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Abstract

A fundamental tenet of enactive theories of cognition states
that action is a necessary prerequisite to perception. In this
paper we review the basis for this assumption and, with the
help of a computational model of the famous Held and Hein
kitten experiments, challenge the necessity of movement in
subsequent detection. In normal development action does
play an important role in setting up detection, but we aim here
to widen our conceptions and consider the effect of
correlations between non-motoric events.

Keywords:  Action; detection; perception; enaction;
actionism; embodiment; computational modeling; cortical
hierarchy.

Introduction

The unit of analysis that many cognitive scientists consider
relevant to our understanding of cognition has shifted from
the view of cognition as purely internal computation that, at
least to some degree, can be reduced to mapping sensory
input to motor output, to the view of cognition as situated
and embodied action that spans brain, body and
environment (Clark, 1997; Clark & Chalmers, 1998;
Hutchins, 1995; Suchman, 1987; Varela, Thompson, &
Rosch, 1991). Thus embodiment calls our attention to the
relationship between an agent or organism and its
environment. One prominent example of this is the focus on
sensorimotor knowledge in the enactive approach to
perception (Noé, 2004; O'Regan & Nog, 2001; Thompson,
2007; Varela et al., 1991) in which perception is thought to
be both dependent upon, and constituted by our possession
of sensorimotor knowledge, i.e. “practical knowledge of the
ways movement gives rise to changes in stimulation.” (Noég,
2004).

Sensorimotor knowledge is not simply factual knowledge
about a domain but is intimately about the relationship
between an agent, its environment, and objects therein.
Regularities in this relationship, such as the sensory
consequences of actions in context, provide a grounded path
to the discovery of affordances and through them to
knowledge of the world around us (Gibson, 1979; Morse &
Ziemke, 2007). Gallese and Lakoff (2005), though not
explicitly enactive, propose a similar theory of conceptual
knowledge underpinned by extensive neuroscientific
evidence of the association between, and reactivation of,
sensorimotor areas during cognitive tasks. In a similar vein,
O’Regan and colleges continue to produce experimental
evidence of the role of sensorimotor dependencies in
understanding space and colour (Philipona & O'Regan,
2006; Philipona, O'Regan, & Nadal, 2003).
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Clearly then there is a wealth of evidence both theoretical
and experimental originating from philosophy, psychology,
and neuroscience, all highlighting the immensely important
role that action plays in perception. Such a relationship is
quite rightly positioned at the fore in enactive attempts to
understand the normal development of cognition, conceptual
knowledge, and perception. One problem, as we see it, is
that action has come to dominate our understanding of how
perception is brought fourth to the exclusion of other
possible routes. By modelling the role of action in detection
and highlighting possible mechanisms we challenge the
claim that action and movement is necessary for, and by
implication the only way in which, perception can arise.
While such a view is not universally held, and we hope that
to most our position seems reasonable, stronger claims of
the necessity of action have been made, Noé for example,
claims that “what is ruled out is the possibility of someone
who lacked all sensorimotor comprehension having
experiences with spatial content (or for that matter, any
content).” (2004, p. 91).

That action is under normal development the dominant
means of exploring and discovering a distal world is not
surprising. For many the paradigmatic human sense is
vision, which by its very nature is inherently spatial and
therefore requires motor exploration of the environment in-
order to discover its spatial content. According to No€, “the
claim is that by sampling the way appearances change as
you move through this appearance space, we encounter the
invariants.” (2004, p. 86). As Noé& argues, vision is
misleading as we are unaware of just how active a process it
is. Instead he suggests that a more appropriate candidate, at
least for helping us to understand the mechanisms
underlying perception, is touch, a more obviously motoric
modality than vision. If, as many have argued, the role of
action is in exposing correlations or ‘encountering the
invariants’ then surely any other means to encounter the
invariants could equally lead to perception and should be
investigated as such. We further suggest that such
investigations have the potential to lead to stronger accounts
of non-spatial concepts and aspects of cognition.

In the remainder of this paper we first briefly review a
body of work with animals (kittens) demonstrating the
calibrating role of proprioception. We then introduce a
robotic model of those experiments, the results of which,
while fully supporting the role of action in the development
of detection capacities, equally highlight and demonstrate
that a similar role can be played by correlations existing
between other non-motoric modalities such as passive
vision and touch. We conclude with a discussion of the



dominance of spatial aspects of thought and cognition and
the potential implications of acknowledging another route to
perception.

Background: “Blind” Kittens

A body of work often referred to in the enactive cognitive
science literature originates with the experiments of Held
and Hein (1967) in which kittens raised in the dark, and
unable to control their own movements during exposure to
light, exhibit severe deficiencies in visually guided
behavior. The experiments involved two groups of kittens
both raised in the dark. However, before exposure to light,
kittens from group A were placed (individually) in a
gondola and held there by a neck yoke and body clamp.
Kittens from group B were also placed in a neck yoke and
body clamp but not a gondola and so were able to control
their own movements. The two kittens were connected via
the body clamps to a mechanism and pivot such that the
gross movements of the kitten able to control its movement
were transferred to the other kitten (see Figure 1 below).
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Figure 1: Replication of the Held and Hein kitten
experiments using the ICEAsim rat like robots. While one
kitten or robot is able to move freely, the other kitten or
robot is restrained and the gross movements of the first
kitten or robot are transferred to the second.

Following such limited exposure to light (and removed from
the apparatus) kittens that were able to control their
movements (group B) were able to make visually guided
paw placements and could also avoid a visual cliff. The
kittens from the gondola (group A) however were unable to
perform either task and behaved as if blind. In subsequent
unrestrained exposure to light, all the kittens developed
normally. For Held and Hein this confirmed their thesis that
“self-produced movement with its concurrent visual
feedback is necessary for the development of visually-
guided behavior.” (1967, p. 875). They further consider and
dismiss the possibility that these results were due to either
anatomical / physiological deterioration (as both groups
were free to behave normally in the dark) or behavioral

inhibition (as no signs of shock, excitement, or fright were
observed).

The important aspect of this experiment is to note that
purely afferent visual exposure is insufficient for the
constitution of visually guided behavior (Gapenne, In
Press). This result should hardly be surprising as it requires
the coordination of visual and behavioral modalities that the
kitten has never experienced in any coordinated way before.
However this result has been further explored in studies by
Buisseret and Imbert (1976). In this work Kkittens were
similarly raised in the dark for 6 weeks before a 6 hour
exposure to light. Extracellular recordings were taken from
the visual cortex (visual area 17) and analyzed according to
cellular selectivity for the orientation of a visual stimulus.
Their results showed that the selectivity of cells to the
orientation of a visual stimulus was absent both in kittens
that have never been exposed to light and in kittens deprived
of movement (including ocular movements) during
exposure to light. In contrast, kittens able to freely move
during exposure to light did develop orientation sensitivity.
Finally, if movement is limited to one plane, then sensitivity
develops to features orthogonal to that plane (for a detailed
review of this an other related work see (Gapenne, In Press).

Experimental Setup and Model Design

In replicating the experiment of Buisseret and Imbert (1976)
we use the Webots based ICEAsim, a simulated rat-like
robot in a 3D simulation environment (developed in the
ICEA project, www.iceaproject.eu). The robot provides
visual input from two cameras and tactile information from
a set of six movable whiskers and has a further 12 degrees
of freedom. The robot is placed in a simple simulated
environment consisting of a single round room with a
repeating pattern on all walls. This pattern consisted of

parallel black and white stripes which could be rotated to
any angle (see Figure 2 below).
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Figure 2: Screenshot of the ICEAsim rat in a simulated
environment with 45 degree striped black and white walls.



As the computational model of the cortex underlying these
experiments and its neurophysiological basis is non-trivial
we delay their discussion to a later section of this paper. Of
relevance to this section however is that, deflection
information from the robots whiskers provided input to a
somatosensory / barrel cortex analogue, and pixel
information from the cameras provided input to a visual
cortex analogue. Furthermore motor signals controlling the
robot’s movements could optionally provide input to a
motor cortex analogue (see Figure 3 for a connection
diagram of the model).

A Computational Model of the Cortex

For many neuroscientists the basic unit of the cortex is the
cortical micro-column, a structure of between 10 and
100,000 cells with inhibitory lateral connectivity between
local micro-columns, and excitatory connections between
micro-columns in different regions of cortex (Mountcastle,
1978; Swanson, 2003). Cortical micro-columns have
complex and varying structure and internal connectivity,
which we shall not attempt to model in any detail here.
However, they are observed to be non-chaotic; they do not
display stable attractor dynamics (activity decays on
cessation of input); the size of input is small relative to the
size of the micro-column; and the state space achieved by an
active ‘firing’ micro-column is large and sensitive to its
input (Gupta et al., 2002; Markram, Wang, & Tsodyks,
1998). All of these properties are also displayed by Echo
State Networks (ESN) (Jaeger, 2002), which while not
modeling all of the internal details of cortical micro-
columns, do serve as abstract neurocomputational models to
the extent that they capture these features. The ESN
reservoir is a large and fixed recurrent neural network acting
as a high dimensional excitable medium containing
information about current and recent inputs in the trajectory
of transient internal states. The 100 neuron ESN we use is
derived from a random weights matrix populated with 30%
connectivity and adjusted so as to have a spectral radius < 1,
i.e. |Amax] < 1, where A« is the eigenvalue of w which has
the largest absolute value, thus the ESN is uniquely
controlled by the input and the effect of initial states
disappears. By observation this would also seem to be true
of cortical micro-columns.

The ESN reservoir is cycled according to standard
DTRNN equations: a; = 2Y; W; + i; where neuron output is
computed by: Yy, = tanh(a;)) and input to the reservoir is
provided via weights generated by the same method as the
ESN weights.

Most excitatory connections between cortical micro-
columns target the same regions and thus form major
pathways through the cortex, connecting first unimodal
regions and then polymodal regions and following a similar
path independently of the particular modality (including the
motor cortex) (Jones & Powell, 1970; Swanson, 2003).
Herein we construct a simple model of the connectivity and
regionalization of the rat cortex based on cortical maps from
Brown and Aggleton (2001) (see Figure 3).
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Figure 3: Connection diagram showing the major pathways
by which sensory information reaches specific regions of
the rat cortex. The thickness of the connecting lines
indicates the size of the projection.

According to a theory of cortical processing proposed by
Hawkins and Blakeslee (2004), each micro-column detects
and classifies features in its input, passing these feature
classifications onto the next region. While classifications of
detected features flow wup this hierarchy, top down
connections project back along these pathways such that
partial patterns are completed ‘top down’ providing
anticipatory input based on the presence of other sensory
features. Major pathways from different sensory regions
converge in polymodal regions which are able not only to
detect multimodal features, but also predict features in one
modality based on information from another.

As we wish to avoid specifying which things are to be
classified, and given that we know that information about
current and recent inputs is present in the transient internal
states of the reservoir, our ESN-based computational model
passes on information about these states to connected
columns following the map shown in Figure 1. Rather than
pass on the full internal state of the reservoir (which would
contradict the biological observation that the size of input is
small relative to the size of the micro-column) we
autonomously classify its state, preserving topology, using a
Self-Organizing Map (SOM) (Kohonen, 1998). The SOM
provides an ongoing approximation of the principle
components of the state space, thus using a 2 dimensional
map (in map space) we can extract the position of the
winning node and provide information that co-varies with
the main principle components of the state space of the
reservoir. This provides a low dimensional output that
maximally varies with the state of the reservoir. The SOM
then also provides a normal input back into the ESN
reservoir as shown in Figure 4.

Finally single layer perceptrons reading the ESN reservoir
of one cortical hierarchy unit are trained using a standard
delta rule: Aw; = at” —a?)x” to match the current activity
of SOM units in connected columns. By allowing these
predictions to activate SOM units in connected hierarchy



units, which in turn provide input to the ESN reservoirs of
those units, the model can provide anticipatory input to
those units based on the presence of sensory or motor
features. Such feedback has already been identified as a
mechanism by which inattentional blindness can be
modeled and accounted for in these models (Morse, In
Press; Morse, Lowe, & Ziemke, In Press-a, In Press-b). By
comparison to most connectionist or evolutionary models
this may seem rather complex, however we identified here a
set of principles for generating mid to large scale neural
models capturing aspects of biological cortex and able to
display a variety of both neurological and psychological
phenomena (cf. Morse, 2006).
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Figure 4: The basic unit of the cortical hierarchy. Input
perturbs an ESN reservoir which is read by a SOM. The
SOM also provides an input to the ESN and the location of
the winning SOM unit in SOM space is provided as output.

Experiment 1: Unrestrained Movement

In experiment 1, the rat was driven by a simple wall
following program in the environment shown in Figure 1 for
2000 time steps as the neighborhood size of each SOM
reduced linearly to 0. During this period, in condition A,
the motor activity provided input to the motor cortex, in
condition B no input was provided to the motor cortex, and
in condition C random input was provided to the motor
cortex. Following this exposure period all learning was
stopped and the model was tested on its ability to
distinguish the angle of the stripes by linear regression
(trained single layer perceptrons) of the activity of the ESN
reservoir in the visual cortex only. During testing the robot
continued to drive using the same behavioral program while

the angle of the stripes on the walls were periodically
adjusted.

Experiment 2: Movement in one Plane

In experiment 2 we followed the same procedure as in
experiment 1 but changed the motor program so that the
robot turned its head from full left to full right and back
again along a single horizontal plane of movement, thus
replicating Buisseret and Imberts’ experiments in which
kittens’ ocular movements were restricted to a single plane.

Experiment 3: Sensory-Sensory Corelations

In experiment 3 the robot remained motionless while
identical objects (e-puck robots) moved towards it. 50% of
these objects collided with the robot causing whisker
movement and hence stimulation of the sensorimotor /
barrel cortex. Experiment 3 followed a similar design to
experiments 1 and 2, having three conditions. In condition
A, whisker activity stimulated the sensorimotor / barrel
cortex; in condition B, the sensorimotor / barrel cortex
received no stimulation; and in condition C the sensorimotor
/ barrel cortex received random stimulation. During testing
objects continued moving toward the robot and 50% of
these collided with it causing whisker defelcetion.

Results and Analysis

In all conditions of experiments 1 and 2, we recorded the
full activity of the ESN reservoir of the visual cortex at
every time step as well as the corresponding angle of the
stripes on the walls of the environment. For each different
angle of the stripes we performed a separate linear
regression (on the ESN reservoir activity over time) to
distinguish time steps with that particular angle of stripes
from time steps in which other angles of stripes were used.
Discrimination performance was generally quite high, but
we noted particular performance differences between the

conditions and experiments.
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Graph 1: Showing the results from Experiment 1 in
Condition A (motor input)(left bars), and Condition B (no
motor input)(right bars). Results shown are the percentage

of misclassifications of the linear regression detecting for
different angles of the stripes.
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Firstly, in both experiments no significant differences were
found between discriminatory abilities for any angle of
stripes between condition B and condition C, thus the
difference between random input to the motor cortex and no
input to the motor cortex has no significant effect on the
discriminatory abilities of the visual cortex in our model.
However, a significant effect (p < 0./) was found in
experiment 1 whereby an increase in discrimination
performance was observed in all tested angles in condition
A over conditions B and C (see Graph 1). This
improvement was in the range of a 9% to 15% decrease in
the percentage of misclassifications by the trained
perceptrons.  This shows increased sensitivity to the
orientation of the stripe stimuli in the visual cortex of our
model when the activity in its motor cortex relates to actual
movements as opposed to being either random or absent.

In experiment 2 the movement of the robot was restricted
to a single horizontal plane. While general performance at
detection was again quite good in all conditions, and no
significant differences were found between performance at
detection of any angle between condition B and condition C,
condition A displayed a 15% improvement at detecting the
vertical stripes only, all other tested stripes showed no
significant  difference  between conditions. This
demonstrates an improvement in detection of stripe stimuli
orthogonal to the plane of movement and thus accurately

models the results of Buisseret and Imbert.
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Graph 2: Showing the results from Experiment 2 in
Condition A (motor input)(left bars), and Condition B (no
motor input)(right bars). Results shown are the percentage

of misclassifications of the linear regression at detecting
different angles of the stripes.
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In Experiment 3, as with experiments 1 and 2 we again
recorded the full activity of the ESN reservoir of the visual
cortex at every time step. We further recorded for each time
step whether the approaching object eventually collides with
the robot or not. In comparing the performance of trained
perceptrons in conditions A, and B, we found a significant
improvement in distinguishing whether an approaching
object would collide with the robot or not, if the activity of
the whiskers stimulated the sensorimotor / barrel cortex
(average of 17.14 % misclassifications Vs an average of
38.40 % misclassifications). Given that correlations induce
performance increases (Morse et al., In Press-a) which also
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facilitate conditioning (Morse & Aktius, 2008), then
experiment 3 demonstrates a non-motoric route to detection
where events or features in one sensory modality facilitate
detection of events or features in another.

Discussion

The cortical model we use is not a neuroscientific model in
that it does not attempt to accurately model the internal
circuitry of biological cortical micro-columns. As such no
specific  ‘detectors’ corresponding to neuroscientific
findings are produced. However many aspects of cortex and
regional interconnectivity are present in the model and our
results are based on those aspects of the model. We suggest
that increases in the separability of specific environmental
features (measured by performance increases in
disambiguation by linear regression) would in biological
counterparts facilitate the creation of such detectors. We
hypothesize that it is these top-down projections that lead to
the development of detectors rather than improved
separation per se, though the detector would be of those
features exhibiting such improved separation.

To summarize, we have replicated, in experiment 1 and 2,
Buisseret and Imbert’s findings that controlling your own
movement is necessary to establish detection of spatial
features and furthermore that if movement is restricted to a
single plane then detectors are established only for spatial
features orthogonal to that plane of movement.
Furthermore, in experiment 3, we have shown that
correlations between non-motoric modalities can similarly
lead to improvements in performance that we associate with
the development of detectors in biological cortex. These
results support the biological relevance of our cortical
model and further provide an account of the cognitive
mechanisms responsible for these well known effects,
specifically the top down projection of anticipatory signals.

Our model fully supports the role that action in an
environment plays in directing the sensitivity of detection
and we presume that in more complex environments this
would extend to the discovery of affordances and object
recognition. Our third experiment however demonstrates
that correlations between non-motoric sensory information
can play the same role as action in leading to the discovery
of invariants. While the normal human mental schema is
dominated by spatial information we believe that it is
important to remember that other routes to detection, and by
implication perception, exist. What we propose is that
sensorimotor knowledge is partnered by sensory-sensory
knowledge, the application of which can equally lead to
perception. While to many this may seem obvious, such a
route to perception has been overlooked by some enactive
cognitive theorists. ~ The benefits of considering this
alternative route are apparent in the directness of the
accounts that can be given of certain perceptions. For
example; a sensorimotor account of the perception of an
impeding collision can be given in terms of simulating the
sensory consequences of performing various behaviors; by
contrast sensory-sensory knowledge triggered by the



presence (or simulated presence) of certain stimuli provides
a direct route to such perceptions. Such parsimony is not
limited to collision detection either, we argue that once
sensorimotor knowledge is possessed many perceptual
attributes and object characteristics can be perceived in this
way and we plan further experiments to demonstrate
precisely this.
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