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Abstract

Many kinds of objects and events in our world have a strong
time-dependent quality. However, most theories about con-
cepts and categories are either insensitive to variation over
time, or treat it as a nuisance factor that produces irrational
order effects during learning. In this paper, we present a cate-
gory learning experiment that explores people’s ability tolearn
categories whose structure is strongly time dependent. In light
of the results, we suggest that order effects in categorization
may in part reflect a sensitivity to non-stationary environments,
and that understanding dynamically changing concepts are an
important part of developing a full account of human catego-
rization.

Keywords: categorization, change detection, concepts, dy-
namics, time dependence, order effects

“Nothing endures but change.” – Heraclitus

Categorization in a Non-Stationary World
At no two moments in time are we presented with the “same”
world. Objects move, plants and animals are born and die,
friends come and go, the sun rises and sets, and so on. More
abstractly, while some of the rules that describe our world
(e.g., physical laws) are invariant in our everyday experience,
others (e.g., legal rules) are not. Given some appropriate time
scale, certain characteristics of an entity or class of entities
can change; moreover, they may tend to change insystematic
ways. The event category ofDAILY TEMPERATURES, for in-
stance, has a natural yearly period and a gradual rising trend
over the last 100 years due to anthropogenic global warming,
in addition to geographic variation. In the context of familiar,
everyday categories, people are highly sensitive to changes of
this kind: if asked to predict the temperature 6 months from
today, people will give quite different answers than if asked
to predict the temperature tomorrow. That is, people do not
simply modify predictions in anad hoc or senseless fashion
as the time of the future point draws ever more distant, as we
can tell by comparing their predictions of the temperature in
12 months to the others. Rather, they appear to be attuned
to particular details of the nature of the dynamic variationin
category structure.

There are at least three ways that dynamic qualities might
emerge as categories change over time. First, the characteris-
tics of the individual entities that make up the category could
each change over time. The social category ofMY FAMILY
has this property, for instance: even in the unlikely event that
the membership does not change (no births, deaths or mar-
riages), family members themselves grow and change over

time. A second possibility is that the set of entities indexed by
the category label can change over time, as when new mem-
bers are added to a family. Another example of this is the
natural category ofPLANETS: in 2006 Pluto was officially re-
moved from the category, after having been originally added
in 1930. The third option is that the characteristics of items
in the category can change due to some combination of the
two: for instance, selection effects result inGIRAFFE necks
becoming longer, orMOTH wings getting darker.

In addition, categories may differ in theform of their vari-
ation over time. For instance, many dynamic categories cap-
ture cyclical or sinusoidal variation:MONTHS, DAYS, and
HOURSare all defined in terms ofwhere in the cycle they oc-
cur as well as certain characteristic features. Sundays arede-
fined as coming after Saturday and before Monday, and may
contain features like “don’t have to work”, “go to church”, or
“have brunch with friends.” Other categories might capture
other sorts of variation. For instance, the category ofCARS
has seen a more-or-less steady change in some of the crucial
features (e.g., “maximum speed”, “quietness of engine”, etc).
Finally, in some categories the form of the variation mayitself
change over time. The categoryCOMPUTERSshifted dramat-
ically about 50 years ago, when the set of things indexed by
the label jumped in a fairlydiscrete fashion from “people who
calculate things” to “machines that calculate things”. Since
then, the feature values for digital computers have changed
both in discrete ways (e.g., vacuum tubes were replaced by
transistors) and continuous ways (the number of transistors
has grown exponentially).

The Importance of Order
If the world has this dynamic quality – that is, if the observ-
able structure of our experiences changes over time – then
one of the major consequences for human learning is that the
order of our observations matters. If told that the average
temperatures over recent weeks week were 21, 25, 27, 30, 29,
33 and 32 (but did not know whether the scale was Celsius,
Fahrenheit, or something else), the rising sequence makes it
most likely that the season isSPRING; if told the same tem-
peratures in reverse order, the most likely season would be
AUTUMN . Accordingly, a sensitivity to the “dynamic” char-
acter of categories is of considerable value to any system that
seeks to reason sensibly about a changeable world.

Despite its ubiquity and utility, dynamic variation in cate-
gory structure is not typically taken into account in explana-
tions or models of categorization. Order effects in categoriza-
tion are themselves well-studied, but are generally viewedas
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Figure 1: Data from the three categories used in the experiment (INDEPENDENT(left), SINUSOIDAL (middle) andDISCRETE JUMP(right)).
All three consist of the same set of stimuli organized according to different kinds of sequential structure. The convention of using triangles
to depict theINDEPENDENTcategory, squares for theSINUSOIDAL category and circles for theDISCRETE JUMPcategory will be maintained
throughout the paper.

resulting from imperfections in memory and learning (e.g.,
Kruschke, 2006; Sakamoto, Jones, & Love, 2008). Whether
these process limitations are seen to emerge due to the use
of ad hoc (Anderson, 1990) or rationally motivated (San-
born, Griffiths, & Navarro, 2006) computation strategies, it
is implicitly assumed that in most cases people shouldnot be
sensitive to order information when learning new categories.
While this is undoubtedly true in many cases, and we imagine
that in general processing limitations play an important role
during learning, it need not be universally the case. In fact,
there are a number of cases in which these “limitations” might
actually be sensible adaptations: for instance, forgetting old
information is a reasonable strategy in a changing world (An-
derson & Schooler, 1991), as is deliberately downgrading the
value of such information (Welsh & Navarro, 2007).

As this discussion illustrates, one of the central assump-
tions in most descriptions of order effects is that they emerge
because of the nature of the cognitive mechanisms or goals
of the learner, rather than primarily due to the dynamic struc-
ture of the categories in the world. That is, in a categoriza-
tion context, order effects are assumed to be arbitrary. In
contrast, some recent research has suggested that the tempo-
ral structure of observations is crucial for rational learning:
loosely mirroring ideas from the memory literature (Ander-
son & Schooler, 1991), when training data are autocorrelated
in some fashion, then order effects are a hallmark of good
reasoning, not bad (Yu & Cohen, 2009). However, even this
does not capture the important insight that categories differ in
theform of that autocorrelation, and that a reasonable learner
should be sensitive to those dynamics as well.

In this paper we present data from an experiment in which
people are presented with unidimensional stimuli that varyin
particular time-sensitive ways. We show that people are, in-
deed, sensitive to this dynamic variation in category structure:
in some instances the sequential structure leads people to
(correctly) believe that the environment is highly predictable,
while in other cases the structure can (again, correctly) lead
people to suspect that future observations will be unrelated to
the past. These results suggest that a full understanding of
human categorization will require an understanding of how
people think about dynamic as well as static categories.

Experiment
Our experiment is loosely inspired by the approach taken by
Sakamoto et al. (2008), in which simple unidimensional cat-
egories are used, and the various category distributions differ
only in terms of the order in which people observe the stim-
uli. We extend the design by (1) allowing for a broader range
of sequential dependencies, (2) constraining the categories so
that the sequential dependencies become necessary to differ-
entiate the categories, and (3) using a predict-the-next task as
well as a classification task. The rationale for incorporating
the prediction task is to see if people are not just sensitiveto
sequential dependencies, but also able to extrapolate the un-
derlying trends to the future. In short, we seek to discover
the extent to which people can uncover and exploit category-
dependent variations in their observations about the world.

Method
Participants. Thirty-two people were recruited from a paid
participant pool largely consisting of undergraduate psychol-
ogy students and their acquaintences. The experiment took
place as part of a series of three unrelated studies, which took
approximately 1 hour to complete. Participants were paid $12
for their time.

Category structures. Stimuli consisted of lines of different
lengths presented on a computer screen; lengths varied from
approximately 1cm (stimulus location “0”) to 5cm (stimulus
location “1”).1 All categories made use of the ambiguous
distribution of category locations shown in Figure 2, but with
three different orderings of stimuli. (That is, in all categories,
the locations of the items were identical; categories differed
only in terms of when during the presentation each item was
shown). In theINDEPENDENT category, there was no time-
dependent structure: the stimuli were ordered randomly. In
the DISCRETE JUMPcategory, items from the middle of the
location distribution were shown first, followed by items to-
ward the upper end, and then items from the lower end, with
the final three items being chosen from the top end. Finally, in

1Note that for half of the participants the mapping was reversed:
stimulus location “0” corresponded to the longer lines, andlocation
“5” to the shorter lines.
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Figure 2: The marginal distribution of the locations of the category
members is a noisy arcsin variate with additional mass near 0.5.
The intent when constructing this distribution was that it be in itself
somewhat ambiguous, and easy to convert to the three categories
used in this experiment and shown in Figure 1.

theSINUSOIDAL category, the line lengths changed smoothly
according to a sinusoidal function. The three categories are
shown most clearly in Figure 1, which shows the data presen-
tation as a function of time for each of them.

General procedure. Participants were randomly assigned
either to a categorization condition or to a prediction condi-
tion. In both conditions, the cover story was constructed toal-
low for time-varying categories without explicitly drawing at-
tention to the non-random ordering of items. The line lengths
were tied to a pseudo-artifact cover story (a computer game)
that suggested the existence of systematic rule-governed cat-
egories.

Categorization condition. The training phase for the cate-
gorization condition was a standard supervised learning task.
The instructions in this condition were:

Imagine that you’re helping with the alpha testing for a new
iPhone game. When finished, the game is going to involve
things called WUGS and things called DAXES, and players of
the game will need to learn which is which. At the moment, the
developers don’t have any flashy graphics, but they are testing
some ideas about how DAXES and WUGSdiffer. So, for the mo-
ment, they’re trying to figure out how hard or how easy different
“DAX–WUG rules” are. With that in mind, they’ve put together a
demo in which DAXES and WUGS are just lines on the screen,
and they’d like you to try to figure out which is which, using the
length of the line as a cue.

The onscreen display was designed to mimic the appear-
ance of a mobile phone. Participants were shown a line and
asked to guess the label. They responded using the keyboard,
and received immediate feedback as to the correct label. Half
of the lines belonged to theSINUSOIDAL category, and half
to theDISCRETE JUMPcategory. These items were randomly
interleaved: the complete sequence of 100 items is shown in
the left panel of Figure 3.

After the training phase was complete, participants were
asked to classify an additional 15 transfer items asDAXES or
WUGS, and in this case no feedback was given. The transfer
items were presented in a random order, and covered most of
the range of possible line lengths in the task (though due to a
coding error the transfer items were slightly “off-center”; see
right panel of Figure 3). Before these were presented, how-

ever, participants were explicitly told that the “programmers”
in the cover story had no clear intention about what should
come next, and were primarily interested in soliciting opin-
ions rather testing any explicit idea about what the “right”
answer should be.

Prediction condition. In the prediction condition, partic-
ipants were shown the stimuli in all three categories (i.e.,
including theINDEPENDENT category as well as theSINU-
SOIDAL andDISCRETE JUMPcategories). On every trial they
were shown a line and its accompanying label (eitherDAX ,
WUG or FAF) and asked to predict the length of the next line,
which would be a member of the same category.

Instructions in this condition were thus similar to the in-
structions in the categorization conditions, except that the
opening scenario involvedFAFSas well asWUGSandDAXES.
Also, instead of asking people to make classification deci-
sions, the stimuli were labelled, and participants were asked
to predict the length of the next observation of each. Specifi-
cally, they were told that they would

be shown a coloured “WUG” line on the screen, and you’ll be
asked to guess how long the next WUG will be, which you
can do by positioning the crosshairs on screen and clicking the
mouse. You’ll see a series of 50 DAXES, followed by 50 WUGS
and then 50 FAFS, so in total you’ll need to make 150 decisions.

After being shown all 50 items in each series, participants
were asked to predict the lengths of the next 5 members, but
were not given feedback.

Results
We consider the categorization data first, which present an
odd puzzle, and then turn to the prediction data, which help
to resolve it.

Categorization condition. Figures 3 and 4 shows the gen-
eral pattern of results for the categorization condition. The
plot on the left hand side of the Figure 3 shows a con-
densed description of the training data in which white-colored
markers denote trials in which people performed better than
chance, and black markers display trials in which perfor-
mance was below chance (trials that were indistinguishable
from chance are not shown). Figure 4 expands this some-
what, plotting the average probability of a correct response
for every trial in the experiment.

To determine which trials were at chance, which were
above and which were below, we used a simple Bayesian
data analysis method involving three hypotheses aboutθt (the
probability of a correct response on trialt). The chance hy-
pothesis isH0 : θ =

1
2, while the two non-chance hypotheses

areH+ : 1
2 < θ ≤ 1 andH− : 0 ≤ θ <

1
2. For the two non-

chance hypotheses, we assume a uniform prior over the ad-
missable values ofθ (which makes the model a incomplete
beta-binomial model, and straightforward to evaluate; see,
e.g., Gelman, Carlin, Stern, and Rubin (1995)). We assume
that each hypothesis is equally likelya priori, and choose the
one that is most likely having observed the data. It is this
analysis that produces the colorings shown in Figure 3.

The central point is that the sequential dependencies are
clearly strong enough for the distinct categories to be dis-
tinguishable from each other, even though they both consist
of the exact same set of entities. This is in part because on
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Figure 3: Categorization condition results. Data from the training phase (left) and transfer phase (right). For the training data, circles denote
items belonging to theDISCRETE JUMPcategory, and squares show items belonging to theSINUSOIDAL category. The white-colored markers
correspond to trials in which participants’ classificationdecisions were better than chance, whereas the black-colored markers display those
trials where people performed below chance. On some trials performance was statistically indistinguishable from chance levels: no markers
are plotted for those trials. Despite the fact that both categories index the exact same collection of objects (Figure 2)and are differentiated
only by the time-dependent order effects, participants generally perform well. For the transfer data (right panel), the grey squares denote
stimuli that people classified as belonging to theSINUSOIDAL category, with dots marking the other trials.

any given trial the conditional distribution over the current
observation for the two categories is negatively correlated
(r = −.47), which provides some basis for distinguishing be-
tween the two. However, in order for people to exploit this
correlation, they need to be able to predict correctlywhere at
least one of the categories is currently generating data – other-
wise the correlation is useless. The sequential dependencies
are critical for this purpose, and people are clearly able toex-
ploit them, as illustrated on the left panel of Figure 3. That
is, the fact that most markers are white-colored implies that
on most trials people possessed some knowledge about the
category label.

Despite the evidence that participants appear to exploit or-
der effects during learning, the transfer data appear on first
glance to suggest that they fail to do so during transfer. The
columns in the right panel of Figure 3 show the transfer clas-
sifications of each participant. As is evident, most partic-
ipants produce internally consistent transfer data in which
shorter lines are assumed to belong to one category and longer
lines to the other – but there is no consensusbetween partici-
pants as to which is which.

These results present us with something of an oddity. On
the one hand, people must be able to uncover and use the
sequential dependencies, since they are clearly able to learn
the categorization rules during the training phase.2 However,

2Note that the data do not determine whether people learn that
each category changes over time, or merely that or merely that the
learned rule aboutDAXES andWUGS flips. Either way, people are
sensitive to time-dependent variation, so we leave the issue of the
precisenature of this sensitivity for future work.
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Figure 4: Probability of a correct classification, as a function of trial
number and category. Chance is 50%.

whatever learning has taken place does not seem to lead to
any consistent pattern of discrimination between the cate-
gories on transfer. To resolve this anomaly, we turn to the
data from the prediction condition.

Prediction condition. Figures 5-7 shows the average pre-
dictions made by people during the training phase (left pan-
els) and their typical predictions in the transfer trials (right
panels). In each figure, the solid line in the left panel indi-
cates participants’ predictions at each point; the predictions
made on the 5 transfer trials are summed up in the histogram
in the right panel. For instance, the right panel of Figure 5
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Figure 5: Prediction condition:INDEPENDENT category. The left
panel shows the average sequential prediction strategy used by peo-
ple (solid line) and corresponding 95% confidence intervals(dotted
lines), plotted against the true locations (circles). The right panel
shows the distribution over predictions made on the transfer tri-
als. Not surprisingly, the average prediction on a trial-to-trial basis
shows no pattern. What matters, however, is that the transfer trials
fairly closely reproduce the marginal distribution in Figure 2.

shows the modal prediction to be between location 0 and 0.1.
A comparison of Figures 5-7 provides a robust indication

that participants are successfully categorizing on the basis of
the time-dependent presentation of items (if such dependency
exists). Results from theINDEPENDENT category, shown in
Figure 5, demonstrate that when there is no time-dependent
category structure, participants show no pattern to their pre-
dictions, whether during training or transfer. Indeed, thedis-
tribution of predictions about item location during the transfer
trials closely matches the distribution of item locations during
training (as shown in Figure 2): participants are not inferring
any additional pattern.

By contrast, results from theSINUSOIDAL andDISCRETE
JUMP categories indicate that participants were sensitive to
the distinct time-dependent category structure of each. Fig-
ure 6 illustrates that people clearly understood the sinusoidal
structure of the category during training, and their perfor-
mance on the transfer trials demonstrates that they are us-
ing this structure to correctly predict what they would see
next. The transfer performance is especially interesting be-
cause simple heuristics like “predict what has been happen-
ing” would not capture what humans are doing here, since
they (correctly) extrapolate that the next items should be
found at a location lower than any of the most recent ones.

Figure 7 is interesting because it demonstrates an apparent
divergence between training and transfer performance (and,
thus, an explanation of participant behavior in the catego-
rization condition). The training data indicates that partici-
pants were able to induce the time-dependent structure of the
category reasonably well, although they showed considerable
uncertainty about the sudden shift occurring at the very end
of the sequence. This is sensible, because there are only a

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

trial number

st
im

ul
us

 lo
ca

tio
n

 

 
true location
average prediction

0 10 20

0

0.2

0.4

0.6

0.8

1

frequency

pr
ed

ic
tio

n

Figure 6: Prediction condition:SINUSOIDAL category. The left
panel shows the average sequential prediction strategy used by peo-
ple during training, and the right panel shows the corresponding
transfer generalizations. People accurately track the sinusoidal vari-
ation as one might expect, but more importantly the distribution on
transfer has a genuinepredictive quality, since the typical transfer
location prediction is lower than the location of items in the most
recent trials.

few trials’ worth of data after that shift, making it unclearas
to whether those datapoints indicate a “real” shift (like the
one that occurred around trial 30) or not. This uncertainty
is evident in the transfer data, which show a high degree of
entropy. The transfer predictions do not match the original
location distributions (as in Figure 2), suggesting that partic-
ipants know there issome time-dependent structure, but also
do not reflect coherent beliefs about the future (as in theSI-
NUSOIDAL category shown in Figure 6).

This may explain performance in the categorization con-
dition, where we observed that most participants produced
internally consistent data and tended to assume that shorter
lines could be classified into one category and longer lines
into another. As Figure 6 makes clear, participants learneda
highly consistent predictive model for future data generated
from theSINUSOIDAL category, but did not appear to do so
for the DISCRETE JUMPcategory (Figure 7). Presumably,
the fact that the future behavior of the category was well-
understood by people only in one case made the transfer task
in the categorization condition quite difficult.

General Discussion
These results demonstrate that human learners are quite sen-
sitive to time-dependent variation in category structure,and
we suggest that this sensitivity is not always a result of char-
acteristics of memory and learning, such as processing lim-
itations or rational discounting of past information. Rather,
because the observable structure of our experiences changes
over time, a rational learner should be attuned to that varia-
tion and be able to use it where it is relevant. Our experiment
offers a demonstration that at least in this very simple case,
humans are surprisingly successful at doing this.
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Figure 7: Prediction condition:DISCRETE JUMPcategory. The left
panel shows the average sequential prediction strategy used by peo-
ple during training, and the right panel shows the corresponding
transfer predictions. The predictions in this case are reasonable,
though it is clear that there is considerable uncertainty about the
sudden shift that occurs at the end of the sequence: the average pre-
diction at the end is regressed a long way to the middle. This un-
certainty is reflected in the transfer predictions, which donot reflect
either the marginal distribution (as per Figure 5) or any coherent be-
lief about the future (as per Figure 6).

This work opens a broad avenue of future directions. On
the experimental side, it is important to follow up this work
in situations involving richer categories. Are people so quick
to induce time-dependent structure when there are other im-
portant features as well? For instance, if instead of being
shown lines differing along only one dimension (location),
what if people were shown items differing along many fea-
tures (color, shape, texture, and location), only one or a few
of which varied consistently over time? Would it make a dif-
ference if the time-dependent variation occurred over a short
scale (in which case it might be automatically detected by the
low-level visual system) or over a very long scale (in which
case memory limitations might apply)?

On the theoretical side, this work suggests that a com-
plete model of human categorization should include a com-
ponent that can account for people’s sensitivity to dynamic
structure. We presume that this could be added to many cur-
rent approaches of categorization (see Kruschke, 2008), and
suggest that work along these lines could be further used to
distinguish the advantages and disadvantages of each type
of model. For instance, the models used by Sanborn et al.
(2006) and Sakamoto et al. (2008) can both be characterized
as methods for “tracking” an estimate of a category distribu-
tion. In the original models, the category itself is not assumed
to change, only one’s knowledge of it. However, as discussed
by Arulampalam, Maskell, and Gordon (2002), it is not dif-
ficult in principle to extend these approaches to a “predictive
tracking” model, in which the learner allows for the world to
change over time (see, e.g., Freyd & Jones, 1994).

More broadly, our work moves a step beyond assuming
that categorization consists only of noticing regularities in

observable features. The idea that categorization can also
occur on the basis of regularities overtime may provide a
way to synthesize areas in cognitive science that are typically
seen as distinct. For instance, the study of linguistic knowl-
edge and use is focused on understanding how humans cate-
gorize a particular sort of time-dependent variation (namely,
sequences of words or phonemes). Regardless of whether
the same sorts of cognitive abilities that underlie categoriza-
tion of non-linguistic time-dependent regularities also apply
to linguistic ones the answer promises to add a great deal to
our understanding of language as well as categorization.

Conclusion
In sum, these results show that human learners are capable of
learning time-dependent category structure. We suggest that
a rational learner should be sensitive to such structure, since
sequential structure is an essential characteristic of both nat-
ural categories (e.g.,SPRINGandAUTUMN ) and created cat-
egories (e.g.,BULL MARKETS andBEAR MARKETS). More-
over people are appropriately influenced by theform of the
dependency – assuming thatCOMPUTERSchange likeSEA-
SONSwould be inappropriate. As a consequence of this sen-
sitivity, we suspect that order effects in categorization may
not always be entirely due to processing or memory limita-
tions. As we move toward a fuller understanding of human
categorization, people’s sensitivity to this sort of information
needs to be explained.
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