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Abstract

Working memory updating (WMU)—the ability to maintain
accurate representations of information changing over time—
has been successfully used in individual differences research
to predict higher cognitive abilities. For instance, WMU
has been found to predict fluid intelligence and reading com-
prehension. However, little is known about the underlying
component processes of WMU or the relationship between
WMU and working memory capacity (WMC). A decomposi-
tion of WMU into three distinct components—retrieval, trans-
formation, and substitution—was implemented into a standard
WMU paradigm. Experimental conditions featured every pos-
sible combination of these components. The decomposition
was used to analyze the relationship between WMU subcom-
ponents and WMC. We utilized structural equation modeling
in a novel way, in that both interindividual variability and ex-
perimental effects on mean performance measures (RT and ac-
curacy) were accounted for concurrently. Results suggest that
the proposed components make distinct and additive contribu-
tions to WMU. We found that WMC reliably predicts WMU
in general, but also that some components of WMU are inde-
pendent of WMC. Hence, WMU and WMC may make inde-
pendent contributions in predicting higher mental abilities.

Keywords: working memory updating; working memory ca-
pacity; individual differences; structural equation modeling

Working memory (WM) can be characterized as a col-
lection of mechanisms for holding selected representations
available for further cognitive processing. One implication of
the involvement of WM in many cognitive tasks is that the
content of WM must be continuously updated. For instance,
a task like keeping score in a tabletennis match involves up-
dating one of two numbers in WM after each rally.

WM updating (WMU from here on) has been identified as
one of three factors reflecting individual differences in ex-
ecutive functions, and the only one to reliably predict fluid
intelligence (Friedman et al., 2006; Miyake et al., 2000). Ac-
cordingly, WMU has been linked to reading comprehension
skills (Palladino, Cornoldi, De Beni, & Pazzaglia, 2001).

The acknowledged importance of WMU stands in contrast
to the lack of understanding of the underlying component pro-
cesses (for similar arguments, see Kessler & Meiran, in press;
Oberauer & Kliegl, 2001). Our study seeks to fill this void by
(a) experimentally manipulating components involved in up-
dating and (b) considering how those components relate to
individual differences in WM capacity (WMC).

WM Updating and Individual Differences
The pattern of correlations between tasks can address issues
relating to the number and nature of processes or components
involved in WM. For instance, Oberauer and colleagues (e.g.,
Oberauer, Süß, Schulze, Wilhelm, & Wittmann, 2000) have
used such an individual differences approach to decompose
the WMC construct into functional components, which were
then related to higher cognitive functions.

We already noted that WMU has also been found to pre-
dict such higher functions; however, most studies have mea-
sured WMU by the accuracy on WM tasks that require up-
dating, such as a running memory task. This does not sup-
ply a pure measure of WMU, and therefore we do not know
whether the correlation between the “updating” factor and
intelligence reflects a relationship between intelligence and
WMU, or intelligence and WMC. Indeed, some researchers
have claimed that there is only a weak link between WMU
and WMC (e.g., Radvansky & Copeland, 2001), so on the
one hand, WMU and WMC may be dissociable dimensions.
On the other hand, prominent theories of WM that assume a
tight link between WMC and executive functions (e.g., Kane
et al., 2004) should predict that WMU and WMC are closely
related because WMU is regarded as one executive function.

The Present Study
We began our examination by conducting a task analysis
of previously-used WMU paradigms. We identified 3 pu-
tative sub-processes of WMU; retrieval (R), transformation
(T), and substitution (S). Our experiment orthogonally ma-
nipulated these three components, thus permitting their em-
pirical identification and assessment of their interrelationship.
Further, our study included 4 independent working memory
tasks, thus permitting a reliable estimate of each participant’s
WMC. These WMC estimates were then statistically related
to the individual components of WMU isolated by our exper-
imental manipulations.

Method
Participants
Ninety-seven psychology students from the University of
Western Australia participated in the two experimental ses-
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sions for partial course credit (13 males, age range 19-41,
mean age 21.2 years).

Working Memory Capacity Measures
The first session involved measurement of each subject’s
WMC using a battery of 4 standard WMC tasks, taken with
slight modifications from Oberauer (2005). The tasks were:
Memory Updating (MU), Operation Span (OS), Sentence
Span (SS), and Spatial Short-Term Memory (SSTM).

Working Memory Updating Experiment
The WMU experiment was carried out in the second session.
The task was to encode a set of 3 letters, each presented in
a separate frame, and to subsequently update these letters.
Each trial involved 6 updating steps. All updating operations
were cued by displaying the appropriate prompt (see below)
in the to-be-updated frame. Subjects keyed in the result of the
update at every updating step. To avoid an influence of frame
switching (Oberauer, 2002), we held switching constant by
moving to a new (randomly chosen) frame on each step.

There were 8 experimental conditions created by fully
crossing the factors R, T, and S in a within-subjects design.
Conditions involving retrieval required subjects to retrieve
the most recent letter of the cued frame from memory to per-
form the current operation. In contrast, this letter was pro-
vided with the cue in no-retrieval conditions. Transformation
conditions involved a transformation of the selected letter by
alphabet arithmetic. Only positive operations of +1 and +2
were used. Substitution conditions resulted in the replace-
ment of memory content with new information, whereas the
outcome of no-substitution steps was identical to the informa-
tion already held in memory. Conditions are summarized in
Table 1, which presents the stimuli shown on a given updat-
ing step assuming the letter “C” is the currently remembered
content of the targeted frame; as in the table, conditions are
referred to by numbers (1) to (8) in the following.

Condition (8) involved neither of the three processes, and
the currently remembered letter was presented again (base-
line). Condition (4) was identical but a different letter was
presented (pure S without R or T). In condition (7), a “?”
prompted subjects to retrieve the currently held letter and re-
port it (pure R). Condition (5) was designed as a transforma-
tion that does not substitute memory content (? + 0). Condi-
tions (1), (2), and (6) involved standard alpha-arithmetic op-
erations. For instance, in (1), subjects had to add a number to
whatever they currently remembered for that particular frame.
The result of the transformation in (6) was identical to the re-
membered letter, hence no substitution. In (3), an arrow from
one frame to another indicated that subjects should retrieve
and then copy the letter from one frame to the other, thus re-
quiring retrieval and substitution but no transformation. Note
that conditions (3) and (5) were designed to permit the or-
thogonal combination of all three experimental variables, but
that this required the use of peculiar operations (e.g., “+0” to
avoid a substitution). We deal with the implications of these
design decisions during data analysis.

Table 1: Conditions (Condition Numbers in Parentheses) and
Sample Prompts Used in the WMU Experiment

T yes T no
R yes R no R yes R no

S yes (1) ?+1 (2) A+1/B+2 (3)→ (4) X
S no (5) ?+0 (6) A+2/B+1 (7) ? (8) C

Legend. R, Retrieval; T, Transformation; S, Substitution.
Note. Examples of prompts assume that the letter “C” is

currently memorized. See text for details.

Table 2: Accuracy of Updating (in Upper Rows) and Reaction
Times (in ms, in Lower Rows) in WMU Experiment

T yes T no
R yes R no R yes R no

S yes .76 (.016) .87 (.011) .82 (.014) .98 (.005)
3115 (63) 3009 (69) 2141 (50) 1642 (37)

S no .85 (.013) .89 (.011) .87 (.012) .99 (.005)
1599 (35) 2803 (69) 1297 (24) 1272 (29)

Legend. R, Retrieval; T, Transformation; S, Substitution.
Note. Standard Errors in Parentheses.

Results
Descriptive Data from the WMU experiment—mean updat-
ing performance and RTs—are shown in Table 2.

Structural Equation Modeling
To investigate the relation between WMC and WMU, we used
structural equation modeling (SEM). SEM is typically used
to capture individual differences and correlational dependen-
cies between latent variables, without regard to experimental
manipulations or differences between means. In the present
case, we extended this standard approach by also modeling
mean RT and accuracy for each experimental condition. We
thus constructed an SEM model that concurrently captured
both inter-individual variation and experimental effects.

Preliminary multilevel regression analyses suggested that
the effects of transformation, retrieval and substitution were
additive and showed no sign of interaction for either accuracy
or RT (i.e., model fits were not improved by adding interac-
tions); hence we initially focused on models that preserved
the additive structure among experimental variables.

The SEM models for Accuracy and RT are depicted in Fig-
ure 1. The models consisted of two measurement models—
one for the WMC part and one for the WMU part. The
WMC part had 4 observed variables—one for each task of
the WMC test battery—which were linked to a single WMC
latent factor1. The WMU part had 8 observed variables—
one corresponding to each of the 8 experimental conditions
(explained in Table 1)—that were connected to latent factors
corresponding to the experimental variables R, T, and S, and a

1Given the similarity of the WMC task MU and the WMU ex-
periment, analyses were also carried out excluding MU from the
indicators of WMC. These generally supported the results from the
full models.
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general factor accounting for the general level of performance
(in regression terms: the intercept). Accuracy measures were
probit-transformed to compensate for the lack of normality.

We imposed strong constraints on our models that are typ-
ically absent in SEM applications. First, all loadings between
manifest and latent variables in the WMU measurement mod-
els were fixed. Specifically, for both accuracy and RT models,
all loadings on the general performance variables (GenAcc
and GenRT) were set to 1. Loadings on the three factors R,
T, and S were set to +1 or −1, respectively, as any addi-
tional need for retrieval, transformation, or substitution was
assumed to increase RT but reduce accuracy. In addition, the
intercepts of the manifest variables were fixed to zero, as were
the means of the error terms associated with them.

The rationales for these constraints were as follows. First,
the additivity suggested by the regression is captured by the
fixed loadings because they imply that each factor has the
same effect on all conditions that load on it—for instance,
retrieval reduces accuracy by the same amount in all four de-
sign cells involving retrieval. Second, fixing the error means
to zero implies that no individual condition had a mean higher
or lower than that predicted from the additive model. Thus,
the estimated mean of the General factor represents the base-
line level of performance (i.e., the intercept), and the esti-
mated means of the three factors representing components of
updating reflect the mean effect of each experimental manip-
ulation. Correspondingly, the estimated variances of the fac-
tors reflect the individual differences in baseline performance
and in the magnitude of the experimental effects, respectively.

For both RTs and accuracies we had to relax these strong
constraints of the purely additive model at a few points, either
based on theoretical considerations or, on a few occasions,
based on deviations of the data from the additive model, as-
sociated with conditions (3) and (5). For instance, the “ar-
row” condition (3) involved an additional attentional shift,
which we estimated by fixing the associated error term (e3) of
the RT model to an independent estimate (483 ms) provided
by Garavan (1998). The accuracy model departed from the
strict additive structure in that the link between T and Accpb.5
was allowed to vary freely, reflecting the assumption that the
“zero-transform” condition (5) entailed a smaller effect of T
than the other three conditions involving a transformation.
Moreover, the means of the error terms e4 and e8 were al-
lowed to be different from zero (but were constrained to be
equal) because they refer to “type-what-you-see” conditions
(4) and (8), which differed from the remaining conditions in
that they did not allow for much error other than erroneous
copying of the screen display). This effectively means that
these conditions, for obvious conceptual considerations, had
intercepts larger than would be expected from the additive
model.

In the overall structural models, the covariances between
latent WMU variables and WMC reveal the extent to which
individual variation in WMC relates to variation among sub-
jects’ responses to our experimental WMU manipulations.

Given the unusually strong constraints imposed on
the models, we achieved acceptable fit (χ2(26/24) =
37.92/63.28, comparative fit index = .95/.94, root-mean-
square error of approximation = .061/.086, standardized
root-mean-square residual = .080/.068 for the accuracy and
RT model, respectively). The models are readily summa-
rized: First, they confirmed the assumed additivity among
experimental variables. Transformations had a strong im-
pact on both accuracy and especially RT, whereas substi-
tutions had small but reliable effects, and retrieval had a
large effect on accuracy but no effect on RT. At the level
of means, the models provided an excellent fit of the data
from the updating experiment. Hence the estimated means
shown in the SEM figures permit accurate reconstruction of
all observed means (Table 2); for example, if an operation
involves T and S but not R, the RT predicted by the model
is calculated as the GenRT mean plus T and S means, or
1.275 + 1.470 + .335 = 3.08—the observed level of perfor-
mance was 3.01 seconds. Overall, with the exception of RT
estimates for conditions (3) and (5), SEM mean predictions
were very close to the observed condition means, with aver-
age deviations of 30 ms and below .03 accuracy units, respec-
tively.

Second, the models captured the variance among individ-
uals’ WMC and related it to the variation in the magnitude
of the experimental effects. That is, in the accuracy model,
WMC correlated positively with overall accuracy on the up-
dating task (GenAcc) and negatively with R and T (the lat-
ter correlations are negative because the higher WMC, the
lower the negative impact of R and T on updating accuracy).
In the RT model, a relation between GenRT and T could be
observed within the WMU part of the model, such that the
higher the baseline RT reflected in GenRT, the larger the im-
pact of T. The model additionally showed that WMC corre-
lated negatively with both overall updating latency (GenRT)
and T. In both models, S contributed significantly to WMU
accuracy, but did not covary with WMC.

General Discussion
We presented the first examination of the basic processes that
govern the updating of WM. Our decomposition of WMU
into three distinct components—retrieval (R), transformation
(T), and substitution (S)—was tested by examining every pos-
sible combination of these components. The data indicate
that these processes make distinct and additive contributions
to WMU performance.

Further, we used the decomposition of WMU to analyze
the relationship between the WMU components and WMC.
As noted at the outset, both the view that WMC and WMU
are strongly related and the view that they form dissociable
dimensions of mental ability have been represented in the lit-
erature. Our study may help resolve this inconsistency be-
cause while we found that WMC did predict performance in
the experimental WMU task to some degree, some processing
components involved in that task were independent of WMC.
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Figure 1: Graphical representation of the structural equation model for accuracy (left) and RT (right), showing the prediction of
latent updating factors GenAcc (general accuracy) or GenRT (general RT), R (retrieval), T (transformation), and S (substitution)
by a latent WMC factor. Manifest accuracy and RT variables (Accpb.1-8 and RT.1-8) reflect probit-transformed accuracy data
and RT data referring to experimental conditions (1) to (8). WMC-related manifest variables reflect mean performance in WMC
tasks OS (operation span), SS (sentence span), SSTM (spatial short-term memory), and MU (memory updating). e1-12 = error
variables. Estimated standardized weights (correlations, in boldface) and unstandardized weights (covariances, italicized) are
presented adjacent to latent connections. Estimated unstandardized means (in probit-transformed accuracy units, italicized) are
shown inside the latent factors. Means of latent factors that are not given in the figure (error variables and WMC factor) were
fixed at zero. All estimated covariances provided in the figure are significant, p < .05; all estimated means are significantly
different from zero, p < .001, except the estimated mean of R in the RT model, p = .15.

We now discuss the decomposition of WMU first, followed
by some of its theoretical implications, and finally the rela-
tionship between WMU and WMC.

Component Processes

The analyses revealed specific costs associated with each
component of WMU. Retrieval and transformation, and to a
lesser degree substitution, affected the accuracy of updating.
In contrast, transformation and—again to a lesser degree—
substitution, but not retrieval, determined WMU response
times. Hence, transformative processing seems to be the main
determinant of WMU processing, retrieval processes seem to
be error-prone, and substitution also has a significant, albeit
smaller, impact on WMU.

The fit of our structural equation models (and preceding
linear regression models) was good without including any in-
teractions among components; hence we suggest that the con-
tributions of R, T, and S to WMU are orthogonal and addi-
tive. This observation favors a strictly serial processing model
because if processes were partially parallel (i.e., cascaded,
cf. McClelland, 1979; Navarrete & Costa, 2005) interactions
would be likely to occur.

One could argue, of course, that our decomposition of
WMU processes is too coarse. Indeed, it is plausible to
further deconstruct some of the components identified here.
For example, the substitution process may in turn involve
the removal of old information followed by the addition of
new information (cf. Oberauer & Vockenberg, in press; Pos-
tle, 2003). We therefore expect that the proposed compo-

nents will be subject to further examination and refinement;
nonetheless, the fact that our data conformed to an additive
model suggests that any further decomposition of processes
would only take place within the proposed components.

Instantaneous Retrieval

One perhaps surprising aspect of the data is that retrieval did
not affect updating times. What does this result tell us about
the structure and representations of working memory? It im-
plies that there is no separate process of retrieval that occurs
only in the R but not in the no-R conditions. With each step
involving a frame switch, each updating step brings a new
object in WM into the focus of attention. Our data suggest
that this involves obligatory retrieval, whether that object is
needed for the particular processing step or not. We focus
on two models in the literature that can accommodate such a
finding.

Oberauer (e.g., 2002) proposed that there are three func-
tionally distinct layers of representation in working memory:
(1) the activated part of long-term memory, (2) the region of
direct access, and (3) the focus of attention. In this model,
the focus of attention can only select a single item from the
region of direct access. Making a representation available
for processing therefore involves two steps: retrieving a rep-
resentation from long-term memory, thereby bringing it into
the region of direct access, and accessing one representation
among several candidates in the direct-access region. Within
this model, we can explain our results as follows: All three
letters are continuously held in the direct-access region. Ev-
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ery updating step involves a frame switch, and the new frame
serves as an automatic trigger for the focus of attention to
focus on that frame. The critical assumption is that moving
the focus of attention to a new frame means not merely to
move visual attention to a new location in space, but rather
involves focusing on a new object in WM. That object is a
tightly bound composite of the spatial location of the frame
and the letter currently bound to it; hence it is immaterial
whether or not that letter has to be retrieved for the next up-
dating step as it is already in the focus of attention.

An alternative model was proposed by McElree based
mainly on examination of the time-course of retrieval (e.g.,
McElree, 2001). This model postulates that there are only
two representational states: (1) passive representations and
(2) a single item in the focus of attention. The latter item can
be processed very quickly, whereas items outside of atten-
tion are retrieved in a time-consuming fashion with constant
retrieval speed. Similar to Oberauer’s model, this view can
also handle the present data by assuming that whenever peo-
ple shift their focus of attention to a new frame (as they had
to at all steps in our experiment), they automatically retrieve
the corresponding letter (whether needed or not).

Because retrieval in McElree’ model is from long-term
memory, it follows that in order to accommodate our results,
retrieval of object-location bindings from long-term mem-
ory must be automatic and obligatory. We argue that there
is ample evidence that associative retrieval from long-term
memory is not automatic. Nobel and Shiffrin (2001) made
a strong point that both associative recognition and cued re-
call differ from single-item recognition in that they involve a
slow, non-automatic search process, and Gronlund and Rat-
cliff (1989) argued for a different time course of retrieval for
single items and associative information. The neuropsychol-
ogy literature has strongly corroborated these assumptions,
and suggests that automatic retrieval from long-term memory
is limited to the recognition of single items (or highly uni-
tized chunks). By contrast, associative retrieval of arbitrary
bindings, such as object–location,word–temporal position, or
face–name pairings, rests on slower retrieval processes that
have been shown to be strategically controlled (Cansino, Ma-
quet, Dolan, & Rugg, 2002; Ecker, Zimmer, & Groh-Bordin,
2007).

To conclude, we suggest that in order to explain our finding
of obligatory retrieval of location-bound information at each
updating step, the McElree model needs to make assumptions
about associative long-term memory retrieval that are difficult
to reconcile with research in that area. By contrast, the Ober-
auer model avoids these issues by means of the intermediate
stage of direct access.

Yet, why did our R conditions incur a cost in accuracy? If
a focus shift entails obligatory retrieval, why is responding
so much more accurate when the item is (re-)presented? The
reason is simple: Memorized representations of the three let-
ters are not always accurate—either because a previous up-
dating step went wrong, or because the object, which was

previously outside the focus of attention, has been degraded
by the time it is accessed.

The Role of WMC for WMU
Another aim of this study was to examine the relationship
between WMC and WMU component processes, using struc-
tural equation models. Not surprisingly, WMC was strongly
related to the latent factors that represented baseline perfor-
mance in the WMU task (i.e., GenRT and GenAcc); these
factors simply represent performance on a WM task. Of
greater theoretical interest is the relation between WMC and
the specific factors representing experimental effects; we dis-
cuss these in turn.

Transformation had the strongest impact on WMU perfor-
mance overall; conditions featuring a transformation were
significantly slower and less accurate than conditions with-
out transformation requirements. The size of this impact
varied consistently with the size of the transformative oper-
ation, replicating the known effects of “problem size” with
alpha-arithmetic operations in untrained subjects (e.g., Lo-
gan, 1988). Further, the SEM models demonstrated that the
T latent variable showed consistent covariation with WMC. It
could thus be concluded that WMC predicts transformation
skills and that these primarily underpin the relation between
WMC and any updating that involves transformation.

WMC strongly predicted the accuracy cost of retrieval,
such that people with lower WMC were more likely to fail in
retrieving the correct item. This finding echoes recent reports
that WMC predicted the accuracy of retrieval in an updating
task (Unsworth & Engle, 2008). These authors argued that
low-span subjects have difficulties to correctly select items
from outside the focus of attention during retrieval. Given
that retrieval did not take any time (over and above the time
necessary to encode new information in no-retrieval condi-
tions), we cannot interpret the null covariation between R and
WMC meaningfully. Any individual differences in retrieval
time are either captured in our generic GenRT factor (among
other processing aspects) or are absent altogether.

Finally, substitution had a small but reliable impact on
WMU performance. Moreover, individual differences in the S
factor were not correlated with WMC. In the accuracy model,
the variance in S was too small for a covariance with WMC
to become significant. For the RT model, however, it stands
to reason that the null correlation is genuine, which implies
that the encoding of a new letter into working memory and
the removal of a previous letter from working memory are
unrelated to WMC, and this is consistent with previous re-
search (Vogel, McCollough, & Machizawa, 2005; Oberauer,
2005). We therefore conclude that unlike the other two com-
ponents (retrieval and transformation), substitution uniquely
contributes variance to WMU independent of WMC.

Our finding that substitution is unique to WMU may help
clarify the interrelations between WMU, WMC, and higher
cognitive functions. Specifically, if WMU tasks are utilized
that draw heavily upon substitution (as opposed to retrieval
and transformation) skills, then updating performance may
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be more likely to be independent of WMC than if the WMU
tasks draw on retrieval and transformation (e.g., compare Gal-
letly, MacFarlane, & Clark, 2007 and Friedman et al., 2006).

Conclusions
In summary, we reported the first study that systematically
decomposed working memory updating into constituent pro-
cesses. Our results suggest that the processes of retrieval,
transformation, and substitution make distinct and additive
contributions to updating performance.

We further found a selective relationship between working
memory capacity and working memory updating, whereby
only the process of substitution seems to be unique to updat-
ing. This potentially reconciles inconsistencies in the litera-
ture, as some studies may have conflated updating measures
with more capacity-related factors.
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