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Abstract

For the Technion Prediction Tournament, we developed a
model of making repeated binary choices between a safe
option and a risky option. The model is based on the ACT-R
declarative memory system, with the use of the Blending
mechanism and sequential dependencies. By using
established cognitive theory, rather than specialized machine
learning techniques, our model was the most predictive when
generalizing to new conditions. However, we did not tweak
parameters to minimize prediction error; instead we
maximized the number of different conditions producing
statistically equivalent behavior. If we had not done this the
model would not have won the tournament. This leads to the
paradoxical result that by emphasizing cognitive explanation
over prediction, we achieve more accurate predictions.

Keywords: decision-making; cognitive modeling;
equivalence; ACT-R; blending; sequential dependencies;

Repeated Binary Choice Decisions

The effects of rewards on decision-making are highly
studied, and a wide variety of effects have been observed.
In the simplest paradigm, two choices are presented to a
participant, and once a decision has been made an explicit
numerical reward is provided. If this process is repeated
many times, participants will start to favor one choice over
the other if it is rewarded more.

The standard empirical result is “probability matching”.
Here, if option A has a probability p of providing more
reward than option B, then participants would choose option
A with probability p. Interestingly, this is very different
from the optimal strategy of choosing A if p>0.5 and
otherwise choosing B. However, Friedman and Massaro
(1998) note that “probability matching in binary choice ... is
less robust than most psychologists seem to believe.”

Many more complex effects have since been identified.
For example, in the Loss Rate Effect, “when the action that
maximizes expected value increases the probability of
losses, people tend to avoid it” (Erev & Barron, 2005, p.
917). That is, a choice that has a higher expected value in
the long run will be chosen less often if it is comprised of
many small losses and few large gains. In the Payoff
Variability Effect, individuals will switch from risk-seeking
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to risk-aversion depending on the variance of the reward.
However, many of these effects are subject to variations as a
function of learning, individual differences, and other
factors (Lebiere, Gonzalez & Martin, 2007).

Technion Prediction Tournament

To encourage the creation and evaluation of models of this
fundamental component of human decision-making, Ido
Erev organized a competitive modeling tournament called
the Technion Prediction Tournament. The tournament had
three divisions. The division of interest for us involved
modeling human behavior in different versions of a repeated
binary-choice game. Empirical data was gathered on 120
randomly chosen empirical conditions with different
rewards. In each condition, one option always produced the
same deterministic reward M, while the other option would
produce the reward H with probability py and otherwise
produce the reward L. Rewards and probabilities were
chosen to make the expected value of each choice roughly
even, emphasizing attitudes toward risk rather than abilities
to estimate reward. For each condition, 20 participants
made 100 decisions, receiving a numerical reward after each
choice. This type of task is meant to capture the essential
qualities of what most people would call a game or
competition (e.g., tennis, baseball, boxing, paper-rock-
scissors, poker).

The competition also included two other divisions where
only a single choice was made after subjects either learned
or were told the reward structure. Intuitively, these
conditions model informed human decision-making. Neither
of these divisions is considered here. For complete details
on the tournament, see Erev et al., (in press).

As part of the competition, empirical data on 60 of the
120 conditions was publicly released. Researchers were
free to use this data to produce predictive models that were
then tested by examining their predictions on the remaining
60 conditions.

The model presented here won the tournament in the
repeated game division. That is, it produced more accurate
predictions (in terms of mean squared error) on the testing
data set than any of the other models in the division. Due to



limited space Erev et al., (in press) provides only a brief
discussion of the model. However, the model had two
unique features that merit further attention. The first is that,
unlike the other models in this competition, our model was
not a specialized model of game playing. Instead it was a
cognitive model of decision-making based on the human
memory system. The second is that, unlike the other models
in the competition, we used Equivalence Testing (Stewart,
2007; Stewart & West, 2007) to set the model parameters.
Equivalence testing emphasizes the degree of statistical
equivalence between a set of observed empirical measures
and the corresponding model outputs (i.e., as opposed to
using a regression to get the best possible fit to a data set).

The Decision-Making Model

The basic idea behind our model of making decisions in a
repeated binary choice context was to treat it as a memory
task. This allowed us to leverage extensive previous
research in terms of the performance and accuracy of human
memory.

ACT-R Declarative Memory

The core of the model is the declarative memory system
from the ACT-R cognitive architecture (Anderson &
Lebiere, 1998), which has been used as the basis for a broad
range of explicit and implicit recall tasks. The general
principle is that the odds of a memory being needed decay
as a power law over time, and that, if an item appears more
than once, these odds are summed, again as a power law,
over all occurrences. This principle is a close match for
realistic human cognitive environments (Anderson &
Schooler, 1991).

To implement this, each item i in memory is given an
activation level 4,, calculated using Equation 1, where # is
the amount of time since the " appearance of this item, d is
the decay rate, and ¢(s) is a random value chosen from a
logistic distribution.

n
—d

A=In) t;7+(s)
@) k=1
When a memory is to be retrieved, the activation level is
calculated, and if it is above a retrieval threshold 7 then it is
successfully retrieved. The amount of time required for
recall to occur is given by Equation 2, where F is a latency
scaling factor.
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The ACT-R model of declarative memory has been applied
to model two aspects of human game-playing abilities. The
first is our somewhat limited ability to learn and exploit
probabilities and payoffs. To do this it is necessary to
compare expected rewards for each choice. For example, if
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option A gives a reward of 8 and option B gives a reward of
10 half the time and otherwise a reward of 5, the expected
reward for B (i.e., the average reward over time) is 7.5.
Therefore, A should be preferred to B (although, as noted
above, people will still choose B some of the time). The
ACT-R declarative memory system, by itself, does not
produce this effect. However, Lebiere (1999) created an
augmentation called the Blending Mechanism that allows
ACT-R to do this. The Blending Mechanism, which is
described below, in combination with the ACT-R
declarative memory system, has been used successfully to
model this type of game (e.g. Sanner et al., 2000; Lebiere et
al., 2003; Lebiere, Gonzalez & Martin, 2007).

The second aspect of human game-playing that has been
modeled using ACT-R is the human ability to capitalize on
sequential dependencies in their opponents’ outputs (e.g.,
West & Lebiere, 2001; West, Lebiere & Bothell, 2006).
Although the ACT-R declarative memory system was not
designed with this in mind, this ability falls out naturally
from the way it works. It requires only that information
about previous trials is stored in chunks along with the
current outcome. This approach has been successfully used
to model the human ability to detect and exploit sequential
information, but has not previously been integrated with
Blending.

In terms of the competition the Blending model seems
most relevant since the task is to learn the probabilities and
payoffs, and there are no sequential dependencies to detect.
However, we found that Blending combined with detecting
sequential dependencies worked better than Blending alone.
That is, the search for sequential dependencies where there
were none made the model outputs more human-like,
suggesting that humans do not turn off this ability when it is
not needed. Essentially, the effect of this is to dampen the
impact of the memory-based mechanism, especially for
recent results and rare results.

Sequential Dependencies in the Model

In ACT-R each memory consists of a set of slot-value pairs
and is referred to as a chunk. For this particular model, each
chunk consists of which button was pressed, the numerical
reward that was received, and the history of button-pressing
leading up to the current press. The number of previous
button presses was set to 2, as evidence indicates that this
setting closely matches human performance (e.g. West et
al., 2005). This memory representation is a direct encoding
of the relevant information available to the decision-maker
in the current context and does not require deliberate
cognitive strategies. As such, it suggests a model of implicit
decision-making that reflects the constraints of the human
architecture rather than design decisions made by the
modeler.

An example memory chunk is given in Table 1. This
configuration would occur if the participant pressed the
right button twice, and then pressed the left button and got a
reward of 8.4.



Table 1: Sample memory chunk

Slot Value
choice left
reward 8.4

lag 1 right
lag 2 right

When performing a recall, the model only considers
memories whose recent history match the current recent
history. That is, the chunk shown in Table 1 will only be a
candidate for recall when the model has just finished
selecting the right-hand button twice in a row.

Blending in the model

When the model attempts to recall a chunk that matches the
recent history, multiple chunks may be found. In the
competition, when attempting to recall an expectation for
the button associated with the risky choice, there will be two
chunks in memory: one from previous situations where the
Low reward was received and one where the High reward
was received. The chunk with the higher activation will be
the one that has occurred the most in the past and/or most
recently (since the learned chunk activation reflects both
recency and frequency effects), and is therefore more likely
to contain the correct outcome for the current trial.
However, because of the probabilistic nature of the payoff,
it may not be the best choice. For instance, it could
occasionally lead to very negative consequences that would
offset the more common but limited gains. The blending
mechanism was developed for this type of situation and has
been used on other instance-based learning and decision-
making tasks (e.g. Gonzalez et al., 2003).

To blend the two chunks that match the current situation,
the numerical value for the rewards are combined using the
activation value (Equation 1) as a weighting factor. This
results in a blended reward value r, as shown in Equation 3.
This is then taken as the expected reward.

Z Af'ra'
X4

,
3)

Algorithm

Given this memory system, the underlying algorithm is
straightforward. Two recalls are attempted to get an
expected reward for each of the two options. These occur
sequentially and in random order. If either recall fails (i.e. if
there are no matching previous memories or if their
activation is below the retrieval threshold 7), then that option
is chosen. This was done to model exploratory behavior,
since the participant cannot remember or has never seen the
results of choosing that button in that context. If both
retrievals succeed, the one with the largest expected reward
(Equation 3) is chosen (choosing randomly if they are
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exactly equal). Once the reward is provided, a
corresponding chunk is added into the declarative memory
system to reflect what actually happened. Then the history is
updated and the system is ready to make the next prediction.

For consistency with the use of the ACT-R declarative
memory system, this algorithm was implemented using the
ACT-R production system. This expresses each of the
above steps using if-then rules, each of which requires 50
milliseconds to occur. Note that this, combined with
Equation 2 for determining how long it takes to retrieve a
memory, allows the model to give predictions for the time
taken to make its decision. This timing information also
impacts the performance of the model, since Equation 1
indicates how memories decay over time.

For the competition, the model needed to predict average
performance over 100 trials given a particular experimental
situation. To create this prediction, 1000 separate models
were generated and each one was run through 100 trials.
The final prediction was the average proportion of times the
risky choice was made.

The source code for this model
<http://ccmlab.ca>.

is available at

Parameter Exploration

As with any computational model, there are a variety of
numerical parameters that can be adjusted. However, since
the model is based on the ACT-R cognitive architecture, we
can turn to previous experiments to help constrain these
model parameters. For example, the parameter d in
Equation 1 is consistently set to 0.5 in ACT-R models to
produce results that are predictive of human performance on
many memory tasks. The model parameters are shown in
Table 2, along with the standard values used for each one.

Table 2: Canonical parameter values for the model

Parameter Canonical Value

decay 0.5 (d in Equation 1)
noise 0.3 (s in Equation 1)
latency 0.05 (F in Equation 2)
retrieval threshold 0 ()

lag 2 (size of context)
production time  0.05 (time to apply a rule)

Of these parameters, only two are commonly changed in
ACT-R models: noise (s), because it can be used to
represent both specific retrieval stochasticity a number of
other sources of unpredictability, and retrieval threshold (),
because it is used to compensate for constant variations in
other activation factors. However, both parameters were
searched over intervals close to their canonical values (0.25
for the noise; 0 for the retrieval threshold). It is thus useful
to explore the behavioral changes in the model as these
parameters are adjusted.



Equivalence Testing

The Technion Prediction Tournament provided raw
empirical data for 20 subjects performing 100 decisions in
each of 60 different experimental conditions. Each of these
conditions provides a separate measure for evaluating the
model's performance.'

The standard metric for model quality over a set of
measures is the root-mean-squared error (RMSE), often
used to find the “best fit” parameter setting for a model.
This measure is shown in Figure 1, indicating that the
smallest prediction error averaged over the 60 different
conditions occurs with a very low noise value (s<0.01) and
a retrieval threshold 7 of -1.

RMSE
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Figure 1: Root Mean Squared Error for the model on the
60 experimental conditions. Each point indicates the RMSE
for a different setting of the noise and threshold parameters.

However, the RMSE approach can be difficult to interpret.
Firstly, it averages over experimental conditions, meaning
that if there are a few conditions for which the model is
highly inaccurate, it can still have a small RMSE. Secondly,
and more fundamentally, this approach does not take into
account sampling error in the empirical data. Given that
only 20 participants were used for each condition, the
confidence intervals for each measure may be fairly large,
making the RMSE approach prone to over-fitting.

To determine the overall quality of the model over all 60
conditions, we did not use the standard approach of
minimizing the root-mean-squared error. Instead,
relativized equivalence (Stewart & West, 2007) was used.
Here, the key measure is the worst-case equivalence.
Equivalence is defined as the maximum difference between
the 95% confidence intervals of the human participants and
the model. That is, it is the number for which there is 95%
confidence that the human performance and the model
performance differ by less than this amount. This approach
is derived from the equivalence test (Barker et. al, 2002)
used in epidemiology. If a normal distribution is assumed,

" In the current work, individual differences were not modeled.
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this range can be reduced (Tryon, 2001), but the work
presented does not do this, and instead uses bootstrap
confidence intervals (Davidson & Hinkley, 1997) so as to
make no assumptions about the distribution of the data.

To determine the relativized equivalence E, between a
particular parameter setting and the participants'
performance over the 60 measures provided, Equation 4 was
used, where the model's confidence interval on situation i is
M;, to M;y and the human participants' confidence interval
is H;; to H;y. This gives a result that is normalized so that a
value of 1.0 indicates that all model values are within the
corresponding confidence intervals (i.e. any model with
E<1 is not statistically distinguishable from the real
participant performance on any particular situation).

max(M, ,—H, ,, M, ,—H, )
H, y—H,,

E_=max,

“)

This method was developed to more conservatively
characterize the behavior of a model. By focusing on the
worst-case scenario (rather than averaging over situations as
in MSE approaches), it clarifies that the model is suitable
for all of the situations being investigated. The results of
this metric are shown in Figure 2.
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Figure 2: Relativized Equivalence for varying parameter
settings.

When making use of this method, it is common to find there
are particular conditions in the fitting set in which the model
produces a high E, value regardless of the parameter
settings. This is especially true with a large number of
conditions: with 60 conditions, even a perfect model will be
expected to be outside a 95% confidence interval on three
conditions, just by chance. Imperfect models and/or
imperfect data further increases the likelihood of this
happening.

For this competition, 9 out of 60 conditions in the fitting
set were identified as problematic. That is, no parameter
settings were found that would give low E, values on these



conditions and also maintain low £, values on the majority
of the other conditions. Because this could be due to an
unknown bias or outliers in these experimental conditions,
they were excluded from our analysis. These conditions are
shown in Table 3. Re-running the analysis using a
replication, or a conceptual replication, of the same
experimental conditions could help identify problematic
conditions for the model, if they exist. However, at this
time the necessary replications have not been performed.

Table 3: Experimental conditions identified as outliers

# H PH L M
7 -5.6 0.7 -20.2 -11.7
13 -2 0.05 -10.4 -9.4
20 -4.3 0.6 -16.1 -4.5
21 2 0.1 -5.7 -4.6
24 9.2 0.05 -9.5 -7.5
30 3 0.91 -1.7 1.4
36 5 0.08 -9.1 -7.9
45 2.8 0.8 1 2.2
49 13.4 0.5 3.8 9.9
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Figure 3: Relativized Equivalence with outlier measures
removed.

Once these outliers are remove (as shown in Figure 3), we
can see that setting the noise parameter to values between
0.2 and 0.4 and the threshold to values between -1 and -2
produces models that are equivalent to the empirical data.
All of these models have E. values below 1.0. That is, there
is no statistically significant difference between the model's
behavior and the observed behavior over any the 51 non-
outlier measures considered. This indicates that the model
is successfully capturing the human behavior at the level
that is statistically warranted.

For the purposes of the Technion Prediction Tournament,
a single parameter value had to be chosen. We selected the
center of the equivalent region, giving a threshold of -1.6
and a noise of 0.35, which is close to the canonical value for
noise 0f 0.25 used in previous models of this type.
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Generalization

To evaluate the various models in the tournament, their
ability to generalize to a testing set was measured. This was
done using the standard RMSE approach. Our model won
the tournament with a RMSE of 0.087, and the next closest
model scored 0.092.

Interestingly, if we had have used the standard best fit
approach rather than the Equivalence methodology, we
would not have won the tournament. As can be seen in
Figure 1, the best fitting model on the training data had a
noise of 0.001 and a threshold of -1. However, Figure 4
shows that this model performs considerably worse on the
testing data, giving a RMSE of 0.096.

RMSE on testing data
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Figure 4: Root Mean Squared Error on the testing data for
varying noise and threshold.

Discussion

By building a decision-making model using well-established
cognitive models, we successfully predicted behavior in a
novel domain. Our model beat a wide variety of machine-
learning techniques; the next best models involved two-
stage sampling and normalized reinforcement learning.
None of the competing models other than ours made use of
general knowledge about human cognition. Instead they
relied on mathematical optimization techniques. As Lebiere
et al. (2003) demonstrated, modeling methods that rely on
general assumptions about cognitive invariants, such as
cognitive architectures, and can generalize models across a
range of paradigms and conditions can be superior to
machine learning techniques such as Bayesian networks or
Markov models on a number of counts: (a) they require less
data to be parameterized because unlike machine learning
methods that attack each new problem tabula rasa,
constraints inherited from other models prune the parameter
space, (b) they require fewer domain-specific assumptions
because cognitive constraints constrain the relevant problem
representation rather than leaving it entirely to the modeler,
and (c) they allow a more complex representation of the
problem-solving state, such as a combination of symbolic
structures and statistical parameters such as activation.



Conclusions

We have established a novel model of human decision-
making in repeated binary choice conditions where one
option gives a fixed reward and the other option gives a
reward that is randomly selected from two possible values.
While this model produces the smallest prediction errors
among those entered into the Technion Prediction
Tournament, we can also draw a stronger conclusion. In
particular, this model produces behavior that is statistically
indistinguishable from the human performance, given the
available empirical data.

While a few of the 120 experimental conditions did have
to be removed in this analysis, this removal does not
invalidate the model. Given the large number of conditions,
it is expected that even a perfect model would fail to match
due to sampling error. To establish whether these
conditions do actually indicate problems with the model,
more empirical measures are needed. If these measures are
consistent with the model, then this is a case of sampling
error. If these measures continue to be inconsistent then we
will have sufficient evidence to adjust our model to take this
into account. However, without further empirical evidence
there is no statistical justification for attempting to fit our
model more closely to the human performance. By
following the equivalence method for evaluation we
successfully avoided this over-fitting.
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