are three mappings between these additions. The first
mapping, for example, represents the fact that the number 1,
which is the first addend in the first addition, is mapped on the
number 2, which is the first addend in the second addition.

Knowledge Representation

The knowledge representation used by the path-mapping
model for the addition example is graphically shown in fig-
ure 2. This representation is parallel to the one given by
Salvucci and Anderson (2001). Ovals show objects and re-
lations, boxes show roles. Apart from a name given in bold
(and not used by the model), a role consist of five components
‘parent: a pointer to the parent relation, parent-type: the se-
mantic type of the parent relation, slot: the relation slot that the
object fills in the relation, child: a pointer to the child object
or relation, child-type: the semantic type of the child object
or relation’ (p 75). Because object manipulation is learnt thor-
oughly, it can be assumed that the commutativity property is
an abstraction in the sense of Gentner (1983, p 158-159), ie
objects do not have properties.
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Simulations

The path-mapping model takes an object or relation from the
source domain, for example addl-one, and tries to map it
on an object in the target domain. It proceeds by retrieving
a role that is filled by this object from declarative memory,
here: the role labelled add1-addend1.? The parent relation
of this role is add1-addition, which is taken as the cue for
the next retrieval from declarative memory. This process is
iterated until no more role can be retrieved, that is, until the
process reaches the root relation. Once that happens the model
tries to find roles in the target domain that correspond to the
ones it used in the path from the object to the root relation.
So, in this case it would map add1-1hs onto add2-1hs and
addl-addendl onto add2-addendl. The model records both
these mappings. (One of them appears as mappingl in the top
graph of figure 3.) With this, the path-mapping is finished, and
the model can try to map the next object. However, our model
first attempts to find symmetrical roles, see below.

It should be noted that this implementation of path-mapping
does not only work for our addition example but works equally
well with Salvucci and Anderson’s original example of the
solar-system—atom analogy. Thus, our model is further support
for Salvucci and Anderson’s claim that path-mapping is task
independent, ie it is a central process of analogy formation.

Discovering Commutativity

After a path-mapping has been successfully concluded and
the mapped path is stored as a chunk in declarative memory, a
symmetry detector tries to retrieve a chunk from declarative
memory in which the roles were used symmetrically in the
source and target domains, see the top of figure 3. In our
example, this means the model finds the use of symmetrical
roles for the path-mappings of add1-one/add2-two for the
role addendl and add1-two/add2-one for the role addend?.

After the model found the symmetrical roles it searches
the declarative memory for a chunk representing symmetrical
roles in another domain (bottom of figure 3). If (1) commuta-
tivity holds in this other domain and (2) the knowledge transfer
is possible (ie the Arithmetic Is Object Collection metaphor is
present) the model ‘discovers’ that addition is commutative.
(See the conclusions on the term discovery.)

Unified Theory of Concepts

The cognitively based path-mapping representation is related
to a general mathematical characterisation of concepts and
relations, the Unified Theory of Concepts (Goguen, 2005),
which analyses representations along three axes: the syntac-
tic primitives (called signature), the sentences based on a
signature, and the (mathematical) structures involved in the
semantics. A basic requirement is that of invariance under
renaming of syntax. The path-mapping for the atom-solar sys-

2In the representation we use here, each object fills only one role.
However, nothing depends on this, as can be seen, for example, in
Savucci and Anderson’s original example of the solar-system—atom
analogy. It just means that out case is simpler.



Source

( addi-equality )

add1-lhs add1-rhs

equality equality
lhs rhs

addition three

( addi-addition )

addi-addend1

addi-addend2

addition addition
addend1 addend2
one two

| |
( addi-one ) ( add1-two )

Target

( add2-equality )

add2-lhs add2-rhs

equality equality
lhs rhs

addition three

( add2-addition )

addz2-addend1 add2-addend2
addition addition
addend1 addend2
two one

| |
( add2-two ) ( add2-one )

Figure 2: Knowledge representation used for path-mapping in the addition example.

tem analogy is in fact a signature morphism (arity preserving
function that changes names), though in general this will be a
partial morphism, defined only on a subset of the syntax.

For the arithmetic example, the lexicon is the same. In this
case, the path-mapping can be taken as defining an operation
on arithmetic equations “swap arguments to plus’, applied
uniformly; the fact that this operation preserves arithmetic
truth means that it is an institution morphism (Goguen, 2006).

These observations suggest that the path-mapping approach
may be fruitful over different representation systems, not just
the one for which it was originally proposed.

Conclusions

We presented a computational cognitive model of a mathe-
matical discovery. Although the model is still incomplete and
limited to a particular case, it provides an important step to-
wards our goal of an embodied, interactive, cognitive model
of mathematical discovery.

There still is the question of what a discovery is. In this
paper we described the formation of an analogy between a
source domain and a target domain. However, more is needed
to claim that the model made a discovery. Firstly, the model
must be able to distinguish useful discoveries from spurious
ones (Boden, 1990, p 32). Otherwise, it will get bogged down
by the large number of spurious discoveries. Secondly, after
the commutativity property of the object collection domain
has been transferred to the arithmetic domain, the discovery
addition is commutative must be confirmed by a proof or
integrated into the target domain as a new axiom.

Analogy/metaphor is not the only way in which scientific
concepts can be created, although it seems to be the most
common one. For example, we did not consider the processes
of concept learning (concept formation) in which observed
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commonalities between categories of objects or events (shared
features) give rise to a new concept, eg commutativity in the
object collection domain. In addition to this inductive process,
there are certainly also deductive mechanisms of discovery.

Future Research

Our future research will extend the presented model in three
main directions. Firstly, we will apply it to more cases of
mathematical discoveries to gain a higher level of general-
ity for the model. Again, commutativity is a good example,
because in many cases it is known whether it is a property
of a mathematical concept, eg rotation, or not, as in the case
of subtraction. Secondly, we will embed the model in a task
environment. As a first step we will replace the explicit setting
of goals for path-mapping attempts by using ACT-R’s visual
module to read the two equations from a display. Thirdly, we
will implement the ability to identify useful discoveries and
then formulate a conjecture and attempt to prove it or add the
discovery as a new axiom.
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