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Abstract

Finding the number of groups in a data set, k, is an important
problem in the field of unsupervised machine learning with ap-
plications across many scientific domains. The problem is dif-
ficult however, because it is ambiguous and hierarchical, and
current techniques for finding k often produce unsatisfying re-
sults. Humans are adept at navigating ambiguous and hierar-
chical situations, and this paper measures human performance
on the problem of finding k across a wide variety of data sets.
We find that humans employ multiple strategies for choosing
k, often simultaneously, and the number of possible interpreta-
tions of even simple data sets with very few (N < 20) samples
can be quite high. In addition, two leading machine learning
algorithms are compared to the human results and methods for
improving these techniques are discussed.
Keywords: machine learning; clustering; psychophysics.

Introduction
Within the field of unsupervised machine learning, clustering
is a technique used to separate an arbitrary collection of data
points into groups (commonly called clusters). Clustering is
usually comprised of two steps. First, one must choose the
number of groups, represented by the variable k, for which
to look. Second, one must assign each data point to one or
more groups while ensuring that there are no empty groups.
This second step has received the majority of attention from
researchers, with techniques such as the venerable k-means
and spectral clustering [1] focusing exclusively on assign-
ment and leaving the task of choosing k up to other algo-
rithms.

There are a few reasons why choosing k is a less attractive
problem for researchers as compared to the assignment prob-
lem. In some application domains for clustering algorithms,
researchers may approach their data with a particular value
for k already in mind. In this case, they can simply enter
the desired number of clusters into an algorithm like k-means
and have a solution without bothering to find which values
for k have statistical support. Beyond this practical matter,
choosing k has all the hallmarks of a difficult computer sci-
ence problem. For most data there is no one right answer
for what k should be. In fact there may be many answers,
some more likely than others. Thus k is an inherently am-
biguous quantity, causing much algorithmic difficulty. Some
of this ambiguity comes from multiple possible hierarchical
interpretations of the data. For the data in Fig. 1, for example,
the value of k depends on whether one wants to focus on the
details (that there are seven or eight small groups) versus the
broad trend (that there are two clear larger groups).

Beyond challenges with ambiguity and hierarchy, there is
also the issue of profligacy. Naı̈vely, one might want to repre-

Figure 1: Are there 8, 7 or 2 groups?

sent the effectiveness of a certain k by calculating an assign-
ment based on that k and then measuring the sum squared
distance between each data point and the centroid of the clus-
ter that it is assigned to. This seems like a reasonable strat-
egy, but imagine choosing a k equal to the number of points
in one’s data. In this situation, each cluster will have exactly
one data point, which will be located at the cluster centroid.
Obviously the sum squared distance in this case will be zero,
indicating a good fit but providing an answer completely use-
less in terms of data analysis. In general, k+1 will always fit
data better than k based on this simple measure. A solution to
this limitation is to design a more sophisticated statistical test
to determine when to stop increasing the number of clusters
in order to better fit the data. Unfortunately, statistical tests
are based on assumptions about the underlying distribution
of the data and if these assumptions are incorrect the test will
fail to provide a reasonable result.

The challenges presented in choosing k might lead one to
wonder whether humans are accomplished at the task. Hu-
mans are adept at navigating ambiguous and hierarchical sit-
uations, and we generally cringe at the thought of labori-
ously counting large numbers of objects, so perhaps we are
k-choosing experts. There is a distinct (and often implicit)
trend in the clustering literature to use the human visual sys-
tem as a standard against which the performance of cluster-
ing algorithms should be judged. In one prominent spectral
clustering paper, the authors state, “The results are surpris-
ingly good... the algorithm reliably finds clusterings consis-
tent with what a human would have chosen [1].” Given that
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our visual system is an adept and powerful data processing
system (surprisingly resistant to myriad forms of algorithmic
mimicry) it is reasonable to solicit its judgments on a thorny
problem for which it seems particularly well-suited.

This paper takes inspiration from a computer vision project
undertaken at UC Berkeley [2]. Faced with the challenging
task of determining how to segment images such that ob-
jects are separated from one another by outlines, researchers
enlisted human subjects to manually outline the objects in
several hundred images of real-world scenes. The problem
of image segmentation is very similar to choosing k in that
ambiguity and hierarchy play a major role in determining
reasonable answers. Detail oriented subjects might outline
the leaves on a tree whereas others might just outline the
branches. Through this effort researchers collected what is
known as the Berkeley Segmentation Dataset, a large collec-
tion of human image segmentation data. These data have mo-
tivated and assisted several research projects and continue to
be a valuable resource in the computer vision field. Studies
explicitly measuring human clustering judgements are rare,
but at least one study exists that focuses on the developmental
changes in human visual grouping of synthetic data sets [3].

This paper presents human judgements on a diverse set
of clustering stimuli. The motivation for this undertaking is
twofold. First and foremost, we hope to gain intuitions about
the methods humans use to choose k and use those intuitions
to develop better k-choosing algorithms. The results of this
endeavor will be discussed later on. Second, we hope to cre-
ate a comprehensive and detailed data set representing hu-
man clustering behavior that can be used as a standard against
which to measure algorithmic performance, and to fuel inno-
vation in this branch of machine learning.

Human Data
Eighteen undergraduate human subjects were recruited for
this project, 11 female and 7 male, to determine the num-
ber of groups present in 50 distinct point light displays. Each
point light display was presented at two different scales and
two different rotations, for a total of four presentations per
display and 200 trials per subject. Subjects were asked to
determine the number of groups in each display and were en-
couraged to give more than one answer if appropriate. There
was no time limit for response. Subjects were told to ignore
answers above 20 and to focus on “the bigger picture” to find
a reasonable answer less than 20. In addition to k judgments,
response times and sequence information were recorded. The
sequence of trial presentations was structured into four blocks
of 50 randomly ordered trials each, with each block consist-
ing of a unique permutation of every point light display. After
the subjects completed all 200 trials, they were interviewed in
order to gain insight into their techniques. The interview con-
sisted of two questions:

• What strategies did you use for this task?

• Were any of the displays harder than the others?

While there are likely many interesting phenomena to in-
vestigate in the human data, such as consistency, reaction
time, the relationship between reaction time and consistency,
the relationship between reaction time and k, etc., this pa-
per is mostly concerned with the overall gist of the human
responses, their relationship to state-of-the-art k-choosing al-
gorithms, and the new k-choosing methods they inspire. To
that end, the human data were analyzed and will be presented
collapsed across subjects, scales and rotations. The results are
presented in normalized bar plots meant to represent a prob-
ability distribution over k, based on the number of responses
at each particular k. For each display there are at least 72
responses represented, assuming one answer per subject per
trial. The actual number of responses might be larger if sub-
jects were inclined to give multiple answers.

The 50 point light displays used in this experiment were
chosen to provide a mixture of depth and breadth within the
extremely large space of possible point light displays. Six-
teen of the displays consisted of various riffs on mixtures of
Gaussians, while another three were mixtures of Gaussians
overlaid with uniformly distributed random noise. Nine dis-
plays consisted solely of uniformly distributed random noise
(with differing number of samples between eight and 10,000).
Three displays depicted two-dimensional embeddings of real
data. Eight displays contained lines, circles or a combination
of the two. The final 11 displays consisted of other synthetic
data transformed by a variety of nonlinear distortions. See
Fig. 2 for thumbnails of all the displays used. Subjects al-
ways saw the displays as white points on a black background,
but for the sake of presentation the displays in this paper are
black on white and the points have been increased in size.

We focused heavily on mixture of Gaussian data sets due
to the prominence of the Gaussianity assumption in the ma-
chine learning literature [4][5][6]. We also used several data
sets with uniform noise in order to investigate how subject
responses varied with sample size and to what extent sub-
jects saw patterns where none were justified by the underly-
ing distribution. Our shape-based and distorted displays were
included for breadth and represent a case where the data are
drawn from no standard underlying distribution.

Though all of the data sets are two-dimensional, we antic-
ipate that insights gained from this study will lead to algo-
rithmic improvements even in high-dimensional spaces. Cer-
tain algorithms (such as the Eigengap algorithm discussed
below) operate over affinity matrices that are insensitive to
the underlying dimensionality of a data set. Thus, improve-
ments in these algorithms as measured by similarity to hu-
man performance in two dimensions will likely scale to high-
dimensional data.

Results
Several interesting trends emerge in the human responses. In
the interview section of the study, subjects predominantly re-
port two central strategies: looking for areas of greatest den-
sity, perhaps separated by empty space (N = 13), and count-
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Figure 2: The stimuli.

ing shapes or blobs (N = 11). Many of those subjects report
using both strategies (N = 9). The latter strategy can be
interpreted as a model fitting strategy, where subjects see a

collection (mixture) of objects (e.g. arcs or Gaussians) and
then explicitly count the number of those objects regardless
of overlapping density. Rarer strategies include grouping by
shape orientation (N = 1), and grouping by shape type (if
there are both circles and lines in a display, there are two
groups, N = 1). Finally, one subject explicitly mentions a
hierarchical strategy, where he or she searches for small clus-
ters first, and then groups them into larger clusters.

Subjects cite two main sources of difficulty: displays con-
taining very few data points (N = 9) and displays with lots
of (often overlapping) shapes (N = 12). A few subjects con-
sider displays with random noise to be difficult (N = 3).

We find echoes of these subjective measures in the choices
of k that humans make. Insofar as the distribution over k is
less peaked (has higher entropy) for a particular data set, one
might interpret that data set as more difficult. Conforming
with interview responses indicating that small sample sizes
cause difficulty, we can see in Fig. 3 that entropy decreases as
sample size increases for displays of uniform noise.

In concordance with interview responses indicating two
primary strategies, we find several examples of bimodal re-
sponses for displays where these two strategies would di-
verge. Some examples are shown in Fig. 4.

In all of the mixture of Gaussian cases, humans perform
very consistently. In cases where the Gaussians have low
variance and well separated means, almost all subjects indi-
cate the correct number of Gaussians. Where the Gaussians
have high variance and close means, humans generally agree
on a tight range of values for k that corresponds to the num-
ber of “blobs” in the display. See Fig 5 for some examples of
these results.

Strategies
Based on the observations discussed above, humans follow at
least two broad strategies when choosing k, density strategies
and model fitting strategies. In this section, two algorithms
from recent work in the field that represent these two strate-
gies will be briefly described and their performance compared
to the human data.

Density Strategies
Density strategies discover clusters by looking for regions
of low density between groups of points, following density
within groups to find all the points that belong to them, and
attempting to ignore low density noise. Several algorithms
have endeavored to formalize these strategies, notably [7].

A more recent algorithm [8], which this paper will refer to
as the Eigengap algorithm, brings similar strategies for find-
ing k under the spectral clustering umbrella. The Eigengap
algorithm treats each data point as a node on a graph, and
then performs a random walk between the nodes, with the
probability of transitioning between any two nodes weighted
by the distance between them. If two nodes are close together
then the probability of transitioning from one to the other will
be high and if two nodes are far apart then the probability of
transitioning from one to the other will be low. Thus, if a
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Figure 3: Responses to uniform noise. Displays with few
samples present significant ambiguity. As sample size in-
creases, entropy decreases.

group of points is separated by a large distance from the rest
of the data, a random walk will be unlikely to transition across
that gap. In this case, all the points within the group will have
a high probability of ending up on other points in the group
and little probability of ending up outside the group.

A matrix, P , representing the probability of any point end-
ing up at any other point in the data set will therefore be block
diagonal if there are distinct groups within the data set that are
separated by sufficient distance. This block diagonal structure
is represented by the n largest eigenvalues of P , and eigen-
values greater than the nth will generally be much smaller
than the first n eigenvalues. By finding the largest difference

Figure 4: A sample of displays that elicited bimodal re-
sponses from subjects.

Figure 5: Human responses are generally consistent for mix-
ture of Gaussians data sets.

between neighboring eigenvalues sorted in descending order,
one can find a useful estimate of the number of groups in the
data. For example, if the difference between the third and
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fourth eigenvalues is 0.4 and that distance is greater than the
distance between all other adjacent eigenvalues, then there
are likely to be three groups in the data.

As the random walk progresses the Eigengap algorithm
naturally finds groups of coarser and coarser structure. Over
an increasing number of steps, a random walk will become
more and more likely to cross over low density sections of the
data set, and thus two groups that initially might be separated
will over time merge and lower values for k will be discov-
ered. In this way the Eigengap algorithm can respond well to
hierarchical data given a sufficiently long random walk.

The implementation of the Eigengap algorithm in this pa-
per uses a small tweak as compared to [8]. Given a data set
with N points, the authors of [8] suggest searching over N
possible values for σ, a parameter used in generating the tran-
sition probability matrix, between the minimum and maxi-
mum pairwise distances in the data set. The algorithm used
in this paper searched over 10 possible values for σ in order
to drastically reduce computation time while still investigat-
ing a reasonable range of values. Also, given the large (over
10,000) number of points in some of the data sets, a sparse
implementation of the Eigengap algorithm was used, with
pairwise distances only calculated between nearest neighbors
(and the number of nearest neighbors equal to one percent of
the total number of points in the data set).

Model Fitting Strategies

Several model fitting strategies based on an assumption of
mixture of Gaussian distributed data have been proposed in
the past [4] [5]. This section describes a recent variant called
PG-means [6]. PG-means searches for Gaussian clusters in
a data set using an iterative process. The algorithm is ini-
tialized with k = 1 and it attempts to find an appropriate
centroid and covariance matrix for a single Gaussian cluster
given the data using the Expectation-Maximization (EM) al-
gorithm. PG-means then randomly projects the data set and
the Gaussian model down to one dimension n times (we used
n = 10). The Kolmogorov-Smirnov (KS) test is applied to
each projection and if every KS test indicates a sufficiently
good fit (as measured by a parameter α that was set to 0.001)
then the current value for k is accepted. Otherwise, k is in-
cremented by one and the entire process is repeated.

If PG-means did not find an answer less than k = 20, the
algorithm was halted and its response considered to be k = 1.
Note that unlike the Eigengap algorithm, PG-means will only
give one possible value for k.

Comparison with Human Data

To broadly compare Eigengap and PG-means performance
with human performance, both the human results and the al-
gorithmic results are interpreted as probability distributions
over k. The sum Kullback-Leibler (KL) divergence is then
calculated between the human results and both Eigengap and
PG-means over all 50 data sets. The human results are con-
sidered the true distribution and the algorithmic results are

Figure 6: Sample human (left) versus combined Eigengap
and PG-means (right) probability distributions over k.

considered the model distributions for purposes of calculat-
ing KL.

Unsurprisingly, given its ability to return multiple values
of k and discover hierarchical organization, Eigengap outper-
forms PG-means with a sum KL divergence of 269.1 com-
pared to 316.2 for PG-means. A simple unweighted combi-
nation of the two, however, performs better than either algo-
rithm on its own with a sum KL divergence of 245.8 (an im-
provement of 8.7 percent over the Eigengap algorithm). See
Fig. 6 for some sample comparisons of this combined result
to human responses.

New Density Strategies
While the Eigengap algorithm performs its function of fol-
lowing density well, this paper proposes two novel strategies
that use density in other ways. Both of the techniques pro-
posed are based on leveraging higher order density informa-
tion than traditional pairwise distances or affinities.

First, we are developing an algorithm that intelligently
culls uninformative samples from a dataset in order to in-
crease the accuracy and decrease the computational com-
plexity of k-choosing algorithms. These uninformative sam-
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Figure 7: The KL divergence scores for PG-means, Eigen-
gap, their combination, and the enhanced version of Eigen-
gap. (Note that the Y-axis is scaled to make the distinctions
more visible.)

ples should correspond to the less dense or “bright” sam-
ples that humans tend to ignore. Consider a sample, ~xi, and
the set of its κ (kappa) nearest neighbors, νi. Define the
neighborhood variance of ~xi as σ2

i =
∑
n∈νi
||~xi − ~xn||2/κ

and define the normalized neighborhood variance of ~xi as
norm(σ2

i ) = σ2
i /minn∈νi

(σ2
n). Remove all samples from

the dataset whose norm(σ2
i ) measure is above threshold.

Both this threshold and κ can be reasonably set based on
the number of samples in the dataset and the potential range
of k. In a mixture of Gaussians setting, samples with high
norm(σ2

i ) will be far from the mean of their underlying dis-
tribution, and thus less prototypical than points with lower
norm(σ2

i ).
For an intuition on how this might help a density based

approach to choosing k, consider a simple mixture of two
Gaussians whose means are well separated but whose sam-
ples overlap in some part of the space. An Eigengap-style al-
gorithm will be able to traverse points across both Gaussians
quite easily due to this overlap, leaving little indication that
there are two clear clusters. By culling all but a small number
of points with the lowest normalized neighborhood variance
this “bridge” between the two Gaussians is removed.

Second, we propose an extension to spectral clustering
based on the observation that human subjects consider sam-
ples with large differences in neighborhood variance to be
likely drawn from different clusters (though this is not the
case when the variance changes smoothly across space).
σ2
i can be interpreted as the projection of ~xi into a one-

dimensional space, and a new pairwise affinity matrix be-
tween samples can be created based on distances in this space.
By adding this new affinity matrix as a second view to spec-
tral clustering one might expect to obtain results more simi-
lar to human judgments. Early data from applying this tech-
nique to the algorithm in [8] are promising and support this
expectation. A version of this technique improves Eigengap
performance as compared to human performance by approx-
imately 11 percent with a sum KL divergence of 239.7 (com-

pared to 269.1 for the standard Eigengap algorithm). Inter-
estingly, combining this modified version of Eigengap with
PG-means nets only a 2.1 percent improvement over the mod-
ified Eigengap alone (compared to the 8.7 percent improve-
ment when combining PG-means with standard Eigengap),
indicating that sensitivity to density changes might be part of
what drives model fitting strategies in humans. See Fig. 7 for
a comparison across all algorithms.

Conclusion
Finding reasonable values for k is an important and difficult
problem in unsupervised machine learning. As one can see
from the samples in Fig. 6, current algorithms do well in cer-
tain situations and very poorly in others. By further inves-
tigating human performance and attempting to apply the in-
sights garnered from such investigation, substantial progress
can be made in developing new algorithms to tackle this
thorny problem.
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