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Abstract 

What is the key to retaining learned study materials? We 
examine the role that direct queries play in the retention of 
category information acquired through inference learning. In 
inference learning, learners predict an unknown property of 
an item given its other properties and category membership. 
We manipulated query frequency across properties during 
inference learning and found that properties that were queried 
less often were remembered as well as properties that were 
queried more frequently. These effects extended from 
minutes to multiple day delays. Thus, asking about properties 
during inference training only a few times can immediately 
promote learning and greatly enhance the long-term retention 
of category knowledge. We situate our results in the broader 
memory and education literatures and consider how these 
findings constrain the development of category learning 
models. 

Keywords: Retention; category learning; inference; direct 
query; explicit evaluation. 

Introduction 
What is the key to long-term retention of studied materials? 
In the present work, we investigate the role that direct 
queries  play in category learning and recognition memory. 
The present work is unique in measuring retention over 
multiple day delays in category learning tasks. Retention has 
obvious importance in education and other everyday 
activities. However, the importance of consolidation to 
memory performance has been underappreciated by 
cognitive psychologists in general (Wixted, 2005) and 
grossly neglected by category learning researchers in 
particular. For instance, category learning studies that 
examine retention often impose delays of only a few 
minutes (e.g., Palmeri & Nosofsky, 1995; Sakamoto & 
Love, 2004). 

In addition to examining the role that direct query plays in 
consolidation, the current work advances our understanding 
of how category learning works using inference as the 
induction method. Typically, the classification induction 
method is used in category learning tasks.  In classification 
learning, the learner is shown a stimulus and classifies it as 
belonging to one of a number of categories and then is 
supplied with corrective feedback. Like classification 
learning, inference learning is also a supervised learning 
method, but differs in that the category label is known and 

instead a missing feature value is inferred, followed by 
corrective feedback.   

 

 
 
Figure 1: An inference learning trial in the current 
experiment is shown, in which the learner predicts an 
unknown property. The stimulus on the left differs from the 
stimulus on the right only on the values of the queried 
dimension (in this case, smaller vs. larger body size). 

 
In category learning experiments using the inference 

method, the learner’s goal is to correctly predict an 
unknown property of an item given the item’s remaining 
properties and its category membership. Figure 1 displays 
an inference learning trial from the present experiment, in 
which the learner predicts whether the Tiger shark is small 
or large by guessing whether the left or right side describes 
the shark correctly. The left side of Figure 1 conveys the 
same information as the right side except for the queried 
dimension, size – the learner predicts the unknown property. 
The property that is queried in inference learning varies 
across trials. On the next inference learning trial, whether 
the Tiger shark has darker or lighter shade may be queried 
given the other properties and the category membership. 

Inference learning can lead to more efficient learning of 
the categories and greater knowledge about the categories 
than classification learning (Sakamoto & Love, 2006; 
Yamauchi & Markman, 1998). In classification learning, the 
learner’s goal is to successfully predict the category 
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memberships of stimulus items. Unlike in inference 
learning, the category label is always queried in 
classification. Information about other perceptual properties 
is not queried in the classification procedure. Thus, 
classification learners try to discover which properties are 
useful for discriminating the members of different 
categories without being directly asked about these 
properties. In contrast, inference learners are directly asked 
about the properties associated with each category. 

Sakamoto and Love (2006) have shown that classification 
learners display little knowledge about properties other than 
the property that is most useful in distinguishing members 
from different categories. On the other hand, inference 
learners acquired information about multiple properties that 
are queried during training, and this knowledge was retained 
after multiple day delays. Thus, querying played a critical 
role in the retention of knowledge by inference learners. 
However, it is unclear whether explicit querying is 
beneficial because it guides people’s attention to the queried 
properties or because answering questions consolidates 
memory. These questions are addressed in the current 
experiment. 

Although many studies have now examined inference 
learning (e.g., Anderson, Ross, & Chin-Parker, 2002; Chin-
Parker & Ross, 2004; Colner, Rehder, & Hoffman, 2008; 
Johansen & Kruschke, 2005; Markman and Ross, 2002; 
Yamauchi & Markman, 1998), the processes underlying 
inference learning are still not well understood, at least not 
as well as those underlying classification learning. One open 
theoretical issue is the nature of retention in inference 
learning, in particular how consolidation is affected by 
explicit querying during training. 

In the current work, we investigate the role direct query 
plays in the retention of category information under 
inference learning. We manipulate the frequency of query 
during inference learning. Does the retention of information 
about a dimension improve when the dimension is queried 
more often? Or is querying over certain frequency enough to 
preserve memory? One possibility is that repeatedly 
answering the queries serves as rehearsal and leads to 
improved memory.  Then, more queries may result in better 
retention.  Alternatively, direct query may improve retention 
by guiding people’s attention to the property even on trials 
in which the property is not queried, as indicated in eye 
tracking studies of inference learning (Colner, Rehder, 
Hoffman, 2008). Once learners attend to the queried 
dimension, they develop an expectation that they will be 
asked again and attend to this dimension even when they are 
queried about another dimension. If this is the case, 
querying a few times may be enough to attract people’s 
attention and improve their retention. We examine 
participants’ memory about categories after a few minute 
and multiple day delays. We also address how error rate 
during learning affects retention. 

In the Discussion section, we situate the present results, as 
well as inference and classification learning methods, within 
the broader memory and education literature concerned with 

the learning and retention of information. Inference and 
classification learning will be compared to direct and 
discovery problem solving methods (Klahr & Nigam, 2004).  
Furthermore, the role of queries in retention will be 
discussed in light of related test-based enhancement 
phenomena (see Roediger & Karpicke, 2006 for a review). 
Finally, we consider how the present findings constrain the 
development of category learning models. 

 

 
 
Figure 2: Snapshots of two sharks are shown side by side.  
The shark on the left, the prototype of the Sixgill shark, 
displays the opposite values on the five dimensions from the 
shark on the right, the prototype of the Tiger shark. 
 

Method 

Participants 
Fifty University of Texas undergraduates completed the 
experiment. 

Apparatus and Materials 
Each undergraduate was run on an iMac with 17-inch 
display. The resolution was set 800 by 600 pixels. 

The stimuli in the present experiment were animations of 
sharks swimming in the ocean. One animation cycle 
consisted of the shark appearing on the right side of the 
display, swimming to the left side, and disappearing when it 
reached the left edge. Each stimulus varied along the 
following five binary-valued dimensions: habitat (near the 
surface or bottom), diet (fish or shrimp), litter size (a few or 
many pups), body size (small or large), and shade (light or 
dark). Figure 2 displays snapshots of two sharks side by side 
with an opposite value on each dimension. The five 
dimensions were mapped randomly onto the logical 
structure shown in Table 1. For example, the first dimension 
was the habitat dimension for some participants, but it was 
the diet dimension for others. The dimension values were 
assigned according to the properties of the sharks used in 
the experiment.  
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Table 1: The abstract category structures used in the current 
experiment. Stimulus item A1, for example, belonged to 
Category A and had 5 perceptual dimensions. Category A 
might be Sixgill sharks. The first dimension might be size 
with value 1 indicating small and value 2 indicating large. 
Participants learned about the categories through inference. 
They predicted the values of the dimensions, one at a time, 
given the values of the other dimensions and the category 
label, with the constraint that the amodal category values 
(e.g., 2 in 11112) were never inferred. 

 
The categories contrasted Sixgill and Tiger sharks. 

Relative to the Tiger sharks, the Sixgill sharks are common 
in deep water (vs. surface to 340 m), often feed on shrimp 
(vs. fish), give birth to many pups (vs. from 10 to 80), are 
small (vs. 3 to 6 m), and have dark body shade (vs. grayish 
above and white below). Information about the sharks was 
collected from http://www.enchantedlearning.com and 
http://www.flmnh.ufl.edu/fish/Education/education.htm. 

The categories in Table 1, like many natural categories, 
follow family-resemblance structures (Rosch & Mervis, 
1975), in which properties tend to co-occur, but no single 
property is common to all members of a category. In Table 
1, value 1 on each perceptual dimension signifies the value 
common to the Sixgill sharks when category A is the Sixgill 
shark. In this case, although most Sixgill sharks have value 
1 on each dimension, occasionally they have value 2, which 
is common to the Tiger sharks. Participants were informed 
that the sharks vary in their properties and thus the two 
categories’ members could display overlapping properties. 

Design and Procedure 
Undergraduates learned about the Sixgill and Tiger shark 
categories through inference. Each undergraduate completed 
two sessions. The initial session consisted of familiarization, 
training, filler, and test phases (described below). The 
participants received course credit for their participation in 
the initial session. Twelve to 33 days after completing the 
initial session (M = 23 days, Se = 1 day, median = 21 days), 
the participants completed a second session consisting of a 
retention phase, which was identical (except for the random 

presentation order) to the test phase they completed in the 
initial session. The participants received $7 for participating 
in the second session. The relatively wide range of delay is 
due to scheduling issues. 
Familiarization Prior to learning about the sharks, 
participants were familiarized with the five stimulus 
dimensions. On each familiarization trial, a pair of sharks 
that differed on one of the five dimensions was presented, 
and the participants were asked to discriminate between the 
two possible values (e.g., “Which shark is larger? Left (Q) 
or right (P)?”). The participants pressed the P or Q key to 
indicate the right or left side is correct, respectively. After 
the participants responded, a blank screen was displayed for 
1000 ms. Then they received visual (e.g., “Right! The 
correct answer is P.” or “Wrong! The correct answer is Q.”) 
and auditory corrective feedback (i.e., a low-pitch tone for 
errors and a high-pitch tone for correct responses), together 
with the correct shark (i.e., the foil disappeared) for one 
animation cycle. Then, a blank screen was displayed for 
1000 ms and the next trial began. Participants completed 15 
(3 per dimension) familiarization trials in a random order. 
Training Following familiarization, participants completed 
a training phase, in which they learned about the shark 
categories in Table 1 through inference. On each training 
trial, the participants were shown two animated shark 
stimuli side by side as displayed in Figure 1. Whereas one 
stimulus correctly described the shark, the other stimulus 
did not. The correct and foil stimuli were randomly assigned 
to the left or right position. The two stimuli were identical to 
each other except for the value of a queried dimension; 
participants predicted a missing dimension value given the 
values of the other four dimensions and the category label. 
In Figure 1, for instance, the participant predicted the size of 
the presented Tiger shark.  

We manipulated the frequency with which each of the 
five dimensions was queried. The first dimension was 
queried 24 times for the prototypical value, the second 
dimension 18 times, the third dimension 12 times, the fourth 
dimension 6 times, and the fifth dimension 0 time during 
training. The 60 training trials were broken down into three 
training blocks.  The frequency of query for each dimension 
was distributed equally across the three training blocks. 

Following the inference procedure used in most previous 
work (e.g., Chin-Parker & Ross, 2004; Yamauchi & 
Markman, 1998), the correct value of the queried dimension 
was always typical of the shark’s category (e.g., value 1 for 
Sixgill and value 2 for Tiger). For example, the last 
perceptual dimension of item A1 (see Table 1) was never 
queried in the inference training trials because the correct 
value is inconsistent with the category-typical value.   

The procedure in the training phase was identical to that 
in the familiarization phase except that the visual corrective 
feedback in the training phase specified the category 
membership (e.g., “Right! This is the Tiger shark.”).   
Filler Following training, the participants were shown a 
movie of 12 sharks swimming sequentially to prevent 
rehearsal of information from the training phase. Pictures of 

Stimulus item Dimension value 
 A1 11112 
 A2 11121 
 A3 11211 
 A4 12111 
 A5 21111 
 B1 22221 
 B2 22212 
 B3 22122 
 B4 21222 
 B5 12222 
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the Black-tip, Galapagos, Hammer Head, Horn, Lemon, 
Sandbar, Sharp Nose, Short-fin Maco, Whale, White, 
White-tip, and Zebra sharks were presented in a random 
order. Each shark was animated for 9000 ms with its name 
displayed at the bottom of the display, and a blank screen 
was displayed for 1000 ms before the next shark appeared. 
Test Following the filler phase, the participants completed a 
test phase, in which their knowledge about the properties of 
the two shark categories from training was measured. The 
test phase consisted of a sequential presentation of 20 text 
questions, once in a random order, resulting in 20 trials. Ten 
forced-choice questions tested each of the 5 dimensions for 
the two categories. For example, the text “Tiger sharks:” 
was presented above the two choices “A: tend to be smaller” 
and “B: tend to be larger” when the size dimension of the 
Tiger shark was questioned. Another set of 10 questions was 
created in the opposite fashion. For instance, the text “tend 
to be larger:” was displayed above the choices “A: Tiger 
sharks” and “B: Sixgill sharks” when the shark associated 
with the larger size was questioned. The correct (i.e., 
category-typical) and foil choices were randomly assigned 
to the top (A) or bottom (B) position on each trial. 
Participants pressed the A or B key to indicate choice A or 
B is correct, respectively. No corrective feedback was given 
to participants to prevent learning during the test phase.  
After participants responded, a high-pitch tone sounded 
briefly and the text “Thank you” appeared beneath the 
choices for 2000 ms. Then, a blank screen was displayed for 
2000 ms and the next trial began.  
Retention In the second session, the participants completed 
a retention phase. The procedure for the retention phase was 
identical to that for the test phase from the initial session.  
The retention phase measured how well participants retained 
information about the shark categories learned in the initial 
session after a multi-day delay (i.e., 12 to 33 days). 

Results 
All participants were included in the analyses. Our main 
interests are the participants’ performances on each 
dimension in the training, test, and retention phases. Figure 
3 summarizes the results from the present experiment. 

Training 
Participants’ training accuracies for dimensions queried 6, 
12, 18, and 24 times did not differ significantly, F(3, 147) = 
2.11, MSe = .03, p = .1. The lack of significant differences 
in training accuracies between dimensions queried 6 times 
and 24 times (t(49) = -1.63, p = .11) suggest that learning 
takes place quickly in inference. 

Test 
Participants’ test accuracies for dimensions queried 0, 6, 12, 
18, and 24 times differed significantly, F(4, 196) = 13.24, 
MSe = .09, p < .01, partial η2 = .21. When only the 
dimensions that were queried were compared (6, 12, 18, and 
24), the differences in the participants’ test accuracies did 
not reach significance, F(3, 147) = 2.36, MSe = .07, p = .07. 

As can be seen in Figure 3, the participants did not learn 
about the non-queried dimension. Whereas their test 
accuracy on the dimension that was queried 0 time did not 
differ significantly from the chance level of .5 (p = .8), their 
test accuracy on each of the other dimensions that were 
queried did (p < .01 for each). 

 

 
Figure 3: Undergraduates’ performances are shown in the 
training, test, and retention phase of the experiment. 
Stimulus dimension indicates the number of total queries 
during training. There are no training data for the dimension 
that was not queried. Error bars represent the upper bounds 
of the 95% confidence intervals (Loftus & Masson, 1994). 
 

Retention 
Participants’ retention accuracies for dimensions queried 0, 
6, 12, 18, and 24 times did not differ significantly, F(4, 196) 
= 1.89, MSe = .14, p = .11. Mirroring test phase 
performance, whereas performance on queried dimensions 
was above chance (p < .01 for each), performance on the 
non-queried dimension did not differ significantly from 
chance (p = .29). Whether a dimension was queried many 
times or only a few times did not have a strong effect on 
inference learners’ test and retention performances. As 
shown in Figure 3, for queried dimensions, the participants’ 
accuracies during test (78%) and retention (69%) appear to 
be unaffected by the number of queries during training. 

Relationship between Training and Later 
Performances 
Training accuracy was positively correlated with the test 
accuracy for each queried dimension (r = .39, p < .01 for the 
dimension queried 6 times; r = .43, p < .01 for 12; r = .41, p 
< .01 for 18; r = .49, p < .01 for 24). Training accuracy was 
also positively correlated with the retention accuracy on 
each queried dimension except for the one queried least 
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frequently (r = .18, p = .22 for the dimension queried 6 
times; r = .46, p < .01 for 12; r = .3, p < .04 for 18; r = .35, 
p = .01 for 24). Making errors thus correlates with worse 
test and retention performances. 

Discussion 
The current study examined how explicit queries during 
inference training shape category acquisition and retention. 
We manipulated how often the dimensions were queried 
during inference training using categories with a family-
resemblance structure. Explicit query resulted in improved 
retention performances regardless of the frequency of query.  
Whereas querying 6 times resulted in above chance 
retention performance that was statistically equal to 
querying 24 times, not querying at all resulted in a chance 
performance.  Participants appeared to master the values of 
queried dimensions after a few training trials, suggesting 
that only a few queries are necessary to acquire and retain 
category-property relationships and that there is little or no 
benefit of additional queries.   

The lack of a performance difference between 
infrequently and frequently queried dimensions suggests 
that any query of a dimension serves as a signal to the 
learner to attend to and encode category-property 
relationships for that dimension, even on trials in which the 
dimension is not queried. Once the learners are queried 
about a dimension, they develop an expectation that they 
will be asked again and attend to the information about the 
dimension even when they are asked about another 
dimension. Such a mechanism is consistent with the eye-
tracking studies showing that inference learners look at 
dimensions that are not directly asked during training (cf. 
Colner et al., 2008), and can account for the high test and 
retention performances for the queried dimensions but the 
low performances for the non-queried dimension in the 
current experiment.  

Another interesting finding from the current experiment 
was that making errors was correlated with worse test and 
retention performances. This result seems to contradict the 
finding that conditions that are more difficult at study often 
lead to better performance at test (e.g., Bjork, 1994). One 
possibility is that inference learning does not result in many 
errors that can lead to source monitoring problems, in which 
the learners confuse response with feedback, such as “I 
responded large but it was small, or was it the other way 
around?”. Another possibility is that some stimuli are 
simply more memorable for certain participants and this 
effect drives performance across phases. 

Whereas the inference learners in the present experiment 
were at chance level in test and retention for dimensions that 
were not queried during training, pervious work examining 
inference learning has found that inference learners acquire 
information about both queried and non-queried properties 
(Anderson et al., 2002; Sakamoto & Love, 2006). Inference 
learners were not focusing exclusively on the queried 
dimensions during training. However, after multiple day 
delay, inference learners did not retain the information about 

non-queried dimensions (Sakamoto & Love, 2006), 
consistent with the current finding. One explanation for the 
lack of learning about the non-queried dimension in the 
current work is task difficulty. Capacity limitations may 
have prevented learners from entertaining the non-queried 
dimension in the present work. Whereas there was only one 
non-queried dimension and four others queried in the 
present experiment, there were two non-queried dimensions 
and two (Anderson et al., 2002) or three queried (Sakamoto 
& Love, 2006) in the previous work. Further, remembering 
information about the dimensions that were queried less 
frequently in the current work might have consumed 
additional cognitive resource, thus preventing the 
participants from attending to the non-queried dimension.  
Indeed, the inference learners’ training and test 
performances suggest that the inference task in the present 
experiment was more demanding than that in the previous 
experiment (.72 for training and .78 for test in the present 
experiment vs. .94 for training and .88 for test in Sakamoto 
& Love, 2006).  

Analogous to the inference result in which only queried 
dimensions, which are explicitly evaluated, are retained, 
classification learners tend to only retain information about 
the dimension that is diagnostic in discriminating members 
of different categories (Sakamoto & Love, 2006; but see 
Bott, Hoffman, & Murphy, 2007). Classification learners 
actively engage in hypothesis testing involving the 
diagnostic dimension when they predict the category labels 
(e.g., Nosofsky, Palmeri, & McKinley, 1994; Sakamoto & 
Love, 2004), and this explicit evaluation consolidates 
memory. Thus, people retain information that they explicitly 
evaluate, and direct queries can facilitate this process. 

Implications for Education and Models of Category 
Learning  
From the standpoint of learning the category-property 
association, inference is similar to direct instruction, and 
classification is more like discovery learning. Whereas 
inference learners are explicitly asked about properties 
associated with the category, classification learners are only 
asked about the category membership and have to discover 
the properties on their own. More efficient learning of the 
categories and greater knowledge about the categories in 
inference learning than classification learning may be 
related to the findings that direct instruction can lead to 
successful learning by many more children than discovery 
learning (Klahr & Nigam, 2004). Although discovery 
learning may require more active processing, it can lead to 
errors and confusion as many classification learners 
experience. In contrast, direct instruction, like the inference 
procedure, can make the task easier and guide the learner on 
what needs to be acquired. The lack of guidance may make 
classification less efficient like discovery learning. 

Direct query can be beneficial to promoting learning and 
establishing memory. Moreover, querying a few times can 
be as effective as querying numerous times. Asking about 
properties during inference training, even only a few times, 
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can immediately promote learning and greatly enhance the 
learner’s retention of knowledge of category properties. 
These results parallel the findings that testing on material 
can be more beneficial to establishing memories than 
additional study (e.g., Roediger & Karpicke, 2006). The 
present results suggest that frequency of testing may not 
matter even for long-term retention of learned materials. 

Existing category learning models do not specify how 
queries shape retention and how knowledge is consolidated 
(cf. Sakamoto & Matsuka, 2007). Thus our results provide 
guidance for the further development of these models. For 
example, models need to address the role queries play in 
shaping attention and consider that a property need only be 
queried a few times to manifest the full benefits of inference 
learning and to result in long-term retention. 

Many theories of category learning assume that errors 
play a central role in learning (e.g., Kruschke, 1992; Love et 
al., 2004). These theories are guided by conditioning 
phenomena, which suggest that errors are necessary for 
changes in memory (e.g., Rescorla & Wagner, 1972). Errors 
mediate memory storage by leading to greater focus on 
error-producing items (e.g., Mackintosh, 1975). These 
category-learning models need to be elaborated to address 
our finding that more errors can be associated with worse 
learning and retention.  
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