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Abstract

A basic challenge in decision-making is to know how long
to search for information, and how to adapt search
processes as performance, goals, and the nature of the task
environment vary. We consider human performance on two
experiments involving a sequence of simple multiple-cue
decision-making trials, which allow search to be measured,
and provide feedback on decision accuracy. In both
experiments, the nature of the trials changes, unannounced,
several times. Initially minimal search is required, then
more extensive search is required, and finally only minimal
search is again required to achieve decision accuracy. We
find that people, considered both on aggregate, and as
individuals, are sensitive to all of these changes. We
discuss the theoretical implications of these findings for
modeling search and decision-making, and emphasize that
they show adaptation to an external error signal must be
accompanied by some sort of internal self-regulation in any
satisfactory account of people’s behavior.

Keywords: evidence accumulation, heuristics, decision-
making, learning, self-regulation

Introduction

A problem faced commonly by decision makers is
determining how much information to incorporate into a
decision. Some decisions are trivial (e.g., choosing a
breakfast cereal), but some more important (e.g., choosing
a mate), and consequently the amount of information or
evidence examined prior to deciding will vary. One way
to model this variance is to suggest that people sample
evidence sequentially and adjust the amount of evidence
they consider according to a decision threshold. Inherent
in this conception is that thresholds will vary not just
between decisions but also between individuals (Lee &
Cummins, 2004; Vickers, 1979). Newell (2005) suggested
an ‘adjustable spanner’ (or wrench) to capture this idea; a
spanner in which the width of the jaws represents the
amount of evidence a person accumulates before making
a decision. In this paper we develop this perspective by
examining how people learn to adjust their evidence
thresholds in dynamic decision environments.

Adapting to changing environments

Some recent studies examining adaptation to changes in
the statistical structure of decision environments have led
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to rather pessimistic conclusions. Broder and Schiffer
(2006) considered environments in which either a
compensatory strategy (one which weights and integrates
all cue information) or a noncompensatory strategy (one
which considers only a subset of the information) was
optimal with respect to the expected monetary pay-off.
Participants detected the appropriate strategy in
whichever environment they encountered initially, but
when the environment changed (mid-way through the
experiment) most participants retained the same strategy
despite its sub-optimality in the new environment. Broder
and Schiffer explained these results in terms of the
application of maladaptive routines: participants used a
‘top-down’ deliberative mode of thinking in the initial
phase to work out the appropriate strategy, but then when
this appeared to work successfully slipped into a more
‘bottom-up’ routine mode and thus failed to test the
consequences of applying the strategy on each trial when
the environment changed.

In a similar vein, Rieskamp (2006) used decision
environments in which the lexicographic strategy Take-
the-Best (TTB; Gigerenzer & Goldstein, 1996) was more
or less adaptive (in terms of expected monetary pay-off)
than a weighted additive strategy (WADD; e.g., Payne,
Bettman & Johnson, 1993). In the noncompensatory
environment TTB led to 83% correct predictions
compared to WADD’s 60%; and these values were
reversed in the compensatory environment. Participants
who transitioned from the non-compensatory environment
to the compensatory one showed a distinct inertia,
resisting the change to the more adaptive strategy. Those
transitioning in the opposite direction showed more of a
change (the fit of TTB increased relative to WADD in the
final block of trials) but this was tempered by a less
pronounced adoption of WADD in the first half of the
experiment. The inertia effect was predicted and
explained by the Strategy Selection Learning model of
Rieskamp and Otto (2006). The model states that
adaptation will be very slow because a strategy that is
successful in the initial environment will accrue
considerable reinforcement, and this reinforcement will
only gradually diminish in the novel environment on the
rare occasions when a participant explores the potential of
the competing strategy.



Taken together, these results suggest that when the
statistical ~ structure of an environment changes
participants show resistance to adapting the strategies
they employ (or the level of evidence considered) for
making their decisions.

Learning to adapt: exploitation vs. exploration

One of the great discoveries of modern cognitive and
biological psychology is that learning is driven by the
process of error correction or gradient descent. Credit for
this insight is usually given to Widrow and Hoff (1960)
although it was discovered independently by researchers
in several fields (see Newell, Lagnado, & Shanks, 2007,
Chapter 11). The basic notion is that learning occurs via
the process of trying to minimize the error between an
actual outcome and the predicted outcome of a learning
episode (e.g., Rescorla & Wagner, 1972; Young &
Wasserman, 2005). This assumption of ‘supervised
learning’ is built into many models of learning in decision
problems (Yechiam & Busemeyer, 2005). However,
error-correction is not the only way in which organisms
learn about their environment. Reinforcement learning
contrasts with strictly supervised learning by balancing
the exploitation of error-minimization with the
exploration of behaviors that can improve the current
‘state” of the organism (Young & Wasserman, 2005).

In the context of the studies described above, this
exploitation-exploration balance is analogous to the trade-
off between accuracy and the effort expended in making a
decision. When accuracy is the sole concern, the amount
of effort expended is not a factor in determining behavior;
however if there is a pressure of cost, or time, or cognitive
resources then effort is also considered. The question of
exactly how the cost and benefits of accuracy and effort
are traded-off against one another has been subject to
considerable research, but there is still no consensus on
how people learn to adapt their strategy or information
acquisition to the environment (Beach & Mitchell, 1978;
Broder & Newell, 2008; Payne et al., 1993; Rieskamp,
2006; Rieskamp & Otto, 2006).

In the studies of Rieskamp (2006) and Broder and
Schiffer (2006) participants were, arguably, able to rely
on both error-correction and reinforcement mechanisms to
facilitate the transition to more optimal strategies when
environmental conditions changed. Error-correction
learning was feasible because participants were provided
with corrective feedback on each trial, and crucially, the
accuracy of the different strategies changed in the two
environments. This means that the ‘teaching signal’
necessary for supervised learning to occur was present
(Young & Wasserman, 2005). Reinforcement learning
could have occurred if participants had been willing to
engage in sufficient exploration of the environment to
discover that an alternative strategy was optimal. The
failure to engage in this exploration was explained by
Broder and Schiffer in terms of routinization effects and
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in terms of ‘over-learning’, or a too-high expectancy of a
strategy’s success in Rieskamp’s (2006) SSL model.

Can people learn to adapt a threshold?

Our aim was to examine the relative roles of error-
correction and reinforcement learning in decision making.
We designed a situation in which there were two changes
in the statistical structure of the environment during the
course of the experiment. In an initial block, participants
learned in an environment in which the predictions of a
noncompensatory strategy (TTB) and a compensatory
strategy RAT (for ‘rational’) were identical. Under the
assumption that correct inferences based on less
information provide greater reinforcement than correct
inferences based on more information, one predicts that
information search will be reduced when the accuracy of
strategies is equated (Rieskamp & Otto, 2006). This
should lead to the adoption of TTB-like behavior, or
lower evidence thresholds. In the second block, the
environment changed so that the RAT strategy now led to
more correct predictions than TTB. Thus participants
could rely on error-correction learning to adapt their
thresholds upwards. In concrete terms, if participants
persisted with a low-threshold in block 2 this would lead
to a high number of incorrect responses. These responses
should act as a signal to participants to change their
behavior. In block 3 the environment changed again, back
to one in which RAT and TTB made identical predictions.
Of crucial interest here was whether participants would
accumulate less evidence, or whether they would continue
with a higher threshold. Note that because the accuracy of
both strategies was identical in block 3 there is no
‘teaching signal’ to indicate that a higher threshold is no
longer necessary. Thus, if a participant continues to use a
high threshold in block 3 she will maintain the same level
of accuracy as she experienced by the end of block 2. In
order to learn to adapt the threshold in block 3 a
participant must engage in some exploration of alternative
levels of evidence.

Previous research examining behavior in dynamic
environments has tended to focus only on situations in
which the accuracy of strategies change and in which
optimality of a strategy is measured in terms of the
expected monetary pay-off. Our study differs from these
in that our environment has an initial change signaled by
accuracy, but then a second change which can only be
learned via exploration and subsequent reinforcement of
successful behaviors. In addition, participants did not earn
money for correct predictions in our experiment. They
were motivated to score highly (the best performing
participant was awarded with $15) but the principal
motivator was time. In Experiment 1 there was the simple
time cost for obtaining information about each cue and in
Experiment 2 this cost was exacerbated by introducing a
time delay between accessing the cue and being provided
with the cue value. Thus ‘optimality’ was defined in terms



of the opportunity costs related to the time taken to obtain
evidence.

In summary, our aim was to examine the role of error-
correction and reinforcement learning in an environment
with time-costs. Prior research suggests caution in
predicting changes in behavior as a result of changes in
the environment. We did not provide any indication to
participants that the environment would change, nor did
any surface features of the experimental task change
across the blocks. Thus, any observed threshold changes
can only arise from participants’ balance between
exploitation and exploration of the environment (cf.
Broder & Schiffer, 2006).

Method

Participants

Fifty-nine undergraduate students (Experiment 1 N=30;
Experiment 2, N=29) from the University of New South
Wales participated in return for course credit.

Stimuli

The experimental environment was created by selecting
pairs of objects from the German cities environment used
by Gigerenzer and Goldstein (1996). Each object was
described by nine binary cues and had an associated
criterion value. The cues and criterion were re-described
according to a cover story about the search for an energy-
efficient fuel source, as described in the Procedure section
below.

The sequence of trials was designed in terms of 3
consecutive blocks 50, 100 and 50 trials. For blocks 1 and
3 TTB and RAT made an identical number of correct
predictions. In block 2 this was only the case for 50% of
trials; on the remaining 50% TTB and RAT made
opposite predictions with RAT making the correct
prediction in each case, making it the more successful
(accurate) strategy. Participants were given no indication
of the block structure used to design the trial sequence.

Procedure and Design

The experimental task involved making decisions about
which of two objects had a higher criterion value for 200
trials. The task was framed as a search for an energy
efficient fuel source. On each trial participants were
presented with two samples (A and B) and a selection of
nine tests which they could ‘run’ in order to investigate
the samples; the tests included “Does the sample contain
Actinium?”, “Was the seismic analysis positive?”
Clicking on a “RUN TEST” button revealed the answer to
each question as either YES or NO.

Each test had a ‘success rate’ which was a veridical
indication of the validity of each test as predictor of
whether the sample was richer in the new energy efficient
fuel. The success rate for each test was presented on
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screen and was described to participants as follows: “if a
test has a success of 75% this means that if there were
100 trials in which one sample had a positive result (YES)
for that test and the other sample had a negative result
(NO) for that test, then the sample with the positive result
would be the correct choice (be richer in the energy
source) on 75 of those 100 cases, whereas for the
remaining 25 cases the other sample would have been
richer in the energy source” (cf. Rieskamp & Otto, 2006).
The success rates for the nine tests were: 99, 91, 87, 78,
77, 75, 71, 56 and 51%, as per the cue validities in the
German cities environment.

Participants had to run at least one test per trial but
were free to choose as many as they liked after that,
before making their decision. Following each decision
feedback was provided, and a record of how many correct
decisions had been made was shown on the screen
throughout the experiment. The only difference between
Experiment 1 and 2 was that in Experiment 2 there was a
time cost to running each test. Specifically, participants
had to wait for 3 seconds for the result of each test to be
displayed on the screen. During this time a message with
the words “Computer now running test” appeared on the
screen.

Results

Figure 1 shows the results for one participant in
Experiment 1, and is presented to help make clear the
structure of the experimental design, and the focus of our
analysis. The solid line in Figure 1 shows the pattern of
change, expressed as a running weighted average over a
small window of trials, in the proportion of extra cues
searched. This measure is described in detail below, but
basically measures the extent of search on a normalized
scale, where TTB-consistent search corresponds to the
value 0, and RAT-consistent search corresponds to the
value 1. The gray dividing lines show the conceptual
division of the trial sequence into three blocks, with
blocks 1 and 3 having trials where RAT and TTB make
the same predictions, but block 2 having trials where RAT
outperforms TTB. Those trials on which the participant
made a decision error are shown by crosses.

As Figure 1 shows, the sample participant started by
using many tests (i.e., searching many cues), but quickly
adapted to search fewer as block 1 progressed. After
making a single error after the change of block at trial 50,
she began running more tests, to a level consistent with
the RAT approach. After trial 150, however, she seems to
again reduce her search slightly but consistently, and use
fewer tests. Importantly, she did this without having made
any errors in the trials around the change from block 2 to
block 3. It is these patterns of change in search behavior
across the three blocks, at both the group and individual
participant level, which are the focus of our analysis.
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Figure 1: Performance of a sample participant from Experiment 1, showing a weighted running average of the proportion of
extra cues searched over the 200 trials. The 3 blocks, differing in the predictive performance of the RAT and TTB heuristics,
is shown by the gray lines. Those four trials on which the participant made an error are indicated by crosses.

First, however, Figure 2 displays the accuracy achieved
in the three blocks of both experiments. The figure
indicates that participants were highly accurate
throughout, but experienced a slight decrease in accuracy
in block 2 when the environment changed to one in which
RAT was the better performing strategy. This pattern was
revealed by a quadratic trend for Block; the trend was
confirmed by a repeated measures ANOVA which
significant in Experiment 2 F (1, 28) = 12.10, p = .002 but
not in Experiment 1 F (1, 29) = 2.19, p = .149.

block 2. More surprising is the decrease in evidence
accumulation observed in block 3. Here, participants learn
to ‘narrow the jaws’ again even though the accuracy of
the TTB and RAT strategies is identical in block 3. The
differences in cue acquisition are small but the pattern in
both experiments led to significant quadratic trends, F(1,
29) = 30.58, p < .001 and F(1, 28) = 35.41, p < .001 for
Experiments 1 and 2 respectively, reflecting the upturn
from block 1 to 2 and then downturn from 2 to 3.
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Figure 2: The proportion of correct predictions in each
block of Experiments 1 and 2.

Figure 3 shows that the slight decrease in accuracy in
block 2 was accompanied by an increase in the number of
cues acquired (i.e. the number of tests participants chose
to ‘run’ on the samples). The figure shows that
participants tended to ‘widen the jaws’ or increase
evidence accumulation from block 1 to block 2. This
increase is perhaps not surprising given that the RAT
strategy leads to more correct inferences than TTB in
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Figure 3: The number of cues acquired in each block of
Experiments 1 and 2.

Figure 4 shows that this tendency to decrease evidence
accumulation in block 3 relative to block 2 was present in
the clear majority of individuals. The figure uses data
from Experiment 2 and plots the average difference in the
number of cues acquired in the last 50 trials of block 2
and the 50 trials of block 3. If participants decrease their
search this value is positive; if they increase it is negative.
The figure shows that 24/29 (83%) participants had a
positive value. In Experiment 1 (not plotted) the
proportion was also 83% (25/30 participants).



Difference in average number of cues acquired

Figure 4: Individual data showing the difference in the
average number of cues acquired in the last 50 trials of
block 2 and the 50 trials of block 3 (Experiment 2).

A final measure of cue acquisition, anticipated in
Figure 1, examined the number of cues acquired beyond
the single discriminating cue predicted by the TTB
strategy, as a proportion of how many cues remained.
This measure is important because on some trials several
cues need to be examined before a discriminating one is
found; a fact that is not taken into account when only the
raw number of cues acquired is considered. To illustrate:
if the TTB ‘stopping point” on a given trial was 3 cues
and a participant acquired 4 of the 6 remaining cues, a
value of .75 (4/6) would be recorded for the ‘extra cues’
measure. Figure 5 shows that the acquisition of extra cues
follows the now characteristic pattern of an increase from
block 1 to 2 and a decrease from blocks 2 to 3. The lower
proportions over-all in Experiment 2 presumably reflect
the additional opportunity cost of the time manipulation.
The quadratic trends were highly significant in both
experiments F(1, 29) = 32.08, p < .001 and F(1, 28) =
49.51, p <.001, for Experiments 1 and 2 respectively.
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Figure 5: The number of extra cues (i.e., those beyond a
single discriminating cue) acquired, expressed as a
proportion of the remaining cues in each block of
Experiments 1 and 2.
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Discussion

In two experiments, participants increased their
evidence accumulation when the environment changed to
one in which a strategy requiring more information
performed more accurately, and subsequently decreased
accumulation when the environment changed back to one
favoring a more frugal information search. Importantly,
although the first change in the environment was signalled
by a change in the accuracy of competing strategies, the
second change could only be detected through the
exploration of alternative levels of evidence, because both
strategies were matched in terms of accuracy. These
results contrast with previous failures to induce shifts in
the strategies people adopt for making decisions in
dynamic environments (Bréder & Schiffer, 2006;
Rieskamp, 2006). The contrasting results are perhaps due
to the different way in which adaptive changes are
defined in this experiment and previous research. Earlier
studies defined adaptive changes as a shift in the relative
fit of a strategy (TTB or WADD) over blocks of trials;
here a change is defined as shifts in the amount of
evidence accumulated (trial-by-trial) following changes in
the environment. It is possible that this latter definition
increases the likelihood of observing adaptation.

The shifts in levels of evidence appear to have been
driven by a desire to balance accuracy with the time cost
of obtaining information. In this sense, the shifts in search
behavior moving from block 2 to block 3 show that
people are self-regulating their decision-making, and are
not solely adapting on the basis of accuracy. The time
delay in Experiment 2 had an impact on the overall levels
of evidence accumulated but did not appear to accentuate
the differences in evidence accumulated between blocks.

Many investigations of the adaptive nature of decision
making pre-suppose that participants have access to a
repertoire of cognitive strategies (Broder & Newell, 2008;
Payne et al., 1993; Rieskamp & Otto, 2006). Strategies
are then selected according to the constraints of the
environment, and presumably the preferences of the
individual. In many recent studies the ‘selection problem’
has been reduced to one between TTB-like strategies and
WADD- or RAT-like strategies. Our theoretical
perspective differs from this in arguing that such
behaviors are extremes in a sequential sampling evidence
accumulation model (Lee & Cummins, 2004; Newell,
2005). We believe that the current experiments provide
further support for this perspective. Note that strict
adoption of a TTB strategy entails stopping search as
soon as a single discriminating cue is found (Gigerenzer
& Goldstein, 1996); such behavior would lead to a value
of 0 Figure 5. Clearly very few participants adopt this
strict form of TTB as the average proportion of extra-cues
considered ranges between approximately 0.4 and 0.75
even in those environments in which TTB performs well
(blocks 1 and 3). Similarly, a strict RAT strategy predicts
the accumulation of all cues on every ftrial; the values
displayed in Figure 3 shows that, on average, such



behavior was not observed. Thus, shifts in evidence
accumulation can be interpreted not as transitions
between discrete strategies, but shifts in a continuum of
evidence.

The parsimony of such an explanation relies on an
adequate model of how people learn to regulate their
evidence threshold. In addition, preferring such an
explanation requires situations in which an evidence
accumulation model can provide a better account of
behavior than a strategy selection model. Such work is yet
to be done, but we can speculate about how successful the
two approaches might be given the current data sets. The
SSL model of Rieskamp and Otto (2006) uses a
reinforcement mechanism to update the expectancy of a
given strategy. It is able to use both accuracy and ‘effort’
signals to update expectancies. For example, in Study 3 of
Rieskamp and Otto the model was able to capture
participants’ transition towards TTB in an environment
where TTB and WADD made approximately the same
number of correct predictions but information was costly,
thus favoring a TTB strategy. Nevertheless, SSL predicts
inertia effects when environments change (the
environment was constant in Rieskamp and Otto Study 3)
and thus it might have difficulty capturing the relatively
fast transition between levels of evidence often seen in
our data. The ability of the model might depend also on
how adaptive change is defined (see earlier).

Another candidate model of threshold regulation is the
Self Regulating Accumulator model developed by
Vickers (1979). This is a sequential sampling model that
uses ‘boundaries’, corresponding to levels of evidence,
which control how much information is gathered before a
decision is made. It also proposes mechanisms that
adjusts these boundaries on a trial-to-trial basis, and so
provides an account of learning and adaptation. Crucially
for our data, a large part of this adaptation is self-
regulation, based not on external feedback, but on
controlling the internal level of confidence the model has
in its decisions. This capability would explain the shift in
search behavior moving from block 2 to block 3 in our
experiment, and the way that Vickers (1979) proposed the
boundaries are adjusted would also potentially predict the
relatively sudden shift in search behavior we observed.

In conclusion, we believe our results present clear
guidance and challenges for understanding how
information search is regulated in human decision-
making. While previous research has emphasized
accuracy as a basis for adaptation, our results suggest this
alone cannot be sufficient, and some form of internal self-
regulation is also important. Possible theoretical ideas for
understanding self-regulation include the notion of
minimal effort and adaptation based on controlling
internal levels of decision confidence. We plan to pursue
these ideas to develop models of how people adapt their
search and decision-making in changing environments
and circumstances.
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