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Abstract

Computational models are notoriously difficult to compare and
interpret, resulting in a community segmented around model-
ing paradigms. In this paper, we seek to develop community
standards and methodology that will make it easier to compare
work across computational paradigms, discern what types of
empirical predictions can be drawn from computational work,
and test the validity of computational models. Using an estab-
lished Bayesian model, we illustrate how our proposed meth-
ods will achieve these goals.

Keywords: Methodology; Marr Levels; Core Tenets

Introduction

As cognitive scientists, we seek to develop a unified theory
of the human mind. Our current modeling efforts, however,
use a diverse set of tools and formalisms that span from neu-
ral networks to cognitive architectures to Bayesian reasoning
to first order predicate logic, and each model only addresses
aspects of the larger problem. In this paper, we seek to de-
velop community standards that will make it easier to com-
pare work across paradigms, discern what types of empirical
predictions can be drawn from computational work, and en-
hance our ability to translate models into statements about the
computational nature of intelligence.

In the first section, we introduce two new terms: core tenet,
for a part of a computational model argued to be cognitively
plausible, and ad hoc residual, for an arbitrary implementa-
tion detail. We then describe two types of core tenets: central
assumptions that an author believes to be paramount to the
cognitive theory behind their computational model and pe-
ripheral hypotheses that the author believes are cognitively
plausible but feels less committed to preserving in their cur-
rent form. We advocate the explicit delineation of a model’s
core tenets and ad hoc residuals as well as the explicit divi-
sion of core tenets into central assumptions and peripheral hy-
potheses when publishing computational papers, because we
believe this practice will enable computational researchers to
communicate more effectively and to learn more from one
another’s work. Identification of the intended core tenets and
ad hoc residuals will reduce the chance that other researchers
will take issue with an aspect of a model that the authors con-
sider tangential to their work. We argue that this practice will
allow researchers to clearly communicate the correspondence
between their models and theories of human cognition, estab-
lish the validity of one another’s theories by using multiple
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modeling formalisms to instantiate the same theory, and es-
tablish whether a computational model’s performance is truly
independent of arbitrary design decisions.

Cognitive Plausibility

Computational models must be defined at a finer-grained
level of detail than other types of psychological models, be-
cause computational models must lead to software implemen-
tations or sets of mathematical computations. Defining such
a model almost always entails specifying details for which
the modeler has little or no psychological or neurological ev-
idence (Newell, 1990; Anderson, 1983; R. Cooper, Fox, Far-
ringdon, & Shallice, 1996; McClelland, 2009).

Because details for which we have no evidence must be
specified in order for the model to be implemented, computa-
tional models contain both cognitively plausible elements and
ad hoc implementation details. We call the parts of a compu-
tational model that the modeler considers cognitively plausi-
ble and wishes to communicate to the modeling community
the core tenets of the model, and we refer to the incidental
design decisions as the ad hoc residuals.

We further refine this idea using Lakatos’ (1970) obser-
vation that theoretical claims can be broken into two groups
based on the strength of a researcher’s commitment to the
claims. Core tenets can thus be subdivided into central as-
sumptions and peripheral hypotheses (following the example
of Cooper and Shallice (2000)). Tenets that the researcher
is strongly committed to preserving, because he or she be-
lieves those aspects of the model generate crucial behavior,
are called central assumptions. Tenets that the researcher re-
gards as open to modification are called peripheral hypothe-
ses. While an author writing about a model may have a clear
idea of which parts they intend as central or peripheral core
tenets and which parts they intend as ad hoc residuals, that
intent often is not communicated clearly.

Cooper (2006, 2007) highlights the difficulty of identify-
ing core tenets in another person’s work. Cooper analyzes the
progression of the cognitive theories behind Soar and ACT-R,
labeling architectural aspects that remained stable over time
as central assumptions and aspects that were added to accom-
modate empirical findings as peripheral hypotheses. While
this is a reasonable way to proceed when the original author
has not explicitly delineated core tenets, Cooper’s criteria for
identifying central assumptions confounds the ease of mod-



Core Tenets Ad Hoc Residuals

Cognitively plausible parts of the computational model, which specify
a testable cognitive theory. The core tenets should be verified both
empirically and computationally. As a cognitive theory, core tenets

Implementation details that are based on minimal cognitive or
neurological evidence and are not intended to be part of a cog-
nitive theory. The success of the computational model should be

can be divided into central assumptions and peripheral hypotheses.

shown to be independent of the ad hoc residuals.

Central Assumptions Peripheral Hypotheses

Aspects of the cognitive the-
ory that the scientist will only

change as a last resort based on empirical findings

Aspects of the cognitive the-
ory that the scientist will update

Figure 1: Framework through which any computational model of cognition may be understood. This framework distinguishes
the parts of a computational model that the modeler considers cognitively plausible from the parts he or she deems cognitively-
irrelevant. Because core tenets specify a theory of cognition, the core tenets can be divided into central assumptions and
peripheral hypotheses based on a scientist’s level of commitment to preserving the tenets in their current form (Lakatos, 1970).

ifying computational models with the question of cognitive
plausibility.

Aspects of a computational model might remain stable for
engineering reasons, so the stability of a particular aspect is
not a reliable metric for ascertaining whether the modeler
considers the aspect cognitively plausible. For example, pre-
2004 versions of Soar relied exclusively on production rules.
Does this imply that production rules were viewed as the only
representation used by the brain, a reasonable approximation
for the brain’s symbolic representations, or an engineering
tool that could be modified or replaced if necessary? Citing
the continual use of production rules as evidence for its sta-
tus as a core tenet ignores the possibility that first order logic
was initially adopted and continues to be used for engineering
simplicity. Cooper’s efforts to identify the central assump-
tions and peripheral hypotheses of Soar highlight the need for
researchers to unambiguously identify their core tenets, be-
cause despite Cooper’s objective approach, identifying which
parts of a computational model are intended to be cognitively
plausible still involves guess work.

Throughout the remainder of this paper, we focus on the
distinction between core tenets and ad hoc residuals, that is,
the divide between the cognitively plausible parts of a model
and the details added for implementation purposes. We agree
with Cooper that further dividing core tenets into central as-
sumptions and peripheral hypotheses is extremely important
and advocate using this terminology when defining models.
In later sections, we will focus on determining the extent to
which either type of core tenet affects a model’s performance
and methods for comparing either type of core tenet across
modeling paradigms.

Marr partially addressed the divide between core tenets and
ad hoc residuals when he proposed that computational mod-
els can be analyzed using the following three levels: (1) the
computational theory, which includes the goal of the compu-
tation and the general strategy for performing the computa-
tion, (2) the representation and algorithm, which includes the
input and output representations as well as the algorithm for
manipulating those representations, and (3) the hardware im-
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plementation, which includes the physical realizations of the
representations and algorithms (Marr, 1982). He argued that
some modelers work at the hardware level while others work
at the algorithmic or computational level. This implies that
a modeler working at the computational theory level would
consider the goal of their algorithm to be a core tenet and
would consider the algorithmic and hardware details to be ad
hoc residuals. In contrast, a modeler working at the algo-
rithmic level would have core tenets that involve representa-
tions and algorithmic details and ad hoc residuals related to
the hardware implementation.

While a useful construct, the Marr levels still leave room
for ambiguity. Every researcher can have a slightly different
interpretation of where the separations between levels belong.
For example, Broadbent (1985) and Rumelhart and McClel-
land (1985) debated about which Marr levels existing cogni-
tive theories and connectionist models really addressed.

Further complicating the issue, complex models contain
processes with multiple subgoals, so the overall process and
each of the subprocesses all have Marr computational level
descriptions. For example, the Companion cognitive archi-
tecture has been used to perform transfer learning (Forbus
& Hinrichs, 2006). At the computational level, the overall
system attempts to solve problems by analogically compar-
ing problems to previously-encountered examples. The sys-
tem contains an analogical component with its own computa-
tional level, which focuses on comparing structural elements
to determine the similarity between two problems. Thus, the
Companion architecture might suggest a computational level
theory, but are all the computational level details relevant to
the cognitive theory, or only a subset of them?

Claiming that two models pertain to distinct Marr levels
implies that the models have different core tenets and ad hoc
residuals, but the Marr level descriptions do not unambigu-
ously specify what is different (a point also noted in McClel-
land (2009)). Currently, the phrase “modeling at the com-
putational level” merely indicates that some details are con-
sidered ad hoc residuals without explicitly explaining which
details fall into this category.



An Illustrative Cognitive Model

In the remaining sections, we will show how core tenets and
ad hoc residuals can (1) clarify assertions about cognitive
plausibility, (2) provide mechanisms for testing how much of
a computational model’s success depends on its cognitively
plausible parts and how much of its success depends on inci-
dental design decisions, and (3) specify empirically-testable
cognitive theories. To illustrate our points, we use a relatively
straight-forward computational model of how people play a
simple number game (Tenenbaum, 2000). This analysis ap-
plies equally well to any computational model of cognition,
regardless of its paradigm or degree of complexity.

Tenenbaum (2000) explores how people play a game in
which they receive sets of numbers between 1 and 100, like
{4, 8, 24, 12}, and guess what rule generated the set. Pos-
sible rules include “multiples of 3,” “squares,” and “numbers
between 10 and 20.” In this case, the numbers satisfy several
rules, including “multiples of two,” “multiples of four,” and
“numbers less than 30.” To ascertain how people think the
set has been generated, each person receives a series of test
numbers, like {3}, {22}, and {16}, and they must rate the
likelihood that each test number belongs to the set.

Tenenbaum proposed a computational model in which peo-
ple start with a set of hypotheses about how sets have been
generated. Hypotheses come in two forms, those that depend
on a mathematical rule and those that involve an interval. The
prior probability assigned to the rule-based set is uniformly
distributed across all rule-based hypotheses, while the weight
assigned to the interval-based hypotheses is distributed so that
intermediate-sized intervals receive the bulk of the prior prob-
ability.

The probability of observing a set of numbers, X, given
that a particular hypothesis generates the set, depends on how
many numbers between 1 and 100 the hypothesis can gener-
ate. For example, the hypothesis “multiples of 2 can gen-
erate 50 numbers between 1 and 100, while the hypothesis
“numbers from 1 to 10” generates 10. High likelihoods are
assigned to hypotheses that fit the observed data without gen-
erating too many extra numbers. Thus, {10, 30, 70} would
be more likely to be generated by “multiples of 10” than
by “multiples of 2.” This model builds on what Tenenbaum
refers to as the size principle, a trade-off between simplicity
and goodness of fit, which essentially states that people prefer
the simplest hypothesis that explains the data.

Using Core Tenets to Indicate Intent

Just by examining his computational model, we do not know
which parts of the model Tenenbaum considers cognitively
plausible. By explicitly stating a set of core tenets, however,
we can indicate which parts of a model readers should focus
on when evaluating a piece of computational work.

For example, if we take the trade-off between simplicity
and goodness of fit as the only core tenet, all other aspects
of the model would be considered ad hoc residuals. Under
this interpretation, the Bayesian framework would be a useful
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language for describing the model, but any other framework
in which we could describe a similar trade-off between sim-
plicity and goodness of fit would work equally well. Readers
assessing the cognitive plausibility of the work should then
evaluate the extent to which they believe a trade-off between
simplicity and goodness of fit adequately captures a crucial
component of how people play the number game, without al-
lowing the Bayesian framework or particular probability dis-
tributions to play a crucial role in their evaluation process.

Realistically, most computational models involve a set of
core tenets. Based on Tenenbaum’s description of his model,
we can identify a few principles that seem like compelling
core tenet candidates, such as the trade-off between simplicity
and goodness of fit (described in the paper as the size princi-
ple) and the ability to process both similarity-based and rule-
based hypotheses using the same apparatus. Whether or not
other aspects of the model or Bayesian framework should be
considered core tenets remains a source of speculation, but
explicitly specifying a list of core tenets and ad hoc residuals
and indicating a level of commitment to the items in that list
by dividing the core tenets into central assumptions and pe-
ripheral hypotheses would clarify Tenenbaum’s perspective.

A clear division between core tenets and ad hoc residu-
als would also elucidate the simplifying assumptions neces-
sary to make a modeling effort tractable. McClelland (2009)
writes eloquently about the need for simplifications in order
to develop a model that can test the consequences of a set of
core ideas in an comprehensible manner. Labeling simplifica-
tions as ad hoc residuals will make it clear to the reader what
falls within and outside of the scope of the model and what
should be considered when evaluating the model.

Anyone can effortlessly spring to a controversial conclu-
sion about a computational model. For example, do connec-
tionist models imply that the brain uses a back propagation
algorithm? Do Bayesian models imply that the brain con-
tains a probabilistic engine? Do symbolic models imply that
the brain stores information using first order logic predicates?
Even though these conclusions may not reflect a modeler’s
beliefs, these types of reactions can lead other researchers
to doubt the premise of a particular piece of work, hassle a
modeler with questions that are tangential to the intent of the
work, or even reject an entire modeling paradigm.

Clearly specifying the core tenets of a model can focus the
ensuing conversation on the parts of a model that the authors
deem most relevant and most cognitively plausible. Debates
over controversial claims may be the hallmark of science, but
such debates should focus on claims that the modelers de-
cisively make, not claims that readers infer from the ad hoc
residuals of a model or modeling paradigm.

Using Core Tenets to Validate Models

Ideally, we would like to know that a model’s success relies
only on the parts we believe to be important and not on ar-
bitrary design decisions, but we as a community currently
lack a systematic process for making this distinction. Cooper



Shared Core Tenet(s) Trade off between Simplicity and Goodness of Fit
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Framework BayeS|an Library of Stored Examples see
with a Memory Retrieval System

Instantiation Tenenbaum's Likelihood Function: Alternate likelihood o Memory indexed by small sets c- -
e functions like of observed numbers paired with
p(X|h) = { me Y, h can generate z; the square root of the hypothesis lists that are weighted
0 otherwise original one based on the core trade-off;
X ={x1...2,} = observed set of numbers Algorithm processes large sets
|h| = cardinality of set h generates within [1, 100] by retaining trade-off
Implementation  petails like Alternate details like .- ...
- analytic solvers - MCMC
- hypothesis space of - additional hypotheses
mathematical rules like "all numbers with 2
and intervals in the one's digit"

Figure 2: A shared-core-tenet analysis can be used to explore how the behavior of any computational model, regardless of its
paradigm or complexity, depends on a set of core tenets. This example depicts a comparison between different formulations
of the Tenenbaum (2000) number game model, where the leftmost branch describes the original formulation of the model and
the remaining branches specify hypothetical alternative formulations. Other alternate formulations, like those described in Shi,
Feldman, and Griffiths (2008), would be depicted using additional branches.

et al (1996) suggests using a criticality/sensitivity ratio that ~ Creating Core-Tenet-Consistent Models
measures the degree to which a computational model’s be-
havior depends on core tenets versus ad hoc residuals, but
we do not see a systematic way of defining such a ratio be-
cause a model’s dependence on underlying parameters and
constraints is too complex to be summarized by a single ra-
tio. In addition, Cooper’s work only seeks to compare theo-

We can develop an array of core-tenet-consistent models by
first specifying a set of core tenets that will be shared by the
models. As a simple example, we consider the core tenet
trade-off between simplicity and goodness of fit in Tenen-
baum’s number game model.

ries within a single research program, but we are interested We can explore the space of models consistent with the
in what we can learn by comparing research programs that shared core tenets by using the following levels of abstraction.
share one or more core tenets but rely on different model- At the highest level, we start with a framework capable of

ing paradigms. For instance, if ACT-R and Soar both share instantiating the shared core tenets. Tenenbaum’s model uses

a core tenet, can that provide evidence that the shared tenet a Bayesian framework, but another formulation of the model

yields some desirable behavior? Similarly, if Bayesian and ~ might use a cognitive architecture or logical model to express

connectionist models for the same phenomenon share a core  the principles of simplicity and goodness of fit.

tenet, what does that tell us about the tenet? The instantiation level specifies how the shared core tenets
are expressed within the formalism selected at the framework
level. At this level of detail, Tenenbaum’s model depends on

In subsequent sections, we introduce a framework for sys- ~ the specific hypothesis space, prior probabilities, and likeli-
tematically comparing core-tenet-consistent models, models hood distributions described in the previous section. Alterna-
that share a single core tenet or a set of core tenets, regard-  tive models might use an expanded hypothesis space or differ-
less of whether the models use the same paradigm. This in- ent set of probability distributions that still preserve the core
volves developing alternate formulations of the original com-  tenet trade-off.
putational model that preserve the core tenets but change the The bottom level specifies the remainder of the implemen-
ad hoc residuals. If the core tenets are valid, these core-tenet- tation details necessary to turn the specific instantiation of
consistent versions of the model should produce results that  the shared core tenets into a working computational model.
are qualitatively similar to both empirical findings and the re- Tenenbaum’s model appears to compute analytical solutions
sults obtained using the original model, while providing evi- for the posterior distributions, but an alternative formulation
dence that the results do not depend on ad hoc residuals. might rely on a non-deterministic algorithm like MCMC.
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Also at this level, Tenenbaum’s model calculates a posterior
probability for all hypotheses when determining the probabil-
ity that a novel number belongs to a particular set, whereas an
alternative algorithm might use heuristics to focus on a subset
of hypotheses.

The number of shared core tenets combined with their
specificity will determine how significantly a core-tenet-
consistent formulation of a model may diverge from the orig-
inal version. For example, if the core tenets mirror the con-
straints imposed by the Bayesian framework, then all core-
tenet-consistent models will either use the Bayesian frame-
work or a pseudo-Bayesian one. In contrast, when core tenets
provide looser constraints, alternative formulations will in-
volve a wider variety of frameworks and paradigms.

Testing the Validity of Core Tenets and the
Insignificance of Ad Hoc Residuals

Figure 2 shows a sampling of the models consistent with a
core tenet trade-off between simplicity and goodness of fit. If
this core tenet is valid, these core-tenet-consistent versions of
the model should produce results that are qualitatively simi-
lar to both empirical findings and the results obtained using
Tenenbaum’s original model.

Developing multiple formulations explores whether the
model’s performance relies on any of the ad hoc residuals.
If an ad hoc residual contributes to the model’s success, we
would expect the residual to play a crucial part in every im-
plementation. For example, when we presume that the trade-
off between simplicity and goodness of fit is the only core
tenet, this implies that everything else, including the specifi-
cation of a fixed hypothesis space, is an ad hoc residual. If the
specification of a fixed hypothesis space is in fact crucial to
Tenenbaum’s model, every core-tenet-consistent model, de-
fined with respect to simplicity and goodness of fit, should
contain some type of fixed hypothesis space. In this case,
even if a fixed hypothesis space had initially been considered
an ad hoc residual, its presence in every core-tenet-consistent
model might imply that it should be considered a core tenet.
However, if an ad hoc residual that does not seem cognitively
plausible still plays a crucial part in every instantiation, we
would need to search for cognitively plausible alternatives.

Core Tenets Specify Cognitive Theories

Ultimately, we would like to develop cognitive theories that
describe an individual’s cognitive processes and make useful
empirical predictions, but what types of predictions can legit-
imately be drawn from a detailed, fully-implemented compu-
tational model? How can we systematically reconcile com-
putational work with non-computational work?

Core tenets identify which parts of a computational model
describe an individual’s cognitive processes. For example,
Tenenbaum’s paper does not directly indicate how his model
relates to individual cognition (Tenenbaum, 2000), but Fig-
ure 3 shows two possible interpretations, specified by two ex-
panded sets of core tenets, both of which translate into cogni-
tive theories of how individuals play the number game.
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To verify the bottom set of core tenets, one must demon-
strate that a Bayesian model can produce results that match
the performance of each individual participant of the number
game experiment. Tenenbaum’s original formulation com-
pared results obtained using his Bayesian model to results
obtained by averaging over a population. This suggests that
his model captures a population average, but it may or may
not adequately capture what any one person is doing. To es-
tablish that these core tenets describe an individual’s cogni-
tive process, one would have to establish that a particular for-
mulation consistent with the core tenets can be used to ade-
quately model each individual’s performance. The conglom-
erate set of formulations, each tuned to a specific person’s
performance, should then provide a computational account
for the group performance. Thus, discerning whether the bot-
tom set of core tenets provides a good characterization of in-
dividual behavior or simply a description of aggregate group
behavior would probably require additional empirical tests.

Testing Computational Plausibility Claims

When designing a complex computational model, one often
starts with a set of implicit assumptions, perhaps philosophi-
cally based, that constrain the design of the system. When a
system fails to perform as anticipated, these implicit assump-
tions may change or become more constrained. Computa-
tional work of this type seeks to answer the question: Can we
accomplish task X under the set of constraints Y'?

Depending on task complexity and the initial sets of con-
straints, surprising failures may yield insights into the com-
putational nature of intelligence, but publishing negative re-
sults remains difficult. Core tenets provide a systematic lan-
guage for describing this type of work. By contrasting the
core tenet constraints necessary for building a working sys-
tem with the sets of constraints for which no working sys-
tem can be found, we can begin to systematically explore the
space of constraints required for functional cognitive models.

Contributions

We have introduced the terms core tenets and ad hoc resid-
uals to distinguish cognitively plausible parts of a compu-
tational model from incidental implementation details, and
we have demonstrated how these concepts can augment and
validate work on a well-known computational model (Tenen-
baum, 2000).

We argue that computational cognitive scientists should ex-
plicitly identify core tenets and ad hoc residuals and distin-
guish between central and peripheral core tenets when de-
scribing their models. This practice will elucidate an au-
thor’s intent, provide mechanisms for systematically test-
ing whether the core parts of a computational model play
an instrumental role in the model’s success, and help en-
sure that a model’s performance remains independent of ar-
bitrary implementation details. Using core tenets and ad
hoc residuals can (1) bridge between modeling paradigms
by helping researchers to create core-tenet-consistent instan-
tiations of a model, (2) bridge between computational and



Sample Set of Core Tenets

Cognitive Theory Implied by the Tenets

. Specification of a hypothesis space for each set of numbers
encountered during the game

Each person has a method for defining a personal hypothesis
space, and people may use different hypothesis spaces depend-
ing on context. Given a set of observed numbers, people weight
the likelihood of each hypothesis using a trade-off between sim-

2. Methods for weighting hypotheses based on a trade-off plicity and goodness of fit, as well as a tendency to favor inter-
between simplicity and goodness of fit and for favoring mediately sized intervals over small and large intervals. For a
intermediately-sized intervals over small or large intervals particular set of numbers, people may only consider a subset of

the hypotheses they use throughout the course of the game.

1. A unique pre-defined hypothesis space for each individual that
remains fixed throughout the game Each individual has a personal hypothesis space, and people

reuse the same space every time they play the number game.

2. A set of prior and likelihood functions defined over the hy- Each individual uses a personal prior and likelihood function
pothesis space in a manner that favors simplicity, goodness of to weight the space, and all individuals use the same posterior
fit, and intermediate interval size probability equation for comparing hypotheses. For every set of

numbers, each person considers every hypothesis in his or her

3. An algorithm for considering the pOSteI‘iOI’ probability of all hypothesis space, regardless of how ]arge the space is.

hypotheses

Figure 3: Core tenets specify theories about an individual’s cognitive processes. The sets of core tenets in this figure describe
two possible interpretations of the Tenenbaum (2000) model, which translate into two theories of how an individual plays the
number game. Because Tenenbaum’s model instantiates both sets of core tenets, his model is consistent with both theories.

non-computational work by clearly indicating how a compu-
tational model translates into a theory of individual cognition
from which we can draw empirical predictions, (3) avoid mis-
conceptions by focusing scientific debate on claims we inten-
tionally make instead of claims that appear to be implied by
our models, and (4) provide a theoretical framework for test-
ing claims about computational plausibility with respect to a
set of constraints.

We expect that providing clear statements about the core
tenets and ad hoc residuals of our models will greatly enhance
the ability of cognitive scientists to communicate and to com-
pare work across paradigms, and we strongly encourage the
community to adopt and enforce this standard.
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