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Abstract 
Sustained attention and psychomotor reactions are 
foundational components of performance in many laboratory 
and applied tasks. In sleep research studies, individual 
differences in baseline attentional vigilance are compounded 
by individual differences in vulnerability to the negative 
consequences of fatigue due to sleep loss, producing large 
differences in reaction time profiles. In this paper, we present 
a theory and model to explain individual differences in 
reaction time performance in a sustained attention task, both 
at baseline and as overall alertness declines across 88 hrs 
without sleep. The model captures the performance of 
individual human participants, and illustrates how individual 
differences in processing speed and differences in 
susceptibility to fatigue from sleep loss may combine to 
produce unique performance profiles. 

Keywords: Attention; Reaction Time; Individual 
Differences; Processing Speed; Computational Model. 

Introduction 
Attentional vigilance refers to the ability to maintain 
focused attention on a task and respond appropriately to 
repetitive stimuli. Vigilance is critical in monitoring tasks 
that are central in many transportation domains (e.g., train 
operators or long-haul truck drivers), and in many security-
related tasks (e.g., baggage screeners and intelligence 
analysts). A substantial body of literature has accrued on 
breakdowns in attentional processes (e.g., Davies & 
Parasuraman, 1982; Van Dongen & Dinges, 2005), which 
can have serious consequences in applied settings (e.g., 
Caldwell, Caldwell, Brown, & Smith, 2004). Lapses in 
attention have been attributed to fatigue caused by sleep loss 
(e.g., Doran, Van Dongen, & Dinges, 2001; Dorrian, 

Rogers, & Dinges, 2005) and/or extended time on task (e.g., 
Davies & Parasuraman, 1982; Van Dongen & Belenky, 
2008). 

In the Psychomotor Vigilance Test, or PVT (Dinges & 
Powell, 1985; Dorrian et al., 2005), participants monitor a 
known location on a computer screen and press a response 
button each time a stimulus appears at that location, which 
happens at random intervals between 2 s and 10 s. Sustained 
attention is taxed in this task as a function of the length of 
each test session, which was fixed at 10 minutes for the 
experiment described below. 

There are baseline differences among individuals in the 
speed with which they are able to respond to stimuli in 
reaction time tasks like the PVT (e.g., Humphreys & 
Revelle, 1984). Such individual differences in reaction time 
performance have been studied in the context of the 
relationship to general intelligence (e.g., Deary, Der, & 
Ford, 2001; Larson & Alderton, 1990), and explained in 
terms of processing speed, with slower processing being 
associated with both longer reaction times and lower overall 
intelligence. 

In addition to differences in reaction times across 
individuals on the PVT and many other reaction time tasks, 
there are considerable differences in how reduced alertness 
resulting from fatigue impacts performance. Alertness in 
this context refers to overall cognitive performance 
capability, which varies as a function of time awake and 
circadian rhythms. Research on sleep deprivation has 
demonstrated substantial declines in performance on the 
PVT as a function of these factors (e.g., Doran et al., 2001; 
Dorrian et al., 2005; Van Dongen & Dinges, 2005). The 
extent of those declines varies significantly across 
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individuals and reflects a trait (Van Dongen, Baynard, 
Maislin, & Dinges, 2004).  

We have explored computational mechanisms to explain 
individual differences in human performance on the PVT 
(Gunzelmann, Moore, Gluck, Van Dongen, & Dinges, 
2008), as well as changes observed as alertness varies (e.g., 
Gunzelmann, Gross, Gluck, & Dinges, in press). Here we 
present an integrated account of PVT performance, which 
explains stable individual differences in performance 
through variations in processing speed, combined with 
distinct mechanisms to represent the deleterious impact of 
sleep deprivation. The resulting model provides a more 
comprehensive explanation of sustained attention 
performance and adds new insights regarding the nature of 
performance differences across individuals at baseline and 
over the course of an extended period without sleep. 

Model and Mechanisms 
Our computational model for the PVT was developed using 
the ACT-R cognitive architecture (Anderson et al., 2004). 
The PVT places emphasis on ACT-R’s perceptual and 
motor capabilities, which must encode the stimulus when it 
is presented and elicit a response efficiently to produce 
effective task performance. The coordination of these 
activities is accomplished by ACT-R’s central cognitive 
process, which is implemented as a serial production system 
that operates in a cyclical manner to represent goal-directed 
cognitive activity. 

The foundation of the model consists of processes that (1) 
shift visual attention to the stimulus when it appears and (2) 
generate a response in the form of a virtual button press. 
These processes are represented as productions in ACT-R. 
The first process is sensitive to the appearance of the 
stimulus and generates a request for ACT-R’s visual system 
to shift attention to the item. The second process generates a 
response through a request to ACT-R’s motor system. 
Responses also can be generated in the absence of the 
stimulus, creating the possibility of false starts (see 
Gunzelmann et al., in press). Baseline differences and 
declines associated with fatigue are instantiated in the model 
through parameter manipulations that influence the duration 
and probability of successfully executing these processes. 
These mechanisms are described in the next subsections. 

Variability in Baseline Reaction Time 
Accounts of differences in reaction time implicate 
processing speed as the main factor. We represent this in the 
current model using a parameter in ACT-R that controls the 
duration of cognitive actions. Specifically, the parameter 
controls the time required for a single cognitive cycle within 
ACT-R’s central production system, which involves 
matching, selecting, and executing (firing) a single 
production. The default time for this process in ACT-R is 50 
ms. In the model, noise is added to this parameter to 
produce variability in the timing of cognitive cycles. The 
noise is sampled from a uniform distribution ranging from 
2/3 to 4/3 of the parameter value.  

We manipulate the parameter controlling the duration of 
cognitive cycles to represent stable processing speed 
differences among participants. The parameter has two 
specific effects on the model’s performance. First, and most 
obviously, it has a direct impact on the mean time required 
to complete the task. By decreasing or increasing cognitive 
cycle time, the model becomes faster or slower in 
responding to the presentation of the stimulus on average. 
Second, because the width of the uniform distribution 
determining the variability in the timing of cognitive cycles 
is defined to be proportional to the cognitive cycle time, 
faster cognitive cycle times produce narrower distributions 
than longer cycle times. This predicts that individuals who 
are slower in performing the task will also be more variable 
in their reaction times. 

Performance Decrements with Decreased Alertness 
The mechanism responsible for individual differences in 
reacting to the onset of a stimulus under baseline conditions 
represents one aspect of the research presented here. The 
other aspect relates to individual differences in the ability to 
maintain performance on the task despite reductions in 
overall cognitive alertness stemming from extended periods 
of sleep deprivation. In our computational model, the impact 
of sleep deprivation on PVT performance is driven by 
mechanisms within the central production system. 

The mechanisms allow for very brief gaps in cognitive 
processing, which we refer to as micro-lapses (Gunzelmann 
et al., in press). These micro-lapses reflect cognitive cycles 
in ACT-R where no cognitive actions are performed. As 
alertness declines, the likelihood of a micro-lapse increases, 
leading to delayed responses (lapses) and occasional failures 
to respond (non-responses). In ACT-R, the selection and 
execution of actions in central cognition is managed by the 
calculation of an expected utility for each production (Ui), 
which is influenced by an anticipated cost (Ci), a likelihood 
of success (Pi), and an overall level of “alertness” in the 
cognitive system (G). The equation for the expected utility 
of a production, i, is: 

 
 

 
Note that noise (ε) is added to the utility computation, 

which allows for stochasticity in the selection and execution 
of cognitive actions. Micro-lapses occur in our model when 
none of the expected utilities for applicable productions 
exceed a threshold for action, referred to as the utility 
threshold (Tu). In this circumstance, no action is performed 
on that cognitive cycle, and it is followed by another 
cognitive cycle where utility values are evaluated once 
again to determine if an action will be executed. Noise in 
the utility computation, sampled from a distribution with a 
mean of 0 and a standard deviation of about 0.453 (a default 
value in ACT-R), is critical in creating a circumstance 
where a micro-lapse can be followed by an appropriate 
cognitive action, allowing for the possibility for delayed 
responses (i.e., lapses). 
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Declines in alertness are represented by decreasing G, 
which is a global parameter that impacts the utility value of 
all productions. G is decremented further during cognitive 
inactivity (i.e., during micro-lapses) to represent dynamic 
declines in alertness over time. Tu is also decremented as 
alertness declines; it reflects compensatory effort on the part 
of the individual to offset the negative consequences of 
fatigue (see Gunzelmann et al., in press, for details). The 
overall impact of decreases in Tu is to make it more likely 
that some action will be performed on a given cognitive 
cycle. In this model, lower Tu values are a main contributor 
to increased numbers of false starts seen with sleep 
deprivation (Doran et al., 2001). 

To reduce degrees of freedom in the assessment of values 
for G and Tu, the dynamics of their changes are constrained 
by predictions of alertness from a published 
biomathematical model (Jewett & Kronauer, 1999) 
representing the interplay of sleep homeostasis and 
circadian rhythms on alertness (see Mallis, Mejdal, Nguyen, 
& Dinges for an overview of this class of model). A linear 
mapping of the alertness predictions to G and Tu provides an 
effective means of constraining the changes in these 
parameters in the model (Gunzelmann et al., in press). 

Comparison to Individual Human 
Performance 

Human Experiment Protocol 
To evaluate the ability of our model to capture a breadth of 
individual performance, including wide variations in 
alertness among individuals, we used data from 13 
participants who completed a study involving 88 hrs of total 
sleep deprivation (Doran et al., 2001). Participants 
completed a 10-minute PVT session every two hrs 
throughout the sleep deprivation period as part of a battery 
of cognitive tasks. Responses were classified as false starts 
if made before or within 150 ms of the stimulus 
presentation. Alert responses were considered to be 
responses between 150 ms and 500 ms, while longer 
responses were categorized as lapses. In cases where no 
response was made within 30 s of the stimulus onset, the 
trial was halted and identified as a non-response while a 
beep alerted the participant for the next trial. 

There were substantial inter-individual differences in 
performance overall, and the extended period of 88 hrs 
without sleep introduced wide temporal variations in 
alertness. In the current paper, we focus on declines in 
performance that occurred over progressive days without 
sleep while averaging out changes within days. Elsewhere 
we have used our approach to look at changes that occur 
across hrs within a day as a function of circadian rhythms 
(Gunzelmann et al., in press). 

Model Fitting and Evaluation 
For each individual, we explored the capacity of the 

model to capture average human performance for each day 
of the sleep deprivation protocol, including the baseline day 

that followed a full 8 hrs in bed and the subsequent first, 
second and third days of total sleep deprivation. The 
qualitative dynamics of the computational model were 
constrained by biomathematical model predictions of 
alertness, but we allowed magnitudes to vary on an 
individual basis. For every participant, we estimated 
intercepts and slopes to map the values of G and Tu to the 
biomathematical model predictions of alertness. Baseline 
cognitive cycle time was also estimated for every 
participant, but not varied as a function of predicted 
alertness because no such relationship was found (p>.90). 

We based the evaluation of our model on a “standard two-
stage” method. In the first stage of our analysis, we fitted 
the 5 parameters identified above for each participant. We 
then compared the model results to the human data by 
computing the proportion of responses classified as false 
starts, lapses, and non-responses, as well as proportions of 
responses falling into 10 ms bins across the alert response 
time range (150–500 ms). In the second stage, we computed 
summary statistics and based our conclusions on the 
behavior of the model across the whole sample.  In this 
manner, we avoided overparametrization of the research 
problem—standard two-stage methods constitute a 
statistically appropriate and approximately valid approach to 
the study of individual differences (Feldman, 1988; Van 
Dongen, Maislin, & Dinges, 2004). 

Results 
Figure 1 illustrates the ability of the model to capture the 
range of human behavior, both at baseline and across an 
extended period of sleep deprivation. Increases in cognitive 
cycle time in the model produced shifts in the response 
distribution to the right, combined with a widening of the 
distribution attributable to noise. This prediction of the 
model is borne out in the human data. In fitting individual 
human performance data for the PVT, we found that the 
best-fitting values for cognitive cycle time ranged from 
21ms to 70ms, which is largely in line with proposals made 
by Card, Moran, and Newell (1983) regarding individual 
variability in cognitive processing speed. Importantly, this 
single parameter did an excellent job of accounting for 
individual differences in human performance at baseline. 

There was limited evidence for a systematic increase in 
cognitive cycle time across the sleep deprivation period. An 
increase in this parameter was supported by 7 of the 13 
participants (none of which were statistically significant, 
p>.08), while 2 of the remaining 6 showed a significant 
trend in the opposite direction (p<.05). Overall, changes in 
cognitive cycle time did not lead to significant improvement 
in the model’s predictions (p>.90) These results offer 
further support for holding cognitive cycle time constant for 
each individual across time awake, and call into question 
cognitive slowing as the sole explanation for the impact of 
sleep deprivation on performance (see also Dinges & 
Kribbs, 1991). 
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Figure 1: Individual human performance data (black) and 

model fits (grey) for each day of the 4-day sleep deprivation 
study. Data are proportions of responses within each 

category (false starts, alert responses, lapses, and non-
responses), with alert responses broken into 10 ms ranges. 

 
In addition to cognitive cycle time, alertness (G) and the 

threshold for action (Tu) were fitted. There were substantial 
differences among participants in the baseline values of G 
and Tu, and in the slopes of change for G and Tu as a 
function of the alertness changes across days of sleep 
deprivation. As a result, the values of G and Tu became 
more different among participants as sleep deprivation 
progressed. 

For all 13 participants, performance was best fit when G 
values declined across the sleep deprivation period in 
parallel with the biomathematical model predictions of 
alertness. Overall, the impact of changes to G across the 
sleep deprivation period was significant (p<.001). A similar 
pattern was observed for Tu, where the data from 11 of the 
participants was best fit when Tu declined as time awake 
increased. This effect was significant as well (p<.001).  
Table 1 presents the baseline value for each of the 
parameters, and the coefficient relating G and Tu to 
alertness, for the fits presented in Figure 1. 

 
Table 1: Baseline values for all parameters and regression 

coefficients (β) to map G and Tu to the Jewett & Kronauer 
(1999) model for each participant, along with the correlation 

(R) and Root Mean Squared Deviation (D) of the model 
with the individual participant data in Figure 1. 

ID G 
Value (β) 

Tu 
Value (β) 

Cycle 
(ms) 

R D 

A 1.27 ( 1.32) 1.53 ( .85) 38 .95 .013 
B 1.51 ( 0.64) 1.70 ( .23) 59 .97 .014 
C 1.58 ( 1.69) 1.51 (1.26) 38 .92 .013 
D 0.65 ( 3.12) 1.05 (2.50) 41 .90 .026 
E 1.22 ( 0.75) 1.23 ( .49) 70 .98 .010 
F 1.68 ( 0.43) 1.68 ( .21) 57 .95 .016 
G 1.24 ( 3.07) 1.21(2.74) 70 .98 .010 
H 1.63 (0.33) 1.68 (.04) 47 .94 .013 
I 1.18 ( 2.23) 1.21 (2.06) 51 .92 .016 
J 1.61 ( 0.56) 1.88 ( .08) 24 .93 .014 
K 2.18 ( 0.29) 1.96 (-.56) 21 .97 .012 
L 1.58 (0.02) 1.71 (-0.08) 37 .96 .011 
M 1.33 ( 0.85) 1.54 ( .41) 40 .97 .010 
 
To evaluate the overall capacity of the model to capture 

human performance, aggregate statistics are presented in 
Table 2. Mean parameter values and standard deviations are 
shown to illustrate the variation required to capture 
behavioral differences observed across individuals. In 
addition, the means and the standard deviations of the 
correlation and root mean squared deviation (RMSD) values 
of the fits to the individual human data are presented. The 
relatively high average correlation and correspondingly low 
RMSD illustrate the model’s overall ability to capture 
individual-level performance well, while the low standard 
deviation of these statistics indicates that the model is 
generally effective for each of the individual participants 
modeled, as illustrated in Figure 1 and Table 1. 
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Table 2: Summary statistics of the model’s performance 
across individuals, including measures of parameter 

variation (ms) and fit to human data (correlation [r] and root 
mean squared deviation [RMSD]). RMSD is presented as a 

proportion of responses. 
Parameter/ 

Statistic 
Mean Standard 

Deviation 
G (Intercept)   1.438   0.358 
G (Slope)   1.178   1.046 
Tu (Intercept)   1.532   0.280 
Tu (Slope)   0.787   1.045 
Cycle Time 45.566 15.376 
Correlation (r)   0.948   0.026 
RMSD   0.014   0.004 

 

Conclusions 
The results presented in this paper raise a number of issues 
with regard to understanding psychomotor vigilance and 
inter-individual differences in human reaction time, as well 
as variability in the impact of sleep loss. Three primary 
conclusions can be drawn. First, cognitive cycle time in 
ACT-R provides a useful way of understanding stable 
individual differences in baseline reaction time performance 
on the PVT. This aspect of the architecture impacts the rate 
of cognitive activity across contexts, providing a fairly 
direct instantiation of processing speed. The performance of 
our model supports of the idea that individual differences in 
reaction time performance can be captured in a relatively 
direct manner in ACT-R by using the cognitive cycle time 
parameters, and provides a detailed, process-level account 
of the phenomena observed in human performance. 

Second, our research shows that micro-lapses in cognitive 
processing can provide a parsimonious account of both 
delayed responses (i.e., lapses) and smaller shifts in the 
speed of alert reaction times. As such, micro-lapses may be 
the right computational model equivalent of the “wake state 
instability” phenomenon that has been proposed to underlie 
the shifts in the reaction time distribution which give rise to 
slower responses and lapses (Doran et al., 2001). .  

Third, changes in cognitive cycle time alone did not 
capture performance changes associated with sleep loss. 
This calls into question the construct of cognitive slowing as 
the best explanation for the relatively small changes in 
median alert reaction time that are observed with increased 
levels of sleep deprivation. Instead, our account suggests 
that these changes can be explained by the same 
fundamental changes in cognitive processing that give rise 
to delayed responses and non-responses. 

Interestingly, vulnerability to the negative consequences 
of sleep deprivation on cognitive performance showed only 
a modest relationship to individual differences in baseline 
performance, as has been observed previously (Van Dongen 
et al., 2004). The correlation between cognitive cycle time 
and the magnitude of changes to both G and Tu across 
successive days without sleep was not significant (p>.16; 
r=.30 with G and r=.41 with Tu), suggesting that these two 

sources of individual differences represent relatively distinct 
influences on cognitive processing. 

The free parameters in our modeling effort reflect claims 
about the underlying sources of individual differences in 
human performance on this task, and so they were expected 
to vary among individuals. Research has shown repeatedly 
that people’s performance varies extensively across a wide 
variety of tasks in virtually every domain of psychological 
study. Our goal is to use laboratory tasks to generate a 
comprehensive model of the performance of individuals, 
providing a capacity to predict individual performance on 
applied tasks where data are difficult or impossible to 
collect (e.g., Gunzelmann & Gluck, in press). We comment 
on this long-term focus more in the remainder of the paper, 
which discusses future directions. 

Applications and Future Directions 
As we develop a more robust and detailed account of 

human cognitive performance and the various moderators 
that impact behavior, it should become increasingly possible 
to make predictions about the performance of individuals in 
novel task contexts. For instance, the research presented 
here provides evidence for variability in processing speed 
across individuals on a sustained attention task. Because our 
mechanisms are specified within a cognitive architecture, 
there is potential for using performance data from simple 
tasks like the PVT to generate predictions of performance 
for individuals in other tasks as a function of this variability. 
The same is true with regard to the mechanisms associated 
with changes in alertness. The next step in this process is to 
use these mechanisms to make such predictions in another 
task where we have data from the same participants. This 
will provide evidence regarding the promise of the 
methodology, and also will illustrate the utility of using a 
unified theory of cognition as a means of building a 
cumulative account of the impact of fatigue on cognitive 
performance. 

The longer-term opportunity we see in this research is not 
in modeling laboratory tasks like the PVT per se. Rather, it 
is to use individually tailored parameter values derived from 
simple laboratory tasks to make specific predictions in more 
complicated, naturalistic task environments. A major 
achievement would be to be able to predict the likelihood of 
a catastrophic error by a specific individual based upon his 
or her cognitive capabilities and limitations, including 
performance degradations associated with sleep deprivation. 
This has the potential to increase safety across myriad real-
world domains. 

A further direction of this research is to understand in 
greater detail the dynamics of human sustained attention. 
Progress on this front depends on understanding another 
major influence on alertness, namely time on task. It is well 
established that performance on attention-demanding tasks 
tends to decline as the task is performed for greater lengths 
of time, a phenomenon referred to as the vigilance 
decrement (e.g., Davies & Parasuraman, 1982; Van Dongen 
& Belenky, 2008). Providing a unified account of the 
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relationships among time awake, circadian rhythms, and 
time on task represents a major subgoal in being able to 
predict variability in human performance across time. The 
current line of research represents significant progress 
toward that goal. 
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