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Abstract

What is the key to retaining learned study materials? We
examine the role that direct queries play in the retention of
category information acquired through inference learning. In
inference learning, learners predict an unknown property of
an item given its other properties and category membership.
We manipulated query frequency across properties during
inference learning and found that properties that were queried
less often were remembered as well as properties that were
queried more frequently. These effects extended from
minutes to multiple day delays. Thus, asking about properties
during inference training only a few times can immediately
promote learning and greatly enhance the long-term retention
of category knowledge. We situate our results in the broader
memory and education literatures and consider how these
findings constrain the development of category learning
models.

Keywords: Retention; category learning; inference; direct
query; explicit evaluation.

Introduction

What is the key to long-term retention of studied materials?
In the present work, we investigate the role that direct
queries play in category learning and recognition memory.
The present work is unique in measuring retention over
multiple day delays in category learning tasks. Retention has
obvious importance in education and other everyday
activities. However, the importance of consolidation to
memory performance has been underappreciated by
cognitive psychologists in general (Wixted, 2005) and
grossly neglected by category learning researchers in
particular. For instance, category learning studies that
examine retention often impose delays of only a few
minutes (e.g., Palmeri & Nosofsky, 1995; Sakamoto &
Love, 2004).

In addition to examining the role that direct query plays in
consolidation, the current work advances our understanding
of how category learning works using inference as the
induction method. Typically, the classification induction
method is used in category learning tasks. In classification
learning, the learner is shown a stimulus and classifies it as
belonging to one of a number of categories and then is
supplied with corrective feedback. Like classification
learning, inference learning is also a supervised learning
method, but differs in that the category label is known and
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instead a missing feature value is inferred, followed by
corrective feedback.

This is the Tiger shark (Q).

This is the Tiger shark (P).

Figure 1: An inference learning trial in the current
experiment is shown, in which the learner predicts an
unknown property. The stimulus on the left differs from the
stimulus on the right only on the values of the queried
dimension (in this case, smaller vs. larger body size).

In category learning experiments using the inference
method, the learner’s goal is to correctly predict an
unknown property of an item given the item’s remaining
properties and its category membership. Figure 1 displays
an inference learning trial from the present experiment, in
which the learner predicts whether the Tiger shark is small
or large by guessing whether the left or right side describes
the shark correctly. The left side of Figure 1 conveys the
same information as the right side except for the queried
dimension, size — the learner predicts the unknown property.
The property that is queried in inference learning varies
across trials. On the next inference learning trial, whether
the Tiger shark has darker or lighter shade may be queried
given the other properties and the category membership.

Inference learning can lead to more efficient learning of
the categories and greater knowledge about the categories
than classification learning (Sakamoto & Love, 2006;
Yamauchi & Markman, 1998). In classification learning, the
learner’s goal is to successfully predict the category



memberships of stimulus items. Unlike in inference
learning, the category label is always queried in
classification. Information about other perceptual properties
is not queried in the classification procedure. Thus,
classification learners try to discover which properties are
useful for discriminating the members of different
categories without being directly asked about these
properties. In contrast, inference learners are directly asked
about the properties associated with each category.

Sakamoto and Love (2006) have shown that classification
learners display little knowledge about properties other than
the property that is most useful in distinguishing members
from different categories. On the other hand, inference
learners acquired information about multiple properties that
are queried during training, and this knowledge was retained
after multiple day delays. Thus, querying played a critical
role in the retention of knowledge by inference learners.
However, it is unclear whether explicit querying is
beneficial because it guides people’s attention to the queried
properties or because answering questions consolidates
memory. These questions are addressed in the current
experiment.

Although many studies have now examined inference
learning (e.g., Anderson, Ross, & Chin-Parker, 2002; Chin-
Parker & Ross, 2004; Colner, Rehder, & Hoffman, 2008;
Johansen & Kruschke, 2005; Markman and Ross, 2002;
Yamauchi & Markman, 1998), the processes underlying
inference learning are still not well understood, at least not
as well as those underlying classification learning. One open
theoretical issue is the nature of retention in inference
learning, in particular how consolidation is affected by
explicit querying during training.

In the current work, we investigate the role direct query
plays in the retention of category information under
inference learning. We manipulate the frequency of query
during inference learning. Does the retention of information
about a dimension improve when the dimension is queried
more often? Or is querying over certain frequency enough to
preserve memory? One possibility is that repeatedly
answering the queries serves as rehearsal and leads to
improved memory. Then, more queries may result in better
retention. Alternatively, direct query may improve retention
by guiding people’s attention to the property even on trials
in which the property is not queried, as indicated in eye
tracking studies of inference learning (Colner, Rehder,
Hoffman, 2008). Once learners attend to the queried
dimension, they develop an expectation that they will be
asked again and attend to this dimension even when they are
queried about another dimension. If this is the case,
querying a few times may be enough to attract people’s
attention and improve their retention. We examine
participants’ memory about categories after a few minute
and multiple day delays. We also address how error rate
during learning affects retention.

In the Discussion section, we situate the present results, as
well as inference and classification learning methods, within
the broader memory and education literature concerned with

the learning and retention of information. Inference and
classification learning will be compared to direct and
discovery problem solving methods (Klahr & Nigam, 2004).
Furthermore, the role of queries in retention will be
discussed in light of related test-based enhancement

phenomena (see Roediger & Karpicke, 2006 for a review).
Finally, we consider how the present findings constrain the
development of category learning models.
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Figure 2: Snapshots of two sharks are shown side by side.
The shark on the left, the prototype of the Sixgill shark,
displays the opposite values on the five dimensions from the
shark on the right, the prototype of the Tiger shark.

Method

Participants

Fifty University of Texas undergraduates completed the
experiment.

Apparatus and Materials

Each undergraduate was run on an iMac with 17-inch
display. The resolution was set 800 by 600 pixels.

The stimuli in the present experiment were animations of
sharks swimming in the ocean. One animation cycle
consisted of the shark appearing on the right side of the
display, swimming to the left side, and disappearing when it
reached the left edge. Each stimulus varied along the
following five binary-valued dimensions: habitat (near the
surface or bottom), diet (fish or shrimp), litter size (a few or
many pups), body size (small or large), and shade (light or
dark). Figure 2 displays snapshots of two sharks side by side
with an opposite value on each dimension. The five
dimensions were mapped randomly onto the logical
structure shown in Table 1. For example, the first dimension
was the habitat dimension for some participants, but it was
the diet dimension for others. The dimension values were
assigned according to the properties of the sharks used in
the experiment.



Table 1: The abstract category structures used in the current
experiment. Stimulus item Al, for example, belonged to
Category A and had 5 perceptual dimensions. Category A
might be Sixgill sharks. The first dimension might be size
with value 1 indicating small and value 2 indicating large.
Participants learned about the categories through inference.
They predicted the values of the dimensions, one at a time,
given the values of the other dimensions and the category
label, with the constraint that the amodal category values
(e.g., 2 in 11112) were never inferred.

Stimulus item Dimension value

Al 11112
A2 11121
A3 11211
A4 12111
AS 21111
Bl 22221
B2 22212
B3 22122
B4 21222
BS 12222

The categories contrasted Sixgill and Tiger sharks.
Relative to the Tiger sharks, the Sixgill sharks are common
in deep water (vs. surface to 340 m), often feed on shrimp
(vs. fish), give birth to many pups (vs. from 10 to 80), are
small (vs. 3 to 6 m), and have dark body shade (vs. grayish
above and white below). Information about the sharks was
collected from http://www.enchantedlearning.com and
http://www.flmnh.ufl.edu/fish/Education/education.htm.

The categories in Table 1, like many natural categories,
follow family-resemblance structures (Rosch & Mervis,
1975), in which properties tend to co-occur, but no single
property is common to all members of a category. In Table
1, value 1 on each perceptual dimension signifies the value
common to the Sixgill sharks when category A is the Sixgill
shark. In this case, although most Sixgill sharks have value
1 on each dimension, occasionally they have value 2, which
is common to the Tiger sharks. Participants were informed
that the sharks vary in their properties and thus the two
categories’ members could display overlapping properties.

Design and Procedure

Undergraduates learned about the Sixgill and Tiger shark
categories through inference. Each undergraduate completed
two sessions. The initial session consisted of familiarization,
training, filler, and test phases (described below). The
participants received course credit for their participation in
the initial session. Twelve to 33 days after completing the
initial session (M = 23 days, Se = 1 day, median = 21 days),
the participants completed a second session consisting of a
retention phase, which was identical (except for the random
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presentation order) to the test phase they completed in the
initial session. The participants received $7 for participating
in the second session. The relatively wide range of delay is
due to scheduling issues.

Familiarization Prior to learning about the sharks,
participants were familiarized with the five stimulus
dimensions. On each familiarization trial, a pair of sharks
that differed on one of the five dimensions was presented,
and the participants were asked to discriminate between the
two possible values (e.g., “Which shark is larger? Left (Q)
or right (P)?”). The participants pressed the P or Q key to
indicate the right or left side is correct, respectively. After
the participants responded, a blank screen was displayed for
1000 ms. Then they received visual (e.g., “Right! The
correct answer is P.” or “Wrong! The correct answer is Q.”)
and auditory corrective feedback (i.e., a low-pitch tone for
errors and a high-pitch tone for correct responses), together
with the correct shark (i.e., the foil disappeared) for one
animation cycle. Then, a blank screen was displayed for
1000 ms and the next trial began. Participants completed 15
(3 per dimension) familiarization trials in a random order.
Training Following familiarization, participants completed
a training phase, in which they learned about the shark
categories in Table 1 through inference. On each training
trial, the participants were shown two animated shark
stimuli side by side as displayed in Figure 1. Whereas one
stimulus correctly described the shark, the other stimulus
did not. The correct and foil stimuli were randomly assigned
to the left or right position. The two stimuli were identical to
each other except for the value of a queried dimension;
participants predicted a missing dimension value given the
values of the other four dimensions and the category label.
In Figure 1, for instance, the participant predicted the size of
the presented Tiger shark.

We manipulated the frequency with which each of the
five dimensions was queried. The first dimension was
queried 24 times for the prototypical value, the second
dimension 18 times, the third dimension 12 times, the fourth
dimension 6 times, and the fifth dimension 0 time during
training. The 60 training trials were broken down into three
training blocks. The frequency of query for each dimension
was distributed equally across the three training blocks.

Following the inference procedure used in most previous
work (e.g., Chin-Parker & Ross, 2004; Yamauchi &
Markman, 1998), the correct value of the queried dimension
was always typical of the shark’s category (e.g., value 1 for
Sixgill and value 2 for Tiger). For example, the last
perceptual dimension of item Al (see Table 1) was never
queried in the inference training trials because the correct
value is inconsistent with the category-typical value.

The procedure in the training phase was identical to that
in the familiarization phase except that the visual corrective
feedback in the training phase specified the category
membership (e.g., “Right! This is the Tiger shark.”).

Filler Following training, the participants were shown a
movie of 12 sharks swimming sequentially to prevent
rehearsal of information from the training phase. Pictures of



the Black-tip, Galapagos, Hammer Head, Horn, Lemon,
Sandbar, Sharp Nose, Short-fin Maco, Whale, White,
White-tip, and Zebra sharks were presented in a random
order. Each shark was animated for 9000 ms with its name
displayed at the bottom of the display, and a blank screen
was displayed for 1000 ms before the next shark appeared.
Test Following the filler phase, the participants completed a
test phase, in which their knowledge about the properties of
the two shark categories from training was measured. The
test phase consisted of a sequential presentation of 20 text
questions, once in a random order, resulting in 20 trials. Ten
forced-choice questions tested each of the 5 dimensions for
the two categories. For example, the text “Tiger sharks:”
was presented above the two choices “A: tend to be smaller”
and “B: tend to be larger” when the size dimension of the
Tiger shark was questioned. Another set of 10 questions was
created in the opposite fashion. For instance, the text “tend
to be larger:” was displayed above the choices “A: Tiger
sharks” and “B: Sixgill sharks” when the shark associated
with the larger size was questioned. The correct (i.e.,
category-typical) and foil choices were randomly assigned
to the top (A) or bottom (B) position on each trial.
Participants pressed the A or B key to indicate choice A or
B is correct, respectively. No corrective feedback was given
to participants to prevent learning during the test phase.
After participants responded, a high-pitch tone sounded
briefly and the text “Thank you” appeared beneath the
choices for 2000 ms. Then, a blank screen was displayed for
2000 ms and the next trial began.

Retention In the second session, the participants completed
a retention phase. The procedure for the retention phase was
identical to that for the test phase from the initial session.
The retention phase measured how well participants retained
information about the shark categories learned in the initial
session after a multi-day delay (i.e., 12 to 33 days).

Results

All participants were included in the analyses. Our main
interests are the participants’ performances on each
dimension in the training, test, and retention phases. Figure
3 summarizes the results from the present experiment.

Training

Participants’ training accuracies for dimensions queried 6,
12, 18, and 24 times did not differ significantly, F(3, 147) =
2.11, MSe = .03, p = .1. The lack of significant differences
in training accuracies between dimensions queried 6 times
and 24 times (#(49) = -1.63, p = .11) suggest that learning
takes place quickly in inference.

Test

Participants’ test accuracies for dimensions queried 0, 6, 12,
18, and 24 times differed significantly, F(4, 196) = 13.24,
MSe = .09, p < .01, partial #° = 21. When only the
dimensions that were queried were compared (6, 12, 18, and
24), the differences in the participants’ test accuracies did
not reach significance, F(3, 147) = 2.36, MSe = .07, p = .07.
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As can be seen in Figure 3, the participants did not learn
about the non-queried dimension. Whereas their test
accuracy on the dimension that was queried O time did not
differ significantly from the chance level of .5 (p = .8), their
test accuracy on each of the other dimensions that were
queried did (p < .01 for each).
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Retention
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Figure 3: Undergraduates’ performances are shown in the
training, test, and retention phase of the experiment.
Stimulus dimension indicates the number of total queries
during training. There are no training data for the dimension
that was not queried. Error bars represent the upper bounds
of the 95% confidence intervals (Loftus & Masson, 1994).

Retention

Participants’ retention accuracies for dimensions queried 0,
6, 12, 18, and 24 times did not differ significantly, F(4, 196)
1.89, MSe = .14, p = .11. Mirroring test phase
performance, whereas performance on queried dimensions
was above chance (p < .01 for each), performance on the
non-queried dimension did not differ significantly from
chance (p = .29). Whether a dimension was queried many
times or only a few times did not have a strong effect on
inference learners’ test and retention performances. As
shown in Figure 3, for queried dimensions, the participants’
accuracies during test (78%) and retention (69%) appear to
be unaffected by the number of queries during training.

Relationship between Training and Later
Performances

Training accuracy was positively correlated with the test
accuracy for each queried dimension (» = .39, p < .01 for the
dimension queried 6 times; » = .43, p < .01 for 12; r= 41, p
<.01 for 18; r =.49, p < .01 for 24). Training accuracy was
also positively correlated with the retention accuracy on
each queried dimension except for the one queried least



frequently (» = .18, p = .22 for the dimension queried 6
times; » = .46, p < .01 for 12; r =3, p <.04 for 18; r = .35,
p = .01 for 24). Making errors thus correlates with worse
test and retention performances.

Discussion

The current study examined how explicit queries during
inference training shape category acquisition and retention.
We manipulated how often the dimensions were queried
during inference training using categories with a family-
resemblance structure. Explicit query resulted in improved
retention performances regardless of the frequency of query.
Whereas querying 6 times resulted in above chance
retention performance that was statistically equal to
querying 24 times, not querying at all resulted in a chance
performance. Participants appeared to master the values of
queried dimensions after a few training trials, suggesting
that only a few queries are necessary to acquire and retain
category-property relationships and that there is little or no
benefit of additional queries.

The lack of a performance difference between
infrequently and frequently queried dimensions suggests
that any query of a dimension serves as a signal to the
learner to attend to and encode category-property
relationships for that dimension, even on trials in which the
dimension is not queried. Once the learners are queried
about a dimension, they develop an expectation that they
will be asked again and attend to the information about the
dimension even when they are asked about another
dimension. Such a mechanism is consistent with the eye-
tracking studies showing that inference learners look at
dimensions that are not directly asked during training (cf.
Colner et al., 2008), and can account for the high test and
retention performances for the queried dimensions but the
low performances for the non-queried dimension in the
current experiment.

Another interesting finding from the current experiment
was that making errors was correlated with worse test and
retention performances. This result seems to contradict the
finding that conditions that are more difficult at study often
lead to better performance at test (e.g., Bjork, 1994). One
possibility is that inference learning does not result in many
errors that can lead to source monitoring problems, in which
the learners confuse response with feedback, such as “I
responded large but it was small, or was it the other way
around?”. Another possibility is that some stimuli are
simply more memorable for certain participants and this
effect drives performance across phases.

Whereas the inference learners in the present experiment
were at chance level in test and retention for dimensions that
were not queried during training, pervious work examining
inference learning has found that inference learners acquire
information about both queried and non-queried properties
(Anderson et al., 2002; Sakamoto & Love, 2006). Inference
learners were not focusing exclusively on the queried
dimensions during training. However, after multiple day
delay, inference learners did not retain the information about
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non-queried dimensions (Sakamoto & Love, 2006),
consistent with the current finding. One explanation for the
lack of learning about the non-queried dimension in the
current work is task difficulty. Capacity limitations may
have prevented learners from entertaining the non-queried
dimension in the present work. Whereas there was only one
non-queried dimension and four others queried in the
present experiment, there were two non-queried dimensions
and two (Anderson et al., 2002) or three queried (Sakamoto
& Love, 2006) in the previous work. Further, remembering
information about the dimensions that were queried less
frequently in the current work might have consumed

additional cognitive resource, thus preventing the
participants from attending to the non-queried dimension.
Indeed, the inference learners’ training and test

performances suggest that the inference task in the present
experiment was more demanding than that in the previous
experiment (.72 for training and .78 for test in the present
experiment vs. .94 for training and .88 for test in Sakamoto
& Love, 20006).

Analogous to the inference result in which only queried
dimensions, which are explicitly evaluated, are retained,
classification learners tend to only retain information about
the dimension that is diagnostic in discriminating members
of different categories (Sakamoto & Love, 2006; but see
Bott, Hoffman, & Murphy, 2007). Classification learners
actively engage in hypothesis testing involving the
diagnostic dimension when they predict the category labels
(e.g., Nosofsky, Palmeri, & McKinley, 1994; Sakamoto &
Love, 2004), and this explicit evaluation consolidates
memory. Thus, people retain information that they explicitly
evaluate, and direct queries can facilitate this process.

Implications for Education and Models of Category
Learning

From the standpoint of learning the category-property
association, inference is similar to direct instruction, and
classification is more like discovery learning. Whereas
inference learners are explicitly asked about properties
associated with the category, classification learners are only
asked about the category membership and have to discover
the properties on their own. More efficient learning of the
categories and greater knowledge about the categories in
inference learning than classification learning may be
related to the findings that direct instruction can lead to
successful learning by many more children than discovery
learning (Klahr & Nigam, 2004). Although discovery
learning may require more active processing, it can lead to
errors and confusion as many classification learners
experience. In contrast, direct instruction, like the inference
procedure, can make the task easier and guide the learner on
what needs to be acquired. The lack of guidance may make
classification less efficient like discovery learning.

Direct query can be beneficial to promoting learning and
establishing memory. Moreover, querying a few times can
be as effective as querying numerous times. Asking about
properties during inference training, even only a few times,



can immediately promote learning and greatly enhance the
learner’s retention of knowledge of category properties.
These results parallel the findings that testing on material
can be more beneficial to establishing memories than
additional study (e.g., Roediger & Karpicke, 2006). The
present results suggest that frequency of testing may not
matter even for long-term retention of learned materials.

Existing category learning models do not specify how
queries shape retention and how knowledge is consolidated
(cf. Sakamoto & Matsuka, 2007). Thus our results provide
guidance for the further development of these models. For
example, models need to address the role queries play in
shaping attention and consider that a property need only be
queried a few times to manifest the full benefits of inference
learning and to result in long-term retention.

Many theories of category learning assume that errors
play a central role in learning (e.g., Kruschke, 1992; Love et
al., 2004). These theories are guided by conditioning
phenomena, which suggest that errors are necessary for
changes in memory (e.g., Rescorla & Wagner, 1972). Errors
mediate memory storage by leading to greater focus on
error-producing items (e.g., Mackintosh, 1975). These
category-learning models need to be elaborated to address
our finding that more errors can be associated with worse
learning and retention.
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