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Abstract 

A fundamental tenet of enactive theories of cognition states 
that action is a necessary prerequisite to perception.  In this 
paper we review the basis for this assumption and, with the 
help of a computational model of the famous Held and Hein 
kitten experiments, challenge the necessity of movement in 
subsequent detection.  In normal development action does 
play an important role in setting up detection, but we aim here 
to widen our conceptions and consider the effect of 
correlations between non-motoric events. 

Keywords: Action; detection; perception; enaction; 
actionism; embodiment; computational modeling; cortical 
hierarchy. 

Introduction 
The unit of analysis that many cognitive scientists consider 
relevant to our understanding of cognition has shifted from 
the view of cognition as purely internal computation that, at 
least to some degree, can be reduced to mapping sensory 
input to motor output, to the view of cognition as situated 
and embodied action that spans brain, body and 
environment (Clark, 1997; Clark & Chalmers, 1998; 
Hutchins, 1995; Suchman, 1987; Varela, Thompson, & 
Rosch, 1991). Thus embodiment calls our attention to the 
relationship between an agent or organism and its 
environment. One prominent example of this is the focus on 
sensorimotor knowledge in the enactive approach to 
perception (Noë, 2004; O'Regan & Noë, 2001; Thompson, 
2007; Varela et al., 1991) in which perception is thought to 
be both dependent upon, and constituted by our possession 
of sensorimotor knowledge, i.e. “practical knowledge of the 
ways movement gives rise to changes in stimulation.” (Noë, 
2004).  

Sensorimotor knowledge is not simply factual knowledge 
about a domain but is intimately about the relationship 
between an agent, its environment, and objects therein.  
Regularities in this relationship, such as the sensory 
consequences of actions in context, provide a grounded path 
to the discovery of affordances and through them to 
knowledge of the world around us (Gibson, 1979; Morse & 
Ziemke, 2007).  Gallese and Lakoff (2005), though not 
explicitly enactive, propose a similar theory of conceptual 
knowledge underpinned by extensive neuroscientific 
evidence of the association between, and reactivation of, 
sensorimotor areas during cognitive tasks.  In a similar vein, 
O’Regan and colleges continue to produce experimental 
evidence of the role of sensorimotor dependencies in 
understanding space and colour (Philipona & O'Regan, 
2006; Philipona, O'Regan, & Nadal, 2003).   

Clearly then there is a wealth of evidence both theoretical 
and experimental originating from philosophy, psychology, 
and neuroscience, all highlighting the immensely important 
role that action plays in perception.  Such a relationship is 
quite rightly positioned at the fore in enactive attempts to 
understand the normal development of cognition, conceptual 
knowledge, and perception.  One problem, as we see it, is 
that action has come to dominate our understanding of how 
perception is brought fourth to the exclusion of other 
possible routes.  By modelling the role of action in detection 
and highlighting possible mechanisms we challenge the 
claim that action and movement is necessary for, and by 
implication the only way in which, perception can arise.  
While such a view is not universally held, and we hope that 
to most our position seems reasonable, stronger claims of 
the necessity of action have been made, Noë for example, 
claims that “what is ruled out is the possibility of someone 
who lacked all sensorimotor comprehension having 
experiences with spatial content (or for that matter, any 
content).” (2004, p. 91). 

That action is under normal development the dominant 
means of exploring and discovering a distal world is not 
surprising.  For many the paradigmatic human sense is 
vision, which by its very nature is inherently spatial and 
therefore requires motor exploration of the environment in-
order to discover its spatial content.  According to Noë, “the 
claim is that by sampling the way appearances change as 
you move through this appearance space, we encounter the 
invariants.” (2004, p. 86).  As Noë argues, vision is 
misleading as we are unaware of just how active a process it 
is.  Instead he suggests that a more appropriate candidate, at 
least for helping us to understand the mechanisms 
underlying perception, is touch, a more obviously motoric 
modality than vision.  If, as many have argued, the role of 
action is in exposing correlations or ‘encountering the 
invariants’ then surely any other means to encounter the 
invariants could equally lead to perception and should be 
investigated as such.  We further suggest that such 
investigations have the potential to lead to stronger accounts 
of non-spatial concepts and aspects of cognition. 

In the remainder of this paper we first briefly review a 
body of work with animals (kittens) demonstrating the 
calibrating role of proprioception.  We then introduce a 
robotic model of those experiments, the results of which, 
while fully supporting the role of action in the development 
of detection capacities, equally highlight and demonstrate 
that a similar role can be played by correlations existing 
between other non-motoric modalities such as passive 
vision and touch.  We conclude with a discussion of the 
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dominance of spatial aspects of thought and cognition and 
the potential implications of acknowledging another route to 
perception.  

Background: “Blind” Kittens 
A body of work often referred to in the enactive cognitive 
science literature originates with the experiments of Held 
and Hein (1967) in which kittens raised in the dark, and 
unable to control their own movements during exposure to 
light, exhibit severe deficiencies in visually guided 
behavior.  The experiments involved two groups of kittens 
both raised in the dark.  However, before exposure to light, 
kittens from group A were placed (individually) in a 
gondola and held there by a neck yoke and body clamp.  
Kittens from group B were also placed in a neck yoke and 
body clamp but not a gondola and so were able to control 
their own movements.  The two kittens were connected via 
the body clamps to a mechanism and pivot such that the 
gross movements of the kitten able to control its movement 
were transferred to the other kitten (see Figure 1 below). 

 

 
Figure 1: Replication of the Held and Hein kitten 

experiments using the ICEAsim rat like robots.  While one 
kitten or robot is able to move freely, the other kitten or 
robot is restrained and the gross movements of the first 

kitten or robot are transferred to the second. 
 

Following such limited exposure to light (and removed from 
the apparatus) kittens that were able to control their 
movements (group B) were able to make visually guided 
paw placements and could also avoid a visual cliff.  The 
kittens from the gondola (group A) however were unable to 
perform either task and behaved as if blind.  In subsequent 
unrestrained exposure to light, all the kittens developed 
normally. For Held and Hein this confirmed their thesis that 
“self-produced movement with its concurrent visual 
feedback is necessary for the development of visually-
guided behavior.” (1967, p. 875).  They further consider and 
dismiss the possibility that these results were due to either 
anatomical / physiological deterioration (as both groups 
were free to behave normally in the dark) or behavioral 

inhibition (as no signs of shock, excitement, or fright were 
observed).   

The important aspect of this experiment is to note that 
purely afferent visual exposure is insufficient for the 
constitution of visually guided behavior (Gapenne, In 
Press).  This result should hardly be surprising as it requires 
the coordination of visual and behavioral modalities that the 
kitten has never experienced in any coordinated way before.  
However this result has been further explored in studies by 
Buisseret and Imbert (1976).  In this work kittens were 
similarly raised in the dark for 6 weeks before a 6 hour 
exposure to light.  Extracellular recordings were taken from 
the visual cortex (visual area 17) and analyzed according to 
cellular selectivity for the orientation of a visual stimulus.  
Their results showed that the selectivity of cells to the 
orientation of a visual stimulus was absent both in kittens 
that have never been exposed to light and in kittens deprived 
of movement (including ocular movements) during 
exposure to light.  In contrast, kittens able to freely move 
during exposure to light did develop orientation sensitivity.  
Finally, if movement is limited to one plane, then sensitivity 
develops to features orthogonal to that plane (for a detailed 
review of this an other related work see (Gapenne, In Press). 

Experimental Setup and Model Design 
In replicating the experiment of Buisseret and Imbert (1976) 
we use the Webots based ICEAsim, a simulated rat-like 
robot in a 3D simulation environment (developed in the 
ICEA project, www.iceaproject.eu).  The robot provides 
visual input from two cameras and tactile information from 
a set of six movable whiskers and has a further 12 degrees 
of freedom.  The robot is placed in a simple simulated 
environment consisting of a single round room with a 
repeating pattern on all walls.  This pattern consisted of 
parallel black and white stripes which could be rotated to 
any angle (see Figure 2 below). 

 

 
 

Figure 2: Screenshot of the ICEAsim rat in a simulated 
environment with 45 degree striped black and white walls. 
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As the computational model of the cortex underlying these 
experiments and its neurophysiological basis is non-trivial 
we delay their discussion to a later section of this paper.  Of 
relevance to this section however is that, deflection 
information from the robots whiskers provided input to a 
somatosensory / barrel cortex analogue, and pixel 
information from the cameras provided input to a visual 
cortex analogue.  Furthermore motor signals controlling the 
robot’s movements could optionally provide input to a 
motor cortex analogue (see Figure 3 for a connection 
diagram of the model).   

A Computational Model of the Cortex 
For many neuroscientists the basic unit of the cortex is the 
cortical micro-column, a structure of between 10 and 
100,000 cells with inhibitory lateral connectivity between 
local micro-columns, and excitatory connections between 
micro-columns in different regions of cortex (Mountcastle, 
1978; Swanson, 2003).  Cortical micro-columns have 
complex and varying structure and internal connectivity, 
which we shall not attempt to model in any detail here.  
However, they are observed to be non-chaotic; they do not 
display stable attractor dynamics (activity decays on 
cessation of input); the size of input is small relative to the 
size of the micro-column; and the state space achieved by an 
active ‘firing’ micro-column is large and sensitive to its 
input (Gupta et al., 2002; Markram, Wang, & Tsodyks, 
1998).  All of these properties are also displayed by Echo 
State Networks (ESN) (Jaeger, 2002), which while not 
modeling all of the internal details of cortical micro-
columns, do serve as abstract neurocomputational models to 
the extent that they capture these features.  The ESN 
reservoir is a large and fixed recurrent neural network acting 
as a high dimensional excitable medium containing 
information about current and recent inputs in the trajectory 
of transient internal states.  The 100 neuron ESN we use is 
derived from a random weights matrix populated with 30% 
connectivity and adjusted so as to have a spectral radius < 1, 
i.e. |λmax| < 1, where λmax is the eigenvalue of w which has 
the largest absolute value, thus the ESN is uniquely 
controlled by the input and the effect of initial states 
disappears.  By observation this would also seem to be true 
of cortical micro-columns.   

The ESN reservoir is cycled according to standard 
DTRNN equations:  ai = Σyj wij + ii  where neuron output is 
computed by:  yi = tanh(ai)  and input to the reservoir is 
provided via weights generated by the same method as the 
ESN weights.   

Most excitatory connections between cortical micro-
columns target the same regions and thus form major 
pathways through the cortex, connecting first unimodal 
regions and then polymodal regions and following a similar 
path independently of the particular modality (including the 
motor cortex) (Jones & Powell, 1970; Swanson, 2003).  
Herein we construct a simple model of the connectivity and 
regionalization of the rat cortex based on cortical maps from 
Brown and Aggleton (2001) (see Figure 3). 

 
 

Figure 3: Connection diagram showing the major pathways 
by which sensory information reaches specific regions of 

the rat cortex.  The thickness of the connecting lines 
indicates the size of the projection. 

 
According to a theory of cortical processing proposed by 
Hawkins and Blakeslee (2004), each micro-column detects 
and classifies features in its input, passing these feature 
classifications onto the next region.  While classifications of 
detected features flow up this hierarchy, top down 
connections project back along these pathways such that 
partial patterns are completed ‘top down’ providing 
anticipatory input based on the presence of other sensory 
features.  Major pathways from different sensory regions 
converge in polymodal regions which are able not only to 
detect multimodal features, but also predict features in one 
modality based on information from another.   

As we wish to avoid specifying which things are to be 
classified, and given that we know that information about 
current and recent inputs is present in the transient internal 
states of the reservoir, our ESN-based computational model 
passes on information about these states to connected 
columns following the map shown in Figure 1.  Rather than 
pass on the full internal state of the reservoir (which would 
contradict the biological observation that the size of input is 
small relative to the size of the micro-column) we 
autonomously classify its state, preserving topology, using a 
Self-Organizing Map (SOM) (Kohonen, 1998).  The SOM 
provides an ongoing approximation of the principle 
components of the state space, thus using a 2 dimensional 
map (in map space) we can extract the position of the 
winning node and provide information that co-varies with 
the main principle components of the state space of the 
reservoir.  This provides a low dimensional output that 
maximally varies with the state of the reservoir.  The SOM 
then also provides a normal input back into the ESN 
reservoir as shown in Figure 4. 
   Finally single layer perceptrons reading the ESN reservoir 
of one cortical hierarchy unit are trained using a standard 
delta rule:  Δwi = α(t p – a p)xi

p  to match the current activity 
of SOM units in connected columns.  By allowing these 
predictions to activate SOM units in connected hierarchy 
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units, which in turn provide input to the ESN reservoirs of 
those units, the model can provide anticipatory input to 
those units based on the presence of sensory or motor 
features.  Such feedback has already been identified as a 
mechanism by which inattentional blindness can be 
modeled and accounted for in these models (Morse, In 
Press; Morse, Lowe, & Ziemke, In Press-a, In Press-b).  By 
comparison to most connectionist or evolutionary models 
this may seem rather complex, however we identified here a 
set of principles for generating mid to large scale neural 
models capturing aspects of biological cortex and able to 
display a variety of both neurological and psychological 
phenomena (cf. Morse, 2006). 
 

 
 

Figure 4: The basic unit of the cortical hierarchy.  Input 
perturbs an ESN reservoir which is read by a SOM.  The 

SOM also provides an input to the ESN and the location of 
the winning SOM unit in SOM space is provided as output. 

Experiment 1:  Unrestrained Movement 
In experiment 1, the rat was driven by a simple wall 
following program in the environment shown in Figure 1 for 
2000 time steps as the neighborhood size of each SOM 
reduced linearly to 0.  During this period, in condition A, 
the motor activity provided input to the motor cortex, in 
condition B no input was provided to the motor cortex, and 
in condition C random input was provided to the motor 
cortex. Following this exposure period all learning was 
stopped and the model was tested on its ability to 
distinguish the angle of the stripes by linear regression 
(trained single layer perceptrons) of the activity of the ESN 
reservoir in the visual cortex only.  During testing the robot 
continued to drive using the same behavioral program while 

the angle of the stripes on the walls were periodically 
adjusted.   

Experiment 2:  Movement in one Plane 
In experiment 2 we followed the same procedure as in 
experiment 1 but changed the motor program so that the 
robot turned its head from full left to full right and back 
again along a single horizontal plane of movement, thus 
replicating Buisseret and Imberts’ experiments in which 
kittens’ ocular movements were restricted to a single plane. 

Experiment 3:  Sensory-Sensory Corelations 
In experiment 3 the robot remained motionless while 
identical objects (e-puck robots) moved towards it.  50% of 
these objects collided with the robot causing whisker 
movement and hence stimulation of the sensorimotor / 
barrel cortex.  Experiment 3 followed a similar design to 
experiments 1 and 2, having three conditions.  In condition 
A, whisker activity stimulated the sensorimotor / barrel 
cortex; in condition B, the sensorimotor / barrel cortex 
received no stimulation; and in condition C the sensorimotor 
/ barrel cortex received random stimulation.  During testing 
objects continued moving toward the robot and 50% of 
these collided with it causing whisker defelcetion. 

Results and Analysis 
In all conditions of experiments 1 and 2, we recorded the 
full activity of the ESN reservoir of the visual cortex at 
every time step as well as the corresponding angle of the 
stripes on the walls of the environment.  For each different 
angle of the stripes we performed a separate linear 
regression (on the ESN reservoir activity over time) to 
distinguish time steps with that particular angle of stripes 
from time steps in which other angles of stripes were used.  
Discrimination performance was generally quite high, but 
we noted particular performance differences between the 
conditions and experiments.   

 
Graph 1:  Showing the results from Experiment 1 in 

Condition A (motor input)(left bars), and Condition B (no 
motor input)(right bars).  Results shown are the percentage 
of misclassifications of the linear regression detecting for 

different angles of the stripes. 
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Firstly, in both experiments no significant differences were 
found between discriminatory abilities for any angle of 
stripes between condition B and condition C, thus the 
difference between random input to the motor cortex and no 
input to the motor cortex has no significant effect on the 
discriminatory abilities of the visual cortex in our model.  
However, a significant effect (p < 0.1) was found in 
experiment 1 whereby an increase in discrimination 
performance was observed in all tested angles in condition 
A over conditions B and C (see Graph 1).  This 
improvement was in the range of a 9% to 15% decrease in 
the percentage of misclassifications by the trained 
perceptrons.  This shows increased sensitivity to the 
orientation of the stripe stimuli in the visual cortex of our 
model when the activity in its motor cortex relates to actual 
movements as opposed to being either random or absent. 

In experiment 2 the movement of the robot was restricted 
to a single horizontal plane.  While general performance at 
detection was again quite good in all conditions, and no 
significant differences were found between performance at 
detection of any angle between condition B and condition C, 
condition A displayed a 15% improvement at detecting the 
vertical stripes only, all other tested stripes showed no 
significant difference between conditions.  This 
demonstrates an improvement in detection of stripe stimuli 
orthogonal to the plane of movement and thus accurately 
models the results of Buisseret and Imbert.  

 
Graph 2:  Showing the results from Experiment 2 in 

Condition A (motor input)(left bars), and Condition B (no 
motor input)(right bars).  Results shown are the percentage 

of misclassifications of the linear regression at detecting 
different angles of the stripes. 

 
In Experiment 3, as with experiments 1 and 2 we again 
recorded the full activity of the ESN reservoir of the visual 
cortex at every time step.  We further recorded for each time 
step whether the approaching object eventually collides with 
the robot or not.  In comparing the performance of trained 
perceptrons in conditions A, and B, we found a significant 
improvement in distinguishing whether an approaching 
object would collide with the robot or not, if the activity of 
the whiskers stimulated the sensorimotor / barrel cortex 
(average of 17.14 % misclassifications Vs an average of 
38.40 % misclassifications).  Given that correlations induce 
performance increases (Morse et al., In Press-a) which also 

facilitate conditioning (Morse & Aktius, 2008), then 
experiment 3 demonstrates a non-motoric route to detection 
where events or features in one sensory modality facilitate 
detection of events or features in another. 

Discussion 
The cortical model we use is not a neuroscientific model in 
that it does not attempt to accurately model the internal 
circuitry of biological cortical micro-columns.  As such no 
specific ‘detectors’ corresponding to neuroscientific 
findings are produced.  However many aspects of cortex and 
regional interconnectivity are present in the model and our 
results are based on those aspects of the model.  We suggest 
that increases in the separability of specific environmental 
features (measured by performance increases in 
disambiguation by linear regression) would in biological 
counterparts facilitate the creation of such detectors.  We 
hypothesize that it is these top-down projections that lead to 
the development of detectors rather than improved 
separation per se, though the detector would be of those 
features exhibiting such improved separation. 

To summarize, we have replicated, in experiment 1 and 2, 
Buisseret and Imbert’s findings that controlling your own 
movement is necessary to establish detection of spatial 
features and furthermore that if movement is restricted to a 
single plane then detectors are established only for spatial 
features orthogonal to that plane of movement.  
Furthermore, in experiment 3, we have shown that 
correlations between non-motoric modalities can similarly 
lead to improvements in performance that we associate with 
the development of detectors in biological cortex.  These 
results support the biological relevance of our cortical 
model and further provide an account of the cognitive 
mechanisms responsible for these well known effects, 
specifically the top down projection of anticipatory signals.   

Our model fully supports the role that action in an 
environment plays in directing the sensitivity of detection 
and we presume that in more complex environments this 
would extend to the discovery of affordances and object 
recognition.  Our third experiment however demonstrates 
that correlations between non-motoric sensory information 
can play the same role as action in leading to the discovery 
of invariants.  While the normal human mental schema is 
dominated by spatial information we believe that it is 
important to remember that other routes to detection, and by 
implication perception, exist.  What we propose is that 
sensorimotor knowledge is partnered by sensory-sensory 
knowledge, the application of which can equally lead to 
perception.  While to many this may seem obvious, such a 
route to perception has been overlooked by some enactive 
cognitive theorists.  The benefits of considering this 
alternative route are apparent in the directness of the 
accounts that can be given of certain perceptions.  For 
example; a sensorimotor account of the perception of an 
impeding collision can be given in terms of simulating the 
sensory consequences of performing various behaviors; by 
contrast sensory-sensory knowledge triggered by the 

589



presence (or simulated presence) of certain stimuli provides 
a direct route to such perceptions.  Such parsimony is not 
limited to collision detection either, we argue that once 
sensorimotor knowledge is possessed many perceptual 
attributes and object characteristics can be perceived in this 
way and we plan further experiments to demonstrate 
precisely this. 
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