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Abstract

Recurrent connectionist models, such as the simple recurrent
network (SRN, Elman, 1991), have been shown to be able to
account for people’s ability to process sentences with center
embedded structures of limited depth without recourse to a
competence grammar that allows unbounded recursion (Chris-
tiansen & Chater, 1999). To better understand the connec-
tionist approaches to recursive structures, we analyze the per-
formance of a single layer network architecture that employs
decaying lexical context representation on three kinds of re-
cursive structures (i.e., right branching, cross serial and cen-
ter embedding). We show that the model with one input bank
can capture one and two levels of right branching recursion,
one level of center embedded recursion, but not two levels
and cannot capture a single level of cross serial recursion. If
one adds a second bank of input units with a different decay
rate, the model can capture one and two levels of both cen-
ter embedded and cross serial recursion. Furthermore, with
this model the interclass difference of doubly cross serial pat-
terns is greater than it is for center embedded recursion, which
may explain why people rate these patterns as easier to process
(Bach, Brown, & Marslen-Wilson, 1986).
Keywords: sentence processing; network model; decaying
lexical contexts; linear separability.

Introduction
Chomsky (1957) argued that the presence of recursive struc-
tures such as center embedded clauses rules out associative
explanations of the language processing mechanism. This ar-
gument has been challenged in many ways both by disputing
the empirical claim that humans are capable of processing re-
cursive structures (Reich, 1969) and the computational claim
that associative mechanisms, particularly associative mecha-
nisms that employ hidden unit representations in the connec-
tionist tradition, are unable to process recursive structures,
at least of the depth observed in human performance (Chris-
tiansen & Chater, 1999).

Early attempts to investigate the capabilities of connec-
tionist networks to capture linguistic structure fell into two
approaches (Christiansen & Chater, 1999). In the first ap-
proach, networks were provided with tagged datasets that
provided information about the extent and identity of con-
stituents (Chalmers, 1990; Pollack, 1988) and were required
to generalize these mappings. While these models demon-
strated the representational abilities of networks, the fact that
they required labeled training data of a kind that is unlikely to
be available to human learners meant that their relevance to
the question of how linguistic structure is acquired was lim-
ited. A second approach involved learning simplified tasks

such as identifying the anbn language from raw input strings
using small networks (Wiles & Elman, 1995). This work
demonstrated that recursive generalization was possible to a
significant degree, but it remained unclear whether these re-
sults would apply to other kinds of recursion and with larger
vocabularies.

Christiansen and Chater (1999) expanded previous work
significantly by demonstrating that the simple recurrent net-
work (Elman, 1991) was capable of capturing the three main
kinds of recursive structures that were proposed by Chomsky
(1957) as problematic for finite state systems. These were
counting recursion (e.g. ab, aabb, aaabbb) of the kind studied
by Wiles and Elman (1995); identity recursion (e.g. abbabb,
aabbaabb) which captures cross serial structures found in
Swiss German and in Dutch and mirror recursion (e.g. abba,
aabbaa, abbbba) which can be interpreted as center embed-
ding. In addition, Christiansen and Chater (1999) showed that
the SRN predicted that cross serial structures should be eas-
ier to process than center embedded structures as has been
demonstrated by Bach et al. (1986).

While the SRN provides a compelling proof of the capabil-
ities of connectionist networks, its structure is not, in general,
easy to analyze formally. Consequently, one must rely upon
simulation results and it is not feasible to sample parameters
such as initial weight vectors comprehensively. In this paper,
we propose a single layer architecture that employs decaying
input activations and analyze the linear separability and in-
terclass distance of patterns in each of the recursion classes.
We take linear separability as an indication of which patterns
the model predicts should be able to be processed and the in-
terclass distance as an indication of the ease with which that
processing might occur. We start by outlining the model and
then explore its performance at each level of recursion.

A Single-layer Network Model
Our network model, as seen in Figure 1, is a softmax single
layer neural network (Bridle, 1990). For each word w in a
sentence, an input x fed to the network has a nonzero value
at the ith position, only when a word token of the ith type in a
given vocabulary V appears to its left. The strength of context
word’s input is decided by the probability density function
of an exponential distribution taking the distance between the
words as the argument. The exponential function we use takes
into account all the words occurring in the left context of a
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Figure 1: A schematic view of our network architecture with
a single bank described in text. The left lexical context shown
here is centered at “Mary”. “SS” and “EE” refer to the start
and the end of a sentence respectively.

word while assigning more importance to those closer to it.
Specifically, let a sentence be w1w2w3 · · ·wi · · ·wn−1wn,

where wi is a word and n is the total length. Then the left lex-
ical context vector x for wi is the following |V |-dimensional
vector, where |V | is the vocabulary size, and the jth word in
the vocabulary is Vj:

|V |
∑
j=1

i−1

∑
k=1

wk=V j

γe−γ(i−k)b j, (1)

in which b j is a unit basis vector in the jth dimension, which
has 1 in the jth dimension and 0 elsewhere.

Outputs of the network are produced by multiplying the
input vector x (of |V | dimensions) with the learned weight
matrix W (of size |V |×K), and applying a multinomial logit
function (Hastie, Tibshirani, & Friedman, 2001), which ren-
ders the output y a probability distribution over the K word
types:

yi =
ex·Wi

∑K
j=1 ex·W j

, (2)

where Wi is the ith column of the matrix W . An important ad-
vantage of restricting our attention to a single layer network is
that it allows us to analyze the learnability of different gram-
matical patterns in terms of the linear separability of the input
patterns.

Sentential Recursive Patterns
We systematically study the left lexical context vectors de-
rived from three common types of recursive structures found
in human languages (where Np and Ns stand for a plural and
a singular noun respectively, and Vp and Vs stand for a plural
and a singular verb respectively), namely:

1. Right-branching recursion:
e.g., NpVpNsVs girls like the boy that runs

2. Cross-serial recursion (derived from identity recursion):
e.g., NsNpVsVp the boy girls runs like

3. Center-embedding recursion (derived from mirror recur-
sion)
e.g., NsNpVpVs the boy girls like runs

Therefore, |V | = 4 and K = 2 (only verbs are predicted). As
an example of calculating lexical contexts, for the following
center embedded sentence

Ns︷ ︸︸ ︷
T he sea

Np︷ ︸︸ ︷
the mountains

Vp︷ ︸︸ ︷
overlook

Vs︷︸︸︷
is blue,

the left lexical context vector centered at “is” for Ns, Np, Vs
and Vp is: [γe−3γ,γe−2γ,0,γe−γ].

The rest of this paper is organized as follows: We introduce
the pattern subspaces occupied by certain context vectors and
their dimensionality in the next section, followed by a formal
characterization of learnability. We then present our compu-
tational results on the learnability and relative hardness of a
single level of recursion (NsNsVsVs), and of two levels of re-
cursion (NsNsNsVsVsVs). We conclude by summarizing the
results and comparing them to human performance.

Pattern Subspaces and Dimensionality
For a single level of recursion, center embedding patterns are:

NsNsVsVs, NsNpVpVs,

NpNsVsVp, NpNpVpVp.

Noting that only the verbs are predictable, we generate the ex-
ponential distribution weighted left lexical context vectors at
both the verbs for each pattern, leading to a total of 8 context
vectors. The same is true for cross serial and right branch-
ing patterns with one level of recursion. For double center
embedding, the patterns are:

NsNsNsVsVsVs, NsNsNpVpVsVs,

NsNpNsVsVpVs, NsNpNpVpVpVs,

NpNsNsVsVsVp, NpNsNpVpVsVp,

NpNpNsVsVpVp, NpNpNpVpVpVp.

We generate the left lexical context vectors at all the verbs for
each pattern, leading to a total of 24 vectors. Similarly, we
generate 24 vectors for the cross serial and right branching
cases. We use Di to refer to the set of vectors for i ∈ {r, s, c}
denoting double right branching, cross serial and center em-
bedding respectively (e.g. Dc refers to the set of 24 lexical
context vectors from double center embedding).

Despite the fact that all the members in Dr, Ds and Dc are
4 dimensional, an analysis with singular value decomposition
(SVD, Hastie et al., 2001) reveals a lower intrinsic dimen-
sionality. Table 1 summarizes our findings. Similar results on
dimensionality are observed for the patterns of a single level
of recursion. Specifically, the set of right branching vectors
lie on a three-dimensional subspace (hyperplane), as do cross
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Figure 2: The three dimensional representations of the lexical context vectors from one level (top) and two levels (bottom) of
recursion with the decay parameter being 0.5.

Set Card. Dim.
Dr 24 3
Ds 24 3
Dc 24 3

Dr ∪Ds 48 4
Dr ∪Dc 48 4

Ds∪Dc (γs = γc) 48 3
Ds∪Dc (γs 6= γc) 48 4

Dr ∪Ds∪Dc 72 4

Table 1: Cardinality and dimensionality of context vectors. γs
and γc are the decay parameters for Ds and Dc respectively.

serial vectors and center embedding vectors (see Figure 2).
Thus, when we look at the linear separability of those lexi-
cal context vectors, it is equivalent to examine visually their
3D subspaces. Collectively, cross serial and center embed-
ding vectors with the same decay parameter lie on the same
hyperplane. However, the right branching vectors exist on a
different hyperplane.

Characterizing Learnability
Our setting for characterizing learnability is that we have two
classes of vectors D1 and D2 (in our case left lexical context
vectors of Vs and Vp). We want to see if we can find a hyper-
plane that separates points in the two sets, and when they are
separable, the minimum interclass distance indicates how far
apart the two classes are in the space and also might indicate
how easy it is to find a hyperplane that separates the classes.

In addition, for the inseparable cases, we present an approach
to identify the patterns that break the separability.

Linear Separability. A survey of linear separability tests is
provided by Elizondo (2006). We use a simple method: Let
D1 and D2 be the matrices of row vectors for the two classes
respectively, and 1 be a vector of ones. A is defined as:

A =
(

D1 1
−D2 −1

)
.

Linear separability is equivalent to {x|Ax > 0} is nonempty.
Let p = (1,1, · · · ,1)T , α ∈ R. A linear program for testing
linear separability is:

min
x,α

α

subject to Ax+αp≥ 1, α≥ 0. (3)

Then the original sets D1 and D2 are linearly separable ⇐⇒
The optimal α∗ = 0. The linear program is efficiently solved
by using the Simplex method (Dantzig, 1963).

Minimum Interclass Distance. The minimum distance be-
tween two classes of vectors is defined as:

dm = min
x∈D1,y∈D2

dist(x,y), (4)

which characterizes how far the two classes are apart given
that they are linearly separable.

463



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

Decay parameter

M
in

im
um

 in
te

rc
la

ss
 d

is
ta

nc
e

 

 

Right branching
Center embedding

Figure 3: The minimum interclass distance with respect to
the decay parameter for a single level of recursion (4 words).

Which Patterns Break the Separability? To gain addi-
tional insight into the model we can examine which patterns
are responsible for preventing the pattern sets from being lin-
early separable. We invoke linear Support Vector Machines
(SVMs, Cortes & Vapnik, 1995), which are now a set of well-
studied techniques for regression and classification in the field
of machine learning. The simplest form of SVMs for separat-
ing context vectors is:

min
1
2
‖w‖2 +C∑

i
ξi

subject to w ·xi−b≥ 1−ξi, i ∈Vp

w ·xi−b≤−1+ξi, i ∈Vs

ξi ≥ 0,

where xi’s are the lexical context vectors, w is the linear
weight vector, b is the bias and ξi’s are the slack variables
for the inseparable case. This SVM strives for a separating
hyperplane with a reasonably large C = 107 for instance. If
there exists no hyperplane that can split the examples from
two classes, it will choose a hyperplane that splits the exam-
ples as cleanly as possible, while still maximizing the dis-
tance between the nearest cleanly split examples. Therefore,
to find out which patterns break the separability, we can run
the SVM on the context vectors and identify those vectors
that the SVM makes a mistake on.

Results on Recursive Patterns
As plotted in Figure 2, for one level of recursion the right
branching and center embedding vectors are linearly separa-
ble, while cross serial vectors are not, for decay parameters
between 0.01 to 1. The change of the minimum interclass dis-
tance of right branching and center embedding vectors with
respect to the decay parameter is plotted in Figure 3. For
two levels of recursion, right branching vectors are separable,
while the other two kinds of vectors are not (see Figure 2).

Clearly, the pattern of results differs from the empirical
data in important ways. In particular, the cross serial patterns
are not separable even for a single level of recursion. Con-
sequently, we augmented the model by adding another set of
input units, which operated in the same fashion as the first set
except that the decay rate was varied indepedently.

Figure 4: A schematic view of our model with two banks for
inputs. The left lexical context shown is centered at “Mary”.
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Figure 5: The minimum interclass distance with respect to the
decay parameters. From top down, the surfaces are for right
branching, cross serial and center embedding respectively.

Two Banks of Inputs
Unlike in slot-based networks, where the inputs from one set
of units are transferred into adjacent slots as time progresses,
in our model the two banks operate independently (see Figure
4). Representations are never transferred between the banks.

With two input banks, the outputs of the network are pro-
duced by multiplying the input vector (of 2|V | dimensions),
which is the concatenation of x1 (with a decay parameter γ1)
and x2 (with a decay parameter γ2), with the learned weight
matrix W (of size 2|V |×K), and applying a multinomial logit
function on the products, which does the following:

yi =
e[x1,x2]·Wi

∑K
j=1 e[x1,x2]·W j

, (5)

where [x1,x2] represents the vector formed by concatenating
x1 and x2, and Wi is the ith column of the matrix W .

For a single level of recursion, we find that when using two
banks of inputs with the decay parameters γ1 and γ2, cross
serial vectors are linearly separable except when γ1 = γ2, and
right branching and center embedding vectors are always sep-
arable, for 0.01 ≤ γ1 ≤ 1 and 0.01 ≤ γ2 ≤ 1. We then turn
to the comparison of their minimum interclass distances. As
plotted in Figure 5, the minimum interclass distance of right
branching vectors is larger than that of cross serial vectors,
which is larger than or equal to that of center embedding vec-
tors, given the same decay parameters. Our results suggest
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Figure 6: Top: linear separability as a function of decay pa-
rameters (white: separable). Bottom: the minimum interclass
distance of cross serial and center embedding vectors in the
parameter region (shown as white) where both of them are
linearly separable. The top surface segments whose heights
show the minimum interclass distance are those of cross se-
rial and the bottom ones are those of center embedding.

that center embedding is the hardest form of recursive struc-
ture among the three being studied.

The results on two levels of recursion are plotted in Fig-
ure 6, which shows the relative hardness of cross serial and
center embedding both from linear separability and from the
minimum interclass distance when both of them are linearly
separable. In the figure, the separable parameter regions are
colored white, and the inseparable ones black. We find that in
the whole parameter space (0.01≤ γ1 ≤ 1,0.01≤ γ2 ≤ 1), the
minimum interclass distance of cross serial vectors is always
larger than or equal to that of center embedding vectors given
the same (γ1,γ2) pair. On the other hand, right branching
vectors are always separable. Again, we can see that within
this parameter region, center embedding is the hardest form
of structure among the three being examined.

Patterns that Break the Separability. Using the afore-
mentioned SVMs, we are able to identify the patterns that
break the separability for two-level cross serial and center em-
bedding structures. We define the breakers for linear separa-
bility to be the minimal set of vectors whose removal renders
the previously inseparable set linearly separable, which are
the same as those misclassified vectors reported by the SVM
running at the decay parameters right next to the separable
region (see Figure 6).

For two-level cross serial, the breakers are (where bold face
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Figure 7: The inseparable configurations with three banks
of inputs for two levels of recursion plotted as blue points.
Top: cross serial patterns; Bottom: center embedding pat-
terns. Down-sampling of the whole set of configurations is
used for better visualization.

symbols denote the location at which a context vector is gen-
erated):

a = NpNsNpVpVsVp, b = NsNpNsVsVpVs.

The removal of the above vectors renders the set of context
vectors separable, for the two decay parameters ranging from
0.01 to 1, except when the two parameters are identical.

For two-level center embedding, the breaker vectors are:

a = NsNpNsVsVpVs, b = NpNsNpVpVsVp,

c = NsNsNpVpVsVs, d = NpNpNsVsVpVp.

Similarly, the removal of the above vectors renders the set
separable, for the same parameter region as above.

Three Banks of Inputs
We also study the linear separability of patterns with three
banks of inputs. Similar to Eqn. (5), the input vector here is
the concatenation of three individual context vectors with γ1,
γ2 and γ3 as the decay parameters respectively.

Our results on two levels of recursion, as shown in Figure
7, suggest that the inseparable configurations are all caused
by the degenerate cases, where at least two of the decay pa-
rameters are the same. Other than those cases, three banks
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of inputs are systematically able to separate the cross serial
and center embedding patterns with two levels of recursion.
Two-level right branching patterns are always separable with
three banks.

Conclusions
We have presented a single layer network architecture to ac-
count for people’s ability to understand recursive structures
in language. Rather than posit separate slots or employing a
recurrent network, we propose that sequence information is
retained using a simple decay mechanism (c.f. ordinal mod-
els of serial order such as the primacy model (Page & Norris,
1998)). One might imagine that such a mechanism would
ensue as the firing rates of populations of neurons decreased
as a function of the time since the corresponding word was
presented.

By restricting ourselves to the single layer case, we have
been able to provide a more precise analysis than would oth-
erwise be possible. The main separability results are summa-
rized in Table 2.

# of levels (c.s.) 1-bank 2-bank 3-bank
1 never always always
2 never depends always

# of levels (c.e.) 1-bank 2-bank 3-bank
1 always always always
2 never depends always

Table 2: Separability of cross serial (top) and center embed-
ding (bottom) patterns. “Always” means true for all the non-
degenerative parameters tested, “never” means false for all
the parameters tested, and “depends” means depending on the
decay parameters used.

The decaying representation has a number of useful proper-
ties for accounting for human performance with recursive pat-
terns. Specifically, with two banks of inputs, for both one and
two levels of recursion, our model can rank the three kinds of
recursion in an increasing order of hardness as: right branch-
ing, cross serial and center embedding, which is consistent
with the results established by Bach et al. (1986).
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