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Abstract

Sustained attention and psychomotor reactions are
foundational components of performance in many laboratory
and applied tasks. In sleep research studies, individual
differences in baseline attentional vigilance are compounded
by individual differences in vulnerability to the negative
consequences of fatigue due to sleep loss, producing large
differences in reaction time profiles. In this paper, we present
a theory and model to explain individual differences in
reaction time performance in a sustained attention task, both
at baseline and as overall alertness declines across 88 hrs
without sleep. The model captures the performance of
individual human participants, and illustrates how individual
differences in processing speed and differences in
susceptibility to fatigue from sleep loss may combine to
produce unique performance profiles.

Keywords:  Attention; Reaction Time; Individual
Differences; Processing Speed; Computational Model.

Introduction

Attentional vigilance refers to the ability to maintain
focused attention on a task and respond appropriately to
repetitive stimuli. Vigilance is critical in monitoring tasks
that are central in many transportation domains (e.g., train
operators or long-haul truck drivers), and in many security-
related tasks (e.g., baggage screeners and intelligence
analysts). A substantial body of literature has accrued on
breakdowns in attentional processes (e.g., Davies &
Parasuraman, 1982; Van Dongen & Dinges, 2005), which
can have serious consequences in applied settings (e.g.,
Caldwell, Caldwell, Brown, & Smith, 2004). Lapses in
attention have been attributed to fatigue caused by sleep loss
(e.g., Doran, Van Dongen, & Dinges, 2001; Dorrian,
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Rogers, & Dinges, 2005) and/or extended time on task (e.g.,
Davies & Parasuraman, 1982; Van Dongen & Belenky,
2008).

In the Psychomotor Vigilance Test, or PVT (Dinges &
Powell, 1985; Dorrian et al., 2005), participants monitor a
known location on a computer screen and press a response
button each time a stimulus appears at that location, which
happens at random intervals between 2 s and 10 s. Sustained
attention is taxed in this task as a function of the length of
each test session, which was fixed at 10 minutes for the
experiment described below.

There are baseline differences among individuals in the
speed with which they are able to respond to stimuli in
reaction time tasks like the PVT (e.g., Humphreys &
Revelle, 1984). Such individual differences in reaction time
performance have been studied in the context of the
relationship to general intelligence (e.g., Deary, Der, &
Ford, 2001; Larson & Alderton, 1990), and explained in
terms of processing speed, with slower processing being
associated with both longer reaction times and lower overall
intelligence.

In addition to differences in reaction times across
individuals on the PVT and many other reaction time tasks,
there are considerable differences in how reduced alertness
resulting from fatigue impacts performance. Alertness in
this context refers to overall cognitive performance
capability, which varies as a function of time awake and
circadian rhythms. Research on sleep deprivation has
demonstrated substantial declines in performance on the
PVT as a function of these factors (e.g., Doran et al., 2001;
Dorrian et al., 2005; Van Dongen & Dinges, 2005). The
extent of those declines wvaries significantly across



individuals and reflects a trait (Van Dongen, Baynard,
Maislin, & Dinges, 2004).

We have explored computational mechanisms to explain
individual differences in human performance on the PVT
(Gunzelmann, Moore, Gluck, Van Dongen, & Dinges,
2008), as well as changes observed as alertness varies (e.g.,
Gunzelmann, Gross, Gluck, & Dinges, in press). Here we
present an integrated account of PVT performance, which
explains stable individual differences in performance
through variations in processing speed, combined with
distinct mechanisms to represent the deleterious impact of
sleep deprivation. The resulting model provides a more
comprehensive  explanation of sustained attention
performance and adds new insights regarding the nature of
performance differences across individuals at baseline and
over the course of an extended period without sleep.

Model and Mechanisms

Our computational model for the PVT was developed using
the ACT-R cognitive architecture (Anderson et al., 2004).
The PVT places emphasis on ACT-R’s perceptual and
motor capabilities, which must encode the stimulus when it
is presented and elicit a response efficiently to produce
effective task performance. The coordination of these
activities is accomplished by ACT-R’s central cognitive
process, which is implemented as a serial production system
that operates in a cyclical manner to represent goal-directed
cognitive activity.

The foundation of the model consists of processes that (1)
shift visual attention to the stimulus when it appears and (2)
generate a response in the form of a virtual button press.
These processes are represented as productions in ACT-R.
The first process is sensitive to the appearance of the
stimulus and generates a request for ACT-R’s visual system
to shift attention to the item. The second process generates a
response through a request to ACT-R’s motor system.
Responses also can be generated in the absence of the
stimulus, creating the possibility of false starts (see
Gunzelmann et al., in press). Baseline differences and
declines associated with fatigue are instantiated in the model
through parameter manipulations that influence the duration
and probability of successfully executing these processes.
These mechanisms are described in the next subsections.

Variability in Baseline Reaction Time

Accounts of differences in reaction time implicate
processing speed as the main factor. We represent this in the
current model using a parameter in ACT-R that controls the
duration of cognitive actions. Specifically, the parameter
controls the time required for a single cognitive cycle within
ACT-R’s central production system, which involves
matching, selecting, and executing (firing) a single
production. The default time for this process in ACT-R is 50
ms. In the model, noise is added to this parameter to
produce variability in the timing of cognitive cycles. The
noise is sampled from a uniform distribution ranging from
2/3 to 4/3 of the parameter value.
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We manipulate the parameter controlling the duration of
cognitive cycles to represent stable processing speed
differences among participants. The parameter has two
specific effects on the model’s performance. First, and most
obviously, it has a direct impact on the mean time required
to complete the task. By decreasing or increasing cognitive
cycle time, the model becomes faster or slower in
responding to the presentation of the stimulus on average.
Second, because the width of the uniform distribution
determining the variability in the timing of cognitive cycles
is defined to be proportional to the cognitive cycle time,
faster cognitive cycle times produce narrower distributions
than longer cycle times. This predicts that individuals who
are slower in performing the task will also be more variable
in their reaction times.

Performance Decrements with Decreased Alertness

The mechanism responsible for individual differences in
reacting to the onset of a stimulus under baseline conditions
represents one aspect of the research presented here. The
other aspect relates to individual differences in the ability to
maintain performance on the task despite reductions in
overall cognitive alertness stemming from extended periods
of sleep deprivation. In our computational model, the impact
of sleep deprivation on PVT performance is driven by
mechanisms within the central production system.

The mechanisms allow for very brief gaps in cognitive
processing, which we refer to as micro-lapses (Gunzelmann
et al., in press). These micro-lapses reflect cognitive cycles
in ACT-R where no cognitive actions are performed. As
alertness declines, the likelihood of a micro-lapse increases,
leading to delayed responses (lapses) and occasional failures
to respond (non-responses). In ACT-R, the selection and
execution of actions in central cognition is managed by the
calculation of an expected utility for each production (U;),
which is influenced by an anticipated cost (C;), a likelihood
of success (P;), and an overall level of “alertness” in the
cognitive system (G). The equation for the expected utility
of a production, i, is:

U=PG-C, +¢

Note that noise (¢) is added to the utility computation,
which allows for stochasticity in the selection and execution
of cognitive actions. Micro-lapses occur in our model when
none of the expected utilities for applicable productions
exceed a threshold for action, referred to as the utility
threshold (7). In this circumstance, no action is performed
on that cognitive cycle, and it is followed by another
cognitive cycle where utility values are evaluated once
again to determine if an action will be executed. Noise in
the utility computation, sampled from a distribution with a
mean of 0 and a standard deviation of about 0.453 (a default
value in ACT-R), is critical in creating a circumstance
where a micro-lapse can be followed by an appropriate
cognitive action, allowing for the possibility for delayed
responses (i.e., lapses).



Declines in alertness are represented by decreasing G,
which is a global parameter that impacts the utility value of
all productions. G is decremented further during cognitive
inactivity (i.e., during micro-lapses) to represent dynamic
declines in alertness over time. 7, is also decremented as
alertness declines; it reflects compensatory effort on the part
of the individual to offset the negative consequences of
fatigue (see Gunzelmann et al., in press, for details). The
overall impact of decreases in 7, is to make it more likely
that some action will be performed on a given cognitive
cycle. In this model, lower T, values are a main contributor
to increased numbers of false starts seen with sleep
deprivation (Doran et al., 2001).

To reduce degrees of freedom in the assessment of values
for G and T,, the dynamics of their changes are constrained
by predictions of alertness from a published
biomathematical model (Jewett & Kronauer, 1999)
representing the interplay of sleep homeostasis and
circadian rhythms on alertness (see Mallis, Mejdal, Nguyen,
& Dinges for an overview of this class of model). A linear
mapping of the alertness predictions to G and 7, provides an
effective means of constraining the changes in these
parameters in the model (Gunzelmann et al., in press).

Comparison to Individual Human
Performance

Human Experiment Protocol

To evaluate the ability of our model to capture a breadth of
individual performance, including wide variations in
alertness among individuals, we used data from 13
participants who completed a study involving 88 hrs of total
sleep deprivation (Doran et al.,, 2001). Participants
completed a 10-minute PVT session every two hrs
throughout the sleep deprivation period as part of a battery
of cognitive tasks. Responses were classified as false starts
if made before or within 150 ms of the stimulus
presentation. Alert responses were considered to be
responses between 150 ms and 500 ms, while longer
responses were categorized as lapses. In cases where no
response was made within 30 s of the stimulus onset, the
trial was halted and identified as a non-response while a
beep alerted the participant for the next trial.

There were substantial inter-individual differences in
performance overall, and the extended period of 88 hrs
without sleep introduced wide temporal variations in
alertness. In the current paper, we focus on declines in
performance that occurred over progressive days without
sleep while averaging out changes within days. Elsewhere
we have used our approach to look at changes that occur
across hrs within a day as a function of circadian rhythms
(Gunzelmann et al., in press).

Model Fitting and Evaluation

For each individual, we explored the capacity of the
model to capture average human performance for each day
of the sleep deprivation protocol, including the baseline day
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that followed a full 8 hrs in bed and the subsequent first,
second and third days of total sleep deprivation. The
qualitative dynamics of the computational model were
constrained by biomathematical model predictions of
alertness, but we allowed magnitudes to vary on an
individual basis. For every participant, we estimated
intercepts and slopes to map the values of G and T, to the
biomathematical model predictions of alertness. Baseline
cognitive cycle time was also estimated for every
participant, but not varied as a function of predicted
alertness because no such relationship was found (p>.90).

We based the evaluation of our model on a “standard two-
stage” method. In the first stage of our analysis, we fitted
the 5 parameters identified above for each participant. We
then compared the model results to the human data by
computing the proportion of responses classified as false
starts, lapses, and non-responses, as well as proportions of
responses falling into 10 ms bins across the alert response
time range (150-500 ms). In the second stage, we computed
summary statistics and based our conclusions on the
behavior of the model across the whole sample. In this
manner, we avoided overparametrization of the research
problem—standard two-stage methods constitute a
statistically appropriate and approximately valid approach to
the study of individual differences (Feldman, 1988; Van
Dongen, Maislin, & Dinges, 2004).

Results

Figure 1 illustrates the ability of the model to capture the
range of human behavior, both at baseline and across an
extended period of sleep deprivation. Increases in cognitive
cycle time in the model produced shifts in the response
distribution to the right, combined with a widening of the
distribution attributable to noise. This prediction of the
model is borne out in the human data. In fitting individual
human performance data for the PVT, we found that the
best-fitting values for cognitive cycle time ranged from
21ms to 70ms, which is largely in line with proposals made
by Card, Moran, and Newell (1983) regarding individual
variability in cognitive processing speed. Importantly, this
single parameter did an excellent job of accounting for
individual differences in human performance at baseline.

There was limited evidence for a systematic increase in
cognitive cycle time across the sleep deprivation period. An
increase in this parameter was supported by 7 of the 13
participants (none of which were statistically significant,
p>.08), while 2 of the remaining 6 showed a significant
trend in the opposite direction (p<.05). Overall, changes in
cognitive cycle time did not lead to significant improvement
in the model’s predictions (p>.90) These results offer
further support for holding cognitive cycle time constant for
each individual across time awake, and call into question
cognitive slowing as the sole explanation for the impact of
sleep deprivation on performance (see also Dinges &
Kribbs, 1991).
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Figure 1: Individual human performance data (black) and
model fits (grey) for each day of the 4-day sleep deprivation
study. Data are proportions of responses within each
category (false starts, alert responses, lapses, and non-

responses), with alert responses broken into 10 ms ranges.
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In addition to cognitive cycle time, alertness (G) and the
threshold for action (7,) were fitted. There were substantial
differences among participants in the baseline values of G
and T,, and in the slopes of change for G and 7, as a
function of the alertness changes across days of sleep
deprivation. As a result, the values of G and T, became
more different among participants as sleep deprivation
progressed.

For all 13 participants, performance was best fit when G
values declined across the sleep deprivation period in
parallel with the biomathematical model predictions of
alertness. Overall, the impact of changes to G across the
sleep deprivation period was significant (p<.001). A similar
pattern was observed for 7,, where the data from 11 of the
participants was best fit when 7, declined as time awake
increased. This effect was significant as well (p<.001).
Table 1 presents the baseline value for each of the
parameters, and the coefficient relating G and 7, to
alertness, for the fits presented in Figure 1.

Table 1: Baseline values for all parameters and regression
coefficients (f) to map G and T, to the Jewett & Kronauer
(1999) model for each participant, along with the correlation
(R) and Root Mean Squared Deviation (D) of the model
with the individual participant data in Figure 1.

1D G T, Cycle R D
Value (f) Value () (ms)
A 1.27(1.32) 1.53 (.85) 38 95 .013
B 1.51(0.64) 1.70 ( .23) 59 97 014
C 1.58(1.69) 1.51 (1.26) 38 92 .013
D 0.65(3.12) 1.05 (2.50) 41 90  .026
E 1.22(0.75) 1.23 ( .49) 70 98  .010
F 1.68(0.43) 1.68 (.21) 57 95 .016
G 1.24(3.07) 1.21(2.74) 70 98  .010
H 1.63(0.33) 1.68 (.04) 47 94 013
I 1.18 (2.23) 1.21 (2.06) 51 92 016
J  1.61(0.56) 1.88 (.08) 24 93 014
K 2.18(0.29) 1.96 (-.56) 21 97  .012
L 1.58(0.02) 1.71 (-0.08) 37 96 011
M  1.33(0.85) 1.54 ( .41) 40 97  .010
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To evaluate the overall capacity of the model to capture
human performance, aggregate statistics are presented in
Table 2. Mean parameter values and standard deviations are
shown to illustrate the variation required to -capture
behavioral differences observed across individuals. In
addition, the means and the standard deviations of the
correlation and root mean squared deviation (RMSD) values
of the fits to the individual human data are presented. The
relatively high average correlation and correspondingly low
RMSD illustrate the model’s overall ability to capture
individual-level performance well, while the low standard
deviation of these statistics indicates that the model is
generally effective for each of the individual participants
modeled, as illustrated in Figure 1 and Table 1.



Table 2: Summary statistics of the model’s performance
across individuals, including measures of parameter
variation (ms) and fit to human data (correlation [r] and root
mean squared deviation [RMSD]). RMSD is presented as a
proportion of responses.

Parameter/ Mean Standard

Statistic Deviation
G (Intercept) 1.438 0.358
G (Slope) 1.178 1.046
T, (Intercept) 1.532 0.280
T, (Slope) 0.787 1.045
Cycle Time 45.566 15.376
Correlation (1) 0.948 0.026
RMSD 0.014 0.004

Conclusions

The results presented in this paper raise a number of issues
with regard to understanding psychomotor vigilance and
inter-individual differences in human reaction time, as well
as variability in the impact of sleep loss. Three primary
conclusions can be drawn. First, cognitive cycle time in
ACT-R provides a useful way of understanding stable
individual differences in baseline reaction time performance
on the PVT. This aspect of the architecture impacts the rate
of cognitive activity across contexts, providing a fairly
direct instantiation of processing speed. The performance of
our model supports of the idea that individual differences in
reaction time performance can be captured in a relatively
direct manner in ACT-R by using the cognitive cycle time
parameters, and provides a detailed, process-level account
of the phenomena observed in human performance.

Second, our research shows that micro-lapses in cognitive
processing can provide a parsimonious account of both
delayed responses (i.e., lapses) and smaller shifts in the
speed of alert reaction times. As such, micro-lapses may be
the right computational model equivalent of the “wake state
instability” phenomenon that has been proposed to underlie
the shifts in the reaction time distribution which give rise to
slower responses and lapses (Doran et al., 2001). .

Third, changes in cognitive cycle time alone did not
capture performance changes associated with sleep loss.
This calls into question the construct of cognitive slowing as
the best explanation for the relatively small changes in
median alert reaction time that are observed with increased
levels of sleep deprivation. Instead, our account suggests
that these changes can be explained by the same
fundamental changes in cognitive processing that give rise
to delayed responses and non-responses.

Interestingly, vulnerability to the negative consequences
of sleep deprivation on cognitive performance showed only
a modest relationship to individual differences in baseline
performance, as has been observed previously (Van Dongen
et al.,, 2004). The correlation between cognitive cycle time
and the magnitude of changes to both G and 7, across
successive days without sleep was not significant (p>.16;
r=.30 with G and r=.41 with T,), suggesting that these two
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sources of individual differences represent relatively distinct
influences on cognitive processing.

The free parameters in our modeling effort reflect claims
about the underlying sources of individual differences in
human performance on this task, and so they were expected
to vary among individuals. Research has shown repeatedly
that people’s performance varies extensively across a wide
variety of tasks in virtually every domain of psychological
study. Our goal is to use laboratory tasks to generate a
comprehensive model of the performance of individuals,
providing a capacity to predict individual performance on
applied tasks where data are difficult or impossible to
collect (e.g., Gunzelmann & Gluck, in press). We comment
on this long-term focus more in the remainder of the paper,
which discusses future directions.

Applications and Future Directions

As we develop a more robust and detailed account of
human cognitive performance and the various moderators
that impact behavior, it should become increasingly possible
to make predictions about the performance of individuals in
novel task contexts. For instance, the research presented
here provides evidence for variability in processing speed
across individuals on a sustained attention task. Because our
mechanisms are specified within a cognitive architecture,
there is potential for using performance data from simple
tasks like the PVT to generate predictions of performance
for individuals in other tasks as a function of this variability.
The same is true with regard to the mechanisms associated
with changes in alertness. The next step in this process is to
use these mechanisms to make such predictions in another
task where we have data from the same participants. This
will provide evidence regarding the promise of the
methodology, and also will illustrate the utility of using a
unified theory of cognition as a means of building a
cumulative account of the impact of fatigue on cognitive
performance.

The longer-term opportunity we see in this research is not
in modeling laboratory tasks like the PVT per se. Rather, it
is to use individually tailored parameter values derived from
simple laboratory tasks to make specific predictions in more
complicated, naturalistic task environments. A major
achievement would be to be able to predict the likelihood of
a catastrophic error by a specific individual based upon his
or her cognitive capabilities and limitations, including
performance degradations associated with sleep deprivation.
This has the potential to increase safety across myriad real-
world domains.

A further direction of this research is to understand in
greater detail the dynamics of human sustained attention.
Progress on this front depends on understanding another
major influence on alertness, namely time on task. It is well
established that performance on attention-demanding tasks
tends to decline as the task is performed for greater lengths
of time, a phenomenon referred to as the vigilance
decrement (e.g., Davies & Parasuraman, 1982; Van Dongen
& Belenky, 2008). Providing a unified account of the



relationships among time awake, circadian rhythms, and
time on task represents a major subgoal in being able to
predict variability in human performance across time. The
current line of research represents significant progress
toward that goal.
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