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Abstract

In addition to supervised classification learning, people can also
learn categories by predicting the features of category mem-
bers. One account of feature inference learning is that it induces
a prototype representation of categories. Another is that it re-
sults in a set of category-to-feature rules. Because neither
model provides an adequate account of existing data, we pro-
pose instead that inference learning induces an anticipatory
learning strategy in which learners attend to aspects of training
items they think will be needed in the future, and by so doing
incidentally encode information about the category’s internal
structure. The proposal is formalized by an exemplar fragment
model (EFM) that represents partial exemplars, namely, those
parts that are atfended during training. EFM’s attention weights
are approximated by eyetracking data, resulting in fewer free
parameters as compared to competing theories.

When people classify objects, problem solve, describe con-
cepts, or infer missing information, they must access con-
ceptual knowledge. Thus, the question of how people learn
and represent concepts has been central to the overall mis-
sion of cognitive psychology.

Researchers have developed sophisticated formal theories
that explain many aspects of concept acquisition. These
theories are largely based on supervised classification learn-
ing in which subjects classify items whose category
membership is unknown and receive immediate feedback.
Recently, to understand the interplay between how categori-
cal knowledge is used and the concept acquired, researchers
have begun to investigate a wider range of learning tasks
(Brooks, 1978; Yamauchi & Markman, 1998, 2000a, 2002;
Chin-Parker & Ross, 2002; Ross, 2000). For example, class-
ification learning has been compared with feature inference
learning in which learners are presented with an item whose
category membership is already identified and asked to infer
one of its unknown features. That is, rather than predicting a
missing category label on the basis of features, feature in-
ference learners predict a missing feature on the basis of the
category label (and perhaps other features).

A Prototype Model of Feature Inference

Differences in how category information is acquired across
classification and inference tasks were initially explained in
terms of exemplars and prototypes. Yamauchi & Markman
(1998) argued that inference learners represent categories as
prototypes because they seem to extract family-resemblance
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information such as typical features. In contrast, by focusing
on diagnostic information, classification encourages repre-
sentations consistent with learning rules and exceptions.

In their seminal study, Yamauchi & Markman (1998)
contrasted classification and inference learning with a
family resemblance category structure consisting of four
items in two categories (labelled ‘A’ and ‘B’ in Table 1).
Each category member has one exception feature from the
other category. To keep the classification and inference
tasks as closely matched as possible, inference learners were
not presented with exception feature trials in which the to-
be-predicted feature was from the opposite category. For
example, they were never presented with the category A
item 000x and asked to predict (on the basis of Al in Table
1) a ‘1’ for the unknown value x on dimension 4. Instead,
they were only given typical feature trials in which they
predicted the category’s typical feature (e.g., a ‘0’ for item
Ax001). Following learning, all participants completed a
transfer test in which each feature was predicted in every
training item, including both typical and exception features.

Test performance on the typical and exception feature
trials in the classification and inference conditions in Yama-
uchi & Markman are presented in Figure 1 (see “YM” con-
ditions) which present the proportion of responses that were
consistent with the categories’ prototype. (Figure 1 also
includes the results from a number of other studies and fits
of a new model described below.) The critical result was
that learners responded with the category’s typical feature
more often than did the classification learners. The authors
concluded that classification learners more often based in-
ferences on the training exemplars whereas inference learn-
ers based theirs on the category prototypes. (Another result
was that both groups were more likely to infer an exception
feature on exception feature trials than typical feature trials,
a point we return to below.)

Table 1. Category structure in Yamauchi & Markman’s (1998).
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To further test the claim that inference and classification
learners represent categories differently, Yamauchi &
Markman modified the General Context Model (GCM) to
account for inference data by treating the category label as
an additional feature. The model provided a good fit to the
test data in the classification condition but not the inference
condition (although, see Kruschke et al. 1999). These results
led Yamauchi & Markman to conclude that inference learn-
ers indeed represent prototypes rather than exemplars.

Evidence Against Prototypes and for Rules

There is an alternative interpretation of the feature inference
task, however. Johansen & Kruschke (2005) proposed that,
rather than prototypes, inference learners in Yamauchi &
Markman (1998) acquired category-to-feature rules instead.
This set-of-rules model is viable because inference learners
were never presented with exception-feature trials during
training. As a result, they could succeed simply by learning
associations (rules) relating the categories’ labels with their
typical features. Of course, the prototype and set-of-rules
model may seem to be equivalent, because they both predict
that in many circumstances (e.g., those in Yamauchi &
Markman) people will infer typical values for missing fea-
tures. However, rather than invariably encoding the cate-
gory’s prototype, the set-of-rules model predicts that which
rules are learned depends on the exact inferences made dur-
ing training. For example, Johansen & Kruschke (2005,
Expt. 2) compared a nonexception condition in which learn-
ers were only presented with typical feature trials with an
exception condition in which they were only presented with
exception feature trials. Whereas at test the nonexception
group inferred typical features, the exception group inferred
exception features (see Fig. 1, “JK” conditions). That is,
they responded on the basis of the inferences required dur-
ing training rather than on the categories’ prototypes. More-
over, only the set-of-rules model provided a reasonable ac-
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Figure 1. Empirical results and EFM model fits. Note. YM = Yamauchi & Markman. JK = Johansen & Kruschke. SHN = Sweller, Hayes,
& Newell. RCH = Rehder, Colner, & Hoffman. ARC = Anderson, Ross, & Chin-Parker. CR = Chin-Parker & Ross.
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count of both the typical and exception conditions.

Related evidence was provided by Sweller, Hayes, &
Newell (2006) in which subjects were tested in Yamauchi &
Markman’s classification and inference condition and a sec-
ond inference condition in which both typical and exception
feature trials were presented. In this condition (SHN/IA
Inference condition, Fig. 1), subjects were less likely to pre-
dict typical features at test as compared to standard infer-
ence learning (SHN/IT Inference) and even classification
learning (SHN/Classification) again suggesting that infer-
ence learners were not simply learning the category proto-
types (also see Nilsson & Ohlsson, 2005).

Evidence Against Both Prototypes and Rules

The prototype and set-of-rules models have furthered our
understanding of feature inference learning. However, ex-
amination of the literature reveals evidence against the set-
of-rules model as well as additional evidence against the
prototype model, as we now review.

Yamauchi & Markman (1998). As mentioned, inference
learners were more likely to respond with an exception fea-
ture on exception feature trials than typical feature trials.
This result indicates that they encoded some configural in-
formation about the categories’ exemplars, that is, the com-
binations of 1s and Os that appeared during training. For
example, inference learners were more likely to predict x =
1 for test item AOOOx than A100x, apparently because
AO000x is so similar to item A1 in Table 1 which has a ‘1’ on
dimension 4. But such configural information is represented
by neither a category prototype nor a set of rules that merely
associates category labels and features.

Chin-Parker & Ross (2002). Subjects learned categories
that possessed within-category correlations either by classi-
fication or inference. The correlations were not necessary
for correct classification. They then performed a double
feature classification test consisting of either intact feature



pairs (features that appeared together during training) or
broken pairs (features that never appeared together). Infer-
ence but not classification learners were more accurate on
intact vs. broken pairs, indicating the sensitivity of the for-
mer to the within-category correlation (see Fig. 1, “CR”
conditions). This finding again suggests that inference learn-
ing promotes the learning of configural information such as
feature correlations was not explicitly tested during training.
As mentioned, neither the prototype nor the set-of-rules
model represents configural information such as feature
correlations.

Anderson, Ross, & Chin-Parker (2002). Subjects com-
pleted a feature inference task in which only two of the four
feature dimensions were queried during training. On a sub-
sequent single-feature classification test, participants were
more accurate on the two queried dimensions than the two
never-queried ones (see Fig. 1, “ARC” conditions). This
result is inconsistent with a prototype model that predicts
that typical features on all dimensions should be represented
equally well and again emphasizes the importance of which
specific features are predicted during training. However, the
fact that learners were above chance on the never-queried
dimensions is inconsistent with the set-of-rules that assumes
that only rules on queried dimensions are represented and
again emphasizes that inference learners can acquire cate-
gory information not explicitly tested during training.

Rehder, Colner, & Hoffman (in press). To gather more in-
formation about feature inference learning, Rehder et al. (in
press, Expt. 1) replicated the Yamauchi & Markman (1998)
study with an eyetracker. The gathering of eye movement
data as another dependent variable is useful because models
make different claims regarding the allocation of attention
during feature inference learning. Besides replicating the
essential results from Yamauchi & Markman (see Fig. 1,
“RCH E1” conditions), they found that during training the
large majority of inference learners fixated not only the
category label but also most of the other features displayed
by the training item, and did so despite the fact that the
category label was perfectly predictive of the missing fea-
ture. This result provides prima facie evidence against the
set-of-rules model, because the view that feature inference
involves applying category-to-feature rules suggests that the
reasoner will only fixate the antecedent of the rule (the cate-
gory label). Indeed, Rehder et al. (Expt. 2) found that learn-
ers quickly limited fixations to the antecedent when one-
dimensional feature-to-category classification rules were
being acquired (also see Rehder & Hoffman, 2005a). Fixat-
ing most feature dimensions on most trials appears to sup-
port the notion that inference learners were trying to acquire
the category prototypes.

However, this conclusion was tested by Rehder et al.’s
Expt. 3 that replicated the Anderson et al. (2002) study de-
scribed earlier in which only two of four of the feature di-
mensions were queried. The prototype model predicts that
people should continue to fixate features that are never quer-
ied (so they can learn the typical features on those dimen-
sions) but, contra this prediction, inference learners were
more likely to fixate sometimes-queried dimensions than the
never-queried. Indeed, the never-queried dimensions were

373

virtually never fixated by the end of training. (As in Ander-
son et al., they were also far more likely to predict typical
features for the sometimes-queried dimensions than for the
never-queried ones which in turn were above chance, see
Fig. 1, “RCH E3” conditions.) Rehder et al. concluded that
inference learners fixated other feature dimensions during
Expt. 1 training trials not because they were learning the
category prototypes but rather because they anticipated be-
ing queried on those dimensions on future trials, a view they
referred to as the anticipatory learning hypothesis. More-
over, they argued that the above-chance performance on
(and early fixations to) the never-queried dimensions in
Expt. 3 arose because inference learners initially thought
they would queried on those dimensions. Indeed, when in-
ference learners were informed at the start of the experiment
which dimensions would be queried, fixations to the never-
queried dimensions were almost entirely absent (and sub-
jects were at chance on those dimensions) (Rehder et al.
Expt. 4, see “RCH E4” conditions in Fig. 1).

A logical objection. Finally, we observe that both the
prototype and set-of-rules model embody the unrealistic
assumption that people represent only one possible value
per feature dimension. As a result, people but not these
models can represent the fact that most apples are red but
some are yellow and green (but none are blue). Indeed,
without elaboration, the set-of-rules model is unable to
model the study of Sweller et al. (2006) that required differ-
ent responses on the same dimension on different trials.

Summary. On the basis of these studies, we conclude that
the prototype and set-of-rules models fail to account for (a)
the learning of configural information, (b) the (unsuper-
vised) learning of category information not explicitly tested
during training, (c) eye fixation data, or (d) the fact that
people know multiple values per dimension.

Instead of supporting the prototype or set-of-rules model,
we argue that these studies together motivate a new account
of the feature inference task—the anticipatory learning ac-
count—that postulates that inference learners represent nei-
ther prototypes nor a set of rules but rather allocate attention
to those aspects of categories they think will be needed in
the future, and by so doing incidentally learn many addi-
tional aspects of a category’s structure (e.g., feature correla-
tions). In other words, the inference task leads participants
to engage in anticipatory learning in which on every trial
they learn about the to-be-predicted feature (supervised
learning) and about features that will need to be predicted
on future trials (unsupervised learning). This anticipatory
strategy spreads attention over multiple feature dimensions
and enables the incidental learning of additional category
information not explicitly required by the task.

The Exemplar Fragment Model

To formalize our proposal regarding how anticipatory learn-
ing leads to the incidental acquisition of category informa-
tion, we now present a new model of category learning, the
exemplar fragment model (EFM). Unlike the GCM, which
assumes that each presented exemplar is represented com-
pletely, or the set-of-rules model, which only encodes an
association between the category label and the predicted



feature, our model assumes that the dimensions encoded on
a given trial are those that are attended. Moreover, the
strength of each dimension’s encoding varies as a function
of (a) how much attention it receives and (b) whether it was
the queried dimension (that received feedback). Importantly,
because the learner’s attention to (and thus encoding of) the
same exemplar can vary from trial to trial, the EFM repre-
sents exemplar fokens (one representation for each subject’s
exposure to that exemplar) rather than types. Finally, EFM
also assumes that inferences (of a category label or a miss-
ing feature) are affected by which aspects of the current
stimulus are being attended.

The representations proposed by EFM have three advan-
tages. First, they naturally represent the fact that people
know of more than one value per feature dimension (apples
are red but occasionally green or yellow). But because the
model encodes the relative number of presentations of each
exemplar, EFM, like humans, is more likely to infer typical
than atypical values at test.

The second advantage is that, because EFM encodes at-
tended features configurally, it allows for the acquisition of
category information not explicitly required by the inference
task. For example, if an interfeature correlation exists be-
tween two dimensions, that correlation is implicitly encoded
in the exemplar fragments. Because EFM assumes classifi-
cation via a multiplicative similarity metric common to ex-
emplar models (Medin et al., 1982), it allows sensitivity to
any encoded correlation to be expressed on a subsequent
test. Of course, EFM only encodes those feature configura-
tions that are attended during training.

The third advantage is that EFM assumes that predicted
dimensions are encoded more strongly than those that are
only observed. This allows EFM to exhibit sensitivity to the
specific inferences that are carried out during training.

We now define EFM in the same terms as the standard
exemplar model. Below are the equations associated with
the GCM, generalized so that they predict values on any
queried dimension, not just the category label. Specifically,
the probability that a test item ¢ has value 1 rather than O on
the queried dimension g is,

P, =1l = TotalSim” (t, 1) /

(TotalSim” (t, 1) + TotalSim’ (t,0)) (1)
TotalSim (t,v) = X,y Sim (¢, m) 2)
Sim (t, m) = g ebuitm 3)
Dist (t, m) =11, ,dt,m) 4)
d(t,m) = wilt,—m| (5)

where M is the set of stored category members, n is the
number of dimensions (including the category label), di(t,
m) is the distance between ¢ and m on dimension i, ¢ is a
sensitivity parameter, and y is a response scaling param-
eter. The w;s are attention weights that multiply the mis-
matches between ¢ and m on each dimension and so allow
dimensions to have unequal influence on inferences.

EFM introduces two changes to this definition of an ex-
emplar model. From their inception, so-called “attention
weights” were understood to subsume more than one factor.
A dimension might have a low attention weight either be-
cause a classifier has learned to ignore that dimension in to-
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be-classified stimuli or because it was ignored during train-
ing and thus poorly encoded. EFM extends the class of ex-
emplar models by decomposing an attention weight w; into
one component (EncodingWt,, ;) that represents how strongly
dimension i of stored exemplar m was encoded and a second
component (TestWt,;) that represents the degree to which a
dimension is attended in test stimulus ¢. The value of w; is
formed by multiplying EncodingWt,,; and TestWt,; and then
normalizing the result (so that all ws sum to 1).

w; = (EncodingWt,, * TestWt,)) | Z_, , EncodingWt,, * TestWt,; (6)

=l..n

This definition of w; exhibits the following important prop-
erties. First, if dimension i wasn’t encoded when m was
presented, then EncodingWt,; is 0 and so is w;; thus a
mismatch between ¢ and m on dimension i has no effect on
their similarity. Second, if dimension i of the test stimulus
is not attended, then TestWt,; = 0, and again a mismatch on
dimension i becomes irrelevant.

The second change allows the encoding weight of the be-
ing predicted dimension g to affect the response by replac-
ing Eq. 2 with Eq. 2’,

TotalSim (t,v) = Z EncodingWt,,, * Sim (t, m) 2)

In other words, even if ¢ and m are highly similar on all
other dimensions, if the queried dimension g of m was never
encoded (EncodingWt,,, = 0) then m will have no effect on

whether a 1 or 0 is predicted for that dimension.

'meM,mg=v

Approximating Encoding Weights

EFM’s separation of encoding weights from test weights
potentially grants it the flexibility needed to account for the
feature inference task. However, by itself the usefulness of
EFM is limited because of the excessive number of param-
eters it introduces (encoding weights for each observed ex-
ample and test weights for each test stimulus). In this article
we address this concern by approximating these weights
from eyetracking data.

Not all studies of feature inference learning used
eyetracking of course. However, the eyetracking results in
Rehder et al. (in press) can be used to model not only the
behavioral results from that study, they can be extrapolated
to a number of other studies. The eyetracking result from the
feature inference conditions in Rehder et al. are presented in
Table 2. Note that on each inference training trial, there was
one queried dimension and four nonqueried dimensions: the
category label, the sometimes queried dimensions that were
queried during training but not on the current trial, and the
never queried dimensions that were never queried. (The
number of sometimes and never queried dimensions was 3
and O in Expt. 1, because all dimensions were predicted, and
1 and 2 in Expts. 3 and 4, because only two dimensions
were predicted.) Table 2 presents the proportion of time the
average subject spent fixating each type of dimension in
each experiment. Recall that, using eye movement data,
EFM can represent each exemplar token observed by each
subject. However, because the goal of this article is to ac-
count for group level data only, we use eye movement data
averaged over subjects.



Table 2. Proportion fixation times to dimensions in Rehder, Colner, & Hoffman ’s (in press) inference conditions.

Training Eye Fixations Encoding Weights Test Eye Fixations
Category Sometimes Never  Category Sometimes Never Category Sometimes Never
Experiment  Label Queried  Queried Label Queried Queried Queried Label Queried  Queried
1 538 154 - 179 .667 051 - .588 137 -
3 615 281 102 205 .667 .094 .010 532 266 201
4 .690 260 .049 230 .667 .087 .005 .608 236 156

As mentioned, a second factor that influences encoding
weights, but not test weights, is the presence of feedback.
EFM assumes that on any given trial the dimension that
received feedback will be more strongly encoded than those
that were only observed. Accordingly, a feedback multiplier
parameter (FM) determines the relative strength of encod-
ing for the queried dimension vs. the observed dimensions.

The encoding weights for each experiment are derived
from the training eye fixations taking into account the feed-
back multiplier FM, as specified by Eqs. 7 and 8,

EncodingWt,, , = (FM/n) | (FM/n + 1)
EncodingWt,, ;

)
= TrainProportionFixationTime,, ;| (FM/n + 1) (8)

where ¢ is the queried dimension and n is the number of
dimensions. For example, Table 2 presents the values of
EncodingWt,,; when FM = 10 for the three inference condi-
tions in Rehder et al. (in which n = 5). As a result, the quer-
ied dimension ¢ in each stored exemplar m has ten times the
encoding strength of the average nonqueried dimension.
Table 2 also presents the average proportion eye fixations
observed during test in Rehder et al.; these fixations are

used as the values for TestWt, ;.
€

We also use eye fixation data from Rehder et al.’s Expt. 1
classification condition (not shown in Table 2) to approxi-
mate the encoding and test weights in that condition. Be-
cause each feature dimension was fixated about equally dur-
ing training, the encoding weights were derived from Eqs. 7
and 8 assuming that TrainProportionFixationTime,,; = 25.
The test weights were derived from the proportion fixation
times observed during test: .325 on the category label and
.225 on each feature dimension.

Table 3 indicates how, with a few exceptions, the encod-
ing and test weights used to model the conditions in Rehder
et al. are used to model the other studies. The exceptions are
as follows. Because Anderson et al. presented single feature
classification tests, the test weight on this single dimension
is 1. Because Chin-Parker & Ross presented double feature
classification trials at test, in the inference condition the test

TestWt,; = TestProportionFixationTime,;

Table 3. Application of Rehder et al.’s weights to other studies.
Test Weights

Expt./Condition Encoding Weights

E1/Inference YM/Inference, JK, YM/Inference, JK,
SHN/Inference [IT&IA] SHN/Inference [IT&IA
CPR/Inference

E1/Classification 'YM/Classification
SHNClassification

E2/Inference ACR
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weights on those two dimension are .5. Note that, because
of the Chin-Parker & Ross’s category structure, each di-
mension was a perfect predictor of the category label. Thus,
in the classification condition we apply previous results
showing that learners will attend exclusively to a single per-
fectly diagnostic dimension (Rehder & Hoffman, 2005a)
and assume an encoding and test weight of 1 on one dimen-
sion and O on all others.

Note that because EncodingWt,,; and TestWt,; are meas-
ured directly from eyetracking data, EFM has no free atten-
tion weight parameters, a difference that results in a sharp
reduction in its number of parameters relative to standard
exemplar models. In the following simulations, we assume
one ¢ parameter for each study, and y and FM parameters
that are common across studies.

Results

In this article our primary goal is to establish that EFM is
sufficient to provide a qualitative account of the key feature
inference learning results we have reviewed. Accordingly,
we used an informal model fitting approach in which pa-
rameters were tuned by hand. This results in values of ¢ of
9.1,26,7.7,63,55, and 1.1 for Yamauchi & Markman,
Johansen & Kruschke, Sweller et al, Anderson et al., Rehder
et al, and Chin-Parker & Ross, respectively; the best fitting
values for ¥ and FM were 1.1 and 10.5. The empirical re-
sults from each study are presented in Figure 1 alongside the
EFM fits. As the figure indicates, EFM reproduces most of
the important results from these studies.

Yamauchi & Markman. EFM correctly predicts more pro-
totype consistent responding in the inference condition ver-
sus the classification condition. It also correctly predicts
more prototype consistent responding on the typical feature
trials than the exception feature trials.

Johansen & Kruschke. EFM correctly predicts that sub-
jects will respond with the typical features in the nonexcep-
tion condition and with atypical features in the exception
condition. As for Yamauchi & Markman, it correctly pre-
dicts more prototype consistent responding on the typical
feature trials than the exception feature trials.

Sweller, Hayes, & Newell. EFM correctly predicts that the
IT inference condition but not the IA inference condition
produces more prototype consistent responding as compared
to the classification condition. One deficiency is that EFM
did not produce the lower rate of prototype consistent re-
sponding in the IA condition as compared to the classifica-
tion condition.

Chin-Parker & Ross. EFM correctly predicts a sensitivity
to feature correlations in the inference condition and the
absence of this sensitivity in the classification condition.



Anderson, Ross, & Chin-Parker. EFM correctly predicts
more prototype consistent responding on the queried dimen-
sions than the never-queried ones which in turn are above
chance.

Rehder, Colner, & Hoffman. For Expt. 1 EFM correctly
produces more prototype consistent responding in the infer-
ence condition than the classification condition. For Expts. 3
and 4, it correctly predicts more prototype consistent re-
sponding on the queried dimensions than the never-queried
ones, which in turn are above chance. One deficiency is that
it fails to produce the lower performance on the never-
queried dimensions in Expt. 4 as compared to Expt. 3.

General Discussion

The EFM was presented as a formal model of the anticipa-
tory learning hypothesis. It is distinguished by its ability to
account for both supervised learning of the predicted dimen-
sion as well as unsupervised learning of dimensions merely
observed. On this account, the demands of the task are the
key determiner of attention. In the feature inference task,
because multiple features are queried during training, atten-
tion is spread among the queried features to learn them in
anticipation of future trials. This in turn enables the inciden-
tal encoding of category information not explicitly tested
during training. This approach allowed EFM to exhibit the
key properties we have noted, namely, the encoding of con-
figural information, information not explicitly tested during
training, and multiple values per dimension. To our knowl-
edge, EFM is unique in providing a qualitative account of
the key results in six studies, and we expect that further de-
velopment (e.g., formal model fitting) will result in excel-
lent quantitative fits as well.

EFM can be conceived of as an active learning theory in
that the interesting aspects of the model result from learners’
active contributions. Only the feature dimensions that were
actively sampled by the learner are encoded, which in turn
determines the model’s response via similarity with the cur-
rently fixated dimension of the test item. It is an open ques-
tion if the sampling of features observed in these studies
represents optimal information gain, though some related
work suggests it might (Nelson & Cottrell, 2005).

Another unique property of EFM of course is its use of
eyetracking data. Previous applications of exemplar models
have made the (obviously incorrect) assumption that cate-
gory exemplars are encoded perfectly in memory. Eyetrack-
ing allowed us to determine what information was attended
and thus approximate what was encoded. Veridical repre-
sentations of learners’ category knowledge was key to
EFM’s success at modeling test performance from multiple
studies.

Finally, it is important to consider the EFM within the
broader theoretical scope of concept learning models. Spe-
cifically, a multiple-systems view of category learning may
provide a useful framework to evaluate the parameters of
the EFM. For example, the COVIS multiple-systems model
assumes that two separate memory systems—an explicit
verbal (rule-based) system and a procedural system—are
involved in the acquisition of (perceptual) concepts (Ashby
et al. 1998). Fitting the EFM to inference data required set-
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ting the feedback multiplier (FM) to a relatively high value
(~10). In effect, this validates the central assumption of the
set-of-rules model, that associations between the category
label and the features acquired on the basis of feedback are
strongly represented. Therefore, an alternative modeling
approach involving combining explicit category-to-feature
rules with stored exemplars might prove fruitful.
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